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Abstract
Many research works have recently experimented with
GPU to accelerate packet processing in network applica-
tions. Most works have shown that GPU brings a signifi-
cant performance boost when it is compared to the CPU-
only approach, thanks to its highly-parallel computation
capacity and large memory bandwidth. However, a recent
work argues that for many applications, the key enabler
for high performance is the inherent feature of GPU that
automatically hides memory access latency rather than its
parallel computation power. It also claims that CPU can
outperform or achieve a similar performance as GPU if
its code is re-arranged to run concurrently with memory
access, employing optimization techniques such as group
prefetching and software pipelining.

In this paper, we revisit the claim of the work and see if
it can be generalized to a large class of network applica-
tions. Our findings with eight popular algorithms widely
used in network applications show that (a) there are many
compute-bound algorithms that do benefit from the par-
allel computation capacity of GPU while CPU-based op-
timizations fail to help, and (b) the relative performance
advantage of CPU over GPU in most applications is due to
data transfer bottleneck in PCIe communication of discrete
GPU rather than lack of capacity of GPU itself. To avoid
the PCIe bottleneck, we suggest employing integrated
GPU in recent APU platforms as a cost-effective packet
processing accelerator. We address a number of practical
issues in fully exploiting the capacity of APU and show
that network applications based on APU achieve multi-10
Gbps performance for many compute/memory-intensive
algorithms.

1 Introduction
Modern graphics processing units (GPUs) are widely used
to accelerate many compute- and memory-intensive appli-
cations. With hundreds to thousands of processing cores
and large memory bandwidth, GPU promises a great po-
tential to improve the throughput of parallel applications.

Fortunately, many network applications fall into this cat-
egory as they nicely fit the execution model of GPU. In
fact, a number of research works [29–31, 33, 34, 46, 47]
have reported that GPU helps improve the performance of
network applications.

More recently, however, the relative capacity of GPU
over CPU in accelerating network applications has been
questioned. A recent work claims that most benefits of
GPU come from fast hardware thread switching that trans-
parently hides memory access latency instead of its high
computational power [32]. They have also shown that
applying the optimization techniques of group prefetching
and software pipelining to CPU code often makes it more
resource-efficient than the GPU-accelerated version for
many network applications.

In this paper, we re-examine the recent claim on the
efficacy of GPU in accelerating network applications.
Through careful experiments and reasoning, we make
following observations. First, we find that the computa-
tional power of GPU does matter in improving the per-
formance of many compute-intensive algorithms widely
employed in network applications. We show that popular
cryptographic algorithms in SSL and IPsec such as RSA,
SHA-1/SHA-2, and ChaCha20 highly benefit from par-
allel computation cycles rather than transparent memory
access hiding. They outperform optimized CPU code by
a factor of 1.3 to 4.8. Second, while the CPU-based code
optimization technique like G-Opt [32] does improve the
performance of naı̈ve CPU code, its acceleration power
is limited when it is compared with that of GPU without
data transfer. By the performance-per-cost metric, we find
that GPU is 3.1x to 4.8x more cost-effective if GPU can
avoid data transfer overhead. Third, we emphasize that
the main bottleneck in GPU workload offloading lies in
data transfer overhead incurred by the PCIe communica-
tion instead of lack of capacity in the GPU device itself.
However, masking the DMA delay is challenging because
individual packet processing typically does not require
lots of computation or memory access. This makes it diffi-
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cult for asynchronous data transfer (e.g., concurrent copy
and execution of GPU kernel) to completely overlap with
GPU kernel execution. Given that typical PCIe bandwidth
is an order of magnitude smaller than the memory band-
width of GPU, it is not surprising that data transfer on
PCIe limits the performance benefit in GPU-accelerated
network applications.

To maximize the benefit of GPU without data trans-
fer overhead, we explore employing integrated GPU in
Accelerated Processing Units (APUs) for network applica-
tions. APU is attractive in packet processing as it provides
a single unified memory space for both CPU and GPU,
eliminating the data transfer overhead in discrete GPU. In
addition, its power consumption is only a fraction of that
of typical CPU (e.g., 35W for AMD Carrizo) with a much
smaller price tag (e.g., $100 to $150), making it a cost-
effective accelerator for networked systems. The question
lies in how we can exploit it as a high-performance packet
processing engine.

However, achieving high performance in packet pro-
cessing with APU faces a few practical challenges. First,
in contrast to discrete GPU, integrated GPU loses the ben-
efit of high-bandwidth GDDR memory as it has to share
the DRAM with CPU. Since both CPU and GPU contend
for the shared memory bus and controller, efficient use of
memory bandwidth is critical for high performance. Sec-
ond, the communication overhead between CPU and GPU
to switch contexts and to synchronize data update takes
up a large portion of GPU execution time. Unlike discrete
GPU, this overhead is no longer masked by overlapped
GPU kernel execution. Also, cache coherency in APU is
explicitly enforced through expensive instructions since
CPU and GPU employ a separate cache. This implies that
the results by GPU threads are not readily visible to CPU
threads without heavyweight synchronization operations
or slow GPU kernel teardown.

We address these challenges in a system called APUNet,
a high-performance APU-accelerated network packet pro-
cessor. For efficient utilization of memory bandwidth,
APUNet extensively exercises zero-copying in all stages of
packet processing: packet reception, processing by CPU
and GPU, and packet transmission. We find that the exten-
sive zero-copying model helps extract more computational
power from integrated GPU, outperforming the naı̈ve ver-
sion by a factor of 4.2 to 5.4 in IPsec. For low-latency
communication between CPU and GPU, APUNet adopts
persistent GPU kernel execution that keeps GPU threads
running in parallel across a continuous input packet stream.
Eliminating GPU kernel launch and teardown, combined
with zero copying significantly reduces packet processing
latency by 7.3x to 8.2x and waiting time to collect a batch
of packets for parallel execution. In addition, APUNet
performs “group synchronization” where a batch of GPU
threads implicitly synchronize the memory region of the
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Figure 1: Typical architecture of discrete GPU

processed packets, which avoids heavy atomics instruc-
tions. It efficiently ensures coherent data access between
CPU and GPU by checking for updated packet payload
(e.g., non-zero values in HMAC digest) only when pro-
cessing is completed, which improves the synchronization
performance by a factor of 5.7.

APUNet achieves both high-speed and cost-efficient
network packet processing on several popular network
applications. We find that many network applications,
regardless of being memory- or compute-intensive, out-
perform CPU baseline as well as optimized implemen-
tations. APUNet improves G-Opt’s performance by up
to 1.6x in hashing-based IPv6 forwarding, 2.2x in IPsec
gateway, 2.8x in SSL proxy, and up to 4.0x in NIDS adopt-
ing the Aho-Corasick pattern matching algorithm. We
note that APUNet does not improve the performance of
simple applications like IPv4 forwarding as the offloaded
GPU kernel task is too small to overcome the CPU-GPU
communication overhead.

2 Background
In this section, we describe the architecture of discrete and
integrated GPUs and analyze their differences.

2.1 Discrete GPU
Most GPU-accelerated networked systems [29–31, 33, 34,
46, 47] have employed discrete GPU to enhance the per-
formance of network applications. Typical discrete GPU
takes the form of a PCIe peripheral device that commu-
nicates with the host side via PCIe lanes as shown in
Figure 1. It consists of thousands of processing cores (e.g.,
2048 in NVIDIA GTX980 [5]) and a separate GDDR
memory with large memory bandwidth (e.g., 224 GB/s for
GTX980). It adopts the single-instruction, multiple-thread
(SIMT) execution model under which a group of threads
(called a warp in NVIDIA or a wavefront in AMD hard-
ware), concurrently executes the same instruction stream
in a lock-step manner. Multiple warps (e.g., 4 in GTX980)
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are run on a streaming multiprocessor (SM) that shares
caches (instruction, L1, shared memory) for fast instruc-
tion/data access and thousands of registers for fast con-
text switching among threads. SMs are mainly optimized
for instruction-level parallelism but do not implement so-
phisticated branch prediction or speculative execution as
commonly available in modern CPU. High performance
is achieved when all threads run the same basic block in
parallel, but when a thread deviates from the instruction
stream due to a branch, the execution of the other threads
in a warp is completely serialized.

By the raw computation cycles and memory bandwidth,
typical discrete GPU outperforms modern CPU. For exam-
ple, NVIDIA GTX980 has 110x more computation cycles
and 3.8x higher memory bandwidth than Intel Xeon E5-
2650 v2 CPU. Such large computation power brings a
clear performance advantage in massively-parallel work-
loads such as supercomputing [19, 38, 39] or training deep
neural networks [21, 23, 24]. However, in other workloads
that do not exhibit enough parallelism, GPU may perform
poorly as it cannot fully exploit the hardware. Since our
focus in this paper is packet processing in network ap-
plications, we ask a question: can GPU perform better
than CPU in popular network applications? We attempt to
answer this question in Section 3.

2.2 Integrated GPU
In recent years, integrated GPU has gained more popular-
ity with extra computation power. Unlike discrete GPU,
integrated GPU is manufactured into the same die as CPU
and it shares the DRAM with CPU. Both Intel and AMD
have a lineup of integrated GPU (e.g., AMD’s Accelerated
Processing Unit (APU) or Intel HD/Iris Graphics) that
can be programmed in OpenCL. Figure 2 illustrates an
example architecture of an integrated GPU inside AMD
Carrizo APU [44].

Typical integrated GPU has lower computation capacity
than discrete GPU as it has a smaller number of processing
cores. For example, AMD Carrizo has 8 compute units
(CUs) 1, each containing 64 streaming cores 2. L1 cache

1CU is similar to NVIDIA GPU’s SM.
2512 cores in total vs. 2048 cores in GTX980

and registers are shared among the streaming cores in a CU
while L2 cache is used as a synchronization point across
CUs. Despite smaller computation power, integrated GPU
is still an attractive platform due to its much lower power
consumption (e.g., 35W for AMD Carrizo) and a lower
price tag (e.g., $100-$150 [2]). Later, we show that inte-
grated GPU can be exploited as the most cost-effective
accelerator by the performance-per-cost metric for many
network applications.

The most notable aspect of integrated GPU comes from
the fact that it shares the same memory subsystem with
CPU. On the positive side, this allows efficient data shar-
ing between CPU and GPU. In contrast, discrete GPU
has to perform expensive DMA transactions over PCIe,
which we identify as the main bottleneck for packet pro-
cessing. For efficient memory sharing, OpenCL supports
shared virtual memory (SVM) [9] that presents the same
virtual address space for both CPU and GPU. SVM en-
ables passing buffer pointers between CPU and GPU pro-
grams, which potentially eliminates memory copy to share
the data. On the negative side, however, shared memory
greatly increases the contention on the memory controller
and reduces the memory bandwidth share per each proces-
sor. To alleviate the problem, integrated GPU employs a
separate L1/L2 cache, but it poses another issue of cache
coherency. Cache coherency across CPU and its integrated
GPU can be explicitly enforced through atomics instruc-
tions of OpenCL, but explicit synchronization incurs a
high overhead in practice. We address the two issues later
in this paper. First, with extensive zero-copying from
packet reception all the way up to GPU processing, we
show that CPU and GPU share the memory bandwidth
efficiently for packet processing. Second, we employ a
technique that implicitly synchronizes the cache and mem-
ory access by integrated GPU to make the results of GPU
processing available to CPU at a low cost.

3 CPU vs. GPU: Cost Efficiency Analysis
Earlier works have shown that GPU improves the perfor-
mance of packet processing. This makes sense as network
packet processing typically exhibit high parallelism. How-
ever, a recent work claims that optimized CPU code often
outperforms the GPU version, with software-based mem-
ory access hiding. This poses a question: which of the
two processors is more cost-effective in terms of packet
processing? In this section, we attempt to answer this
question by evaluating the performance for a number of
popular network algorithms.

3.1 CPU-based Memory Access Hiding
Before performance evaluation, we briefly introduce the
G-Opt work [32]. In that work, Kalia et al. have argued
that the key performance contributor of GPU is not its high
computation power, but its fast hardware context switch-
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ing that hides memory access latency. To simulate the
behavior in CPU, they develop G-Opt, a compiler-assisted
tool that semi-automatically re-orders the CPU code to
execute memory access concurrently without blocking.
G-Opt employs software pipelining to group prefetch the
data from memory during which it context switches to
run other code. They demonstrate that overlapped code
execution brings a significant performance boost in IPv6
forward table lookup (2.1x), IPv4 table lookup (1.6x),
multi-string pattern matching (2.4x), L2 switch (1.9x),
and named data networking (1.5x). They also claim that
G-Opt-based CPU code is more resource-efficient than the
GPU code, and show that a system without GPU offload-
ing outperforms the same system that employs it.

In the following sections, we run experiments to verify
the claims of G-Opt. First, we see if popular network
algorithms do not really benefit from parallel computa-
tion cycles. This is an important question since many
people believe that earlier GPU-accelerated cryptographic
works [29, 31] benefit from parallel computation of GPU.
We see if G-Opt provides the same benefit to compute-
intensive applications. Second, we see if G-Opt makes
CPU more resource-efficient than GPU in terms of mem-
ory access hiding. Given that memory access hiding of
GPU is implemented in hardware, it would be surprising
if software-based CPU optimization produces better per-
formance in the feature. Note that we do not intend to
downplay the G-Opt work. Actually, we do agree that G-
Opt is a very nice work that provides a great value in CPU
code optimization. We simply ask ourselves if there is any
chance to interpret the results in a different perspective.

3.2 Experiment Setup and Algorithms
We implement a number of popular packet processing
tasks for the experiments. These include the algorithms
evaluated in the G-Opt paper as well as a few crypto-
graphic algorithms widely used in network security proto-
cols and applications.
IP forwarding table lookup: IP forwarding table lookup
represents a memory-intensive workload as typical IP for-
warding table does not fit into CPU cache. IPv4 table
lookup requires up to two memory accesses while IPv6
table lookup requires up to seven memory lookups with
hashing. We use an IPv4 forwarding table with 283K en-
tries as in PacketShader [29] and an IPv6 table with 200K
randomized entries for experiments.
Multi-string pattern matching: Aho-Corasick (AC)
multi-string pattern matching [18] is one of the most pop-
ular algorithms in network intrusion detection systems
(NIDS) [15, 43] and application-level firewalls [7]. AC
scans each payload byte and makes a transition in a DFA
table to see if the payload contains one of the string pat-
terns. It is a memory-intensive workload as each byte
requires at least five memory accesses [22].

ChaCha20-Poly1305: ChaCha20-Poly1305 [25, 26] is a
relatively new cipher stream actively being adapted by
a number of Web browsers (e.g., Chrome) and Google
websites. We select ChaCha20-Poly1305 as it is a part
of AEAD standard for TLS 1.3, making AES-GCM and
ChaCha20-Poly1305 the only options for future TLS [36].
ChaCha20 [26] is a stream cipher that expands 256-bit
key into 264 randomly accessible streams. It is mostly
compute-bound as it does not require any table lookups.
Poly1305 [25], a code authenticator, is also computation-
heavy as it produces a 16-byte message tag by chopping
the message into 128-bit integers, adding 2128 to each inte-
ger, then executing arithmetic operations on each integer.
SHA-1/SHA-2: SHA-1/SHA-2 are widely used for data
integrity in network security protocols such as IPsec,
TLS, PGP, SSH and S/MIME. SHA-1 is being rapidly
replaced by SHA-2 as the attack probability on SHA-1
increases [14]. We select one of the standards of SHA-2,
SHA-256, which produces a 256-bit digest by carrying
out 64 rounds of compression with many arithmetic/bit-
wise logical operations. Both SHA-1/SHA-2 are compute-
intensive workloads.
RSA: RSA [13] is one of the most popular public key
ciphers in TLS [48]. RSA is a compute-intensive workload
as it requires a large number of modular exponentiations.
We use 2048-bit RSA as 1024-bit key is deprecated [12].
Test platform: For experiments, we use recent CPU and
GPU (both discrete and integrated GPU) as shown in
Figure 3(a). For GPU code, we either follow the efficient
implementations as described in earlier works [29–31, 47]
or write them from scratch. We use the latest version of
OpenSSL 1.0.1f for baseline CPU code, and apply G-Opt
that we downloaded from a public repository. We feed
a large stream of synthetic IP packets to the algorithms
without doing packet I/O.

3.3 Performance Analysis
For each algorithm, we measure the throughputs of CPU
baseline (CPU), G-Opt, discrete GPU with copy (dGPU w/
copy) and without copy (dGPU w/o copy), and integrated
GPU (iGPU). “w/ copy” includes the PCIe data transfer
overhead in discrete GPU while “w/o copy” reads the data
from dGPU’s own GDDR memory for processing. We
include “w/o copy” numbers to figure out dGPU’s inherent
capacity by containing the PCIe communication overhead.
Note, both “CPU” and “G-Opt” use all eight cores in the
Xeon CPU while “dGPU” and “iGPU” use one CPU core
for GPU kernel execution.
Performance-per-dollar metric: As each computing de-
vice has different hardware capacity with a varying price,
it is challenging to compare the performance of hetero-
geneous devices. For fair comparison, we adopt the
performance-per-dollar metric here. We draw the prices
of hardware from Amazon [1] (as of September 2016)
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CPU / Discrete GPU Platform
CPU Intel Xeon E5-2650 v2 (8 Core @ 2.6 GHz)
GPU NVIDIA GTX980 (2048 Core @ 1.2 GHz)
RAM 64 GB (DIMM DDR3 @ 1333 MHz)

APU / Integrated GPU Platform
CPU AMD RX-421BD (4 Core @ 3.4 GHz)
GPU AMD R7 Graphics (512 Core @ 800 MHz)
RAM 16 GB (DIMM DDR3 @ 2133 MHz)
OS Ubuntu 14.04 LTS (Kernel 3.19.0-25-generic)

(a) CPU/GPU platforms for experiments
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(c) IPv6 table lookup
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(d) Aho-Corasick pattern matching
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(e) ChaCha20
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(f) Poly1305
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(g) SHA-1

0.6 0.6 
1.7 

10.2 

1.0 
1.0 1.0 3.5 

20.6 

25.3 

0

2

4

6

8

10

12

CPU G-Opt dGPU      
w/ copy

dGPU      
w/o copy

iGPU
0

5

10

15

20

25

30

N
o

rm
al

iz
ed

 t
h
ro

u
g

h
p
u

t

P
er

fo
rm

an
ce

 p
er

 d
o

ll
ar

(h) SHA-256
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Figure 3: Comparison of performance-per-dollar values (line) and per-processor throughputs (bar). Performance-per-
dollar values are normalized by that of CPU while per-processor throughputs are normalized by that of iGPU.

Component Price ($) Details
CPU 1,143.9 8 CPU cores
Discrete GPU 840.0 GPU + 1 CPU core
Integrated GPU 67.5 GPU + 1 CPU core

Table 1: Price of each processor setup

and show them in Table 1. We estimate the price of
iGPU as follows. We find that Athlon 860K CPU has
an almost identical CPU specification as AMD Carrizo
without integrated GPU. So, we obtain the price of iGPU
by subtracting the price of Athlon 860K CPU from that
of AMD Carrizo (e.g., $50 = $119.9 - $69.99). For fair-
ness, we include the price of one CPU core for GPU as
it is required to run the GPU kernel. We note that the
comparison by the performance-per-dollar metric should
not be interpreted as evaluating the cost-effectiveness of
CPU-based vs. GPU-based systems as it only compares
the cost of each processor. However, we believe that it
is still useful for gauging the cost-effectiveness of each
processor for running network applications.
Performance comparison: Figure 3 compares the per-
formance for each packet processing algorithm. Each
line in a graph shows the performance-per-dollar values

normalized by that of CPU. We use them as the main com-
parison metric. For reference, we also show per-device
throughputs as a bar graph, normalized by that of iGPU.

We make following observations from Figure 3. First,
G-Opt improves the performance of baseline CPU for
memory-intensive operations (e.g., (b) to (d)) by a factor
of 1.2 to 2.0. While these are slightly lower than reported
by the original paper, we confirm that the optimization
does take positive effect in these workloads. However, G-
Opt has little impact on compute-intensive operations as
shown in subfigures (e) to (i). This is because hiding mem-
ory access does not help much as computation capacity
itself is the bottleneck in these workloads. Second, dGPU
“w/o copy” shows the best throughputs by the raw perfor-
mance. It outperforms G-Opt by a factor of 1.63 to 21.64
regardless of the workload characteristics. In contrast, the
performance of dGPU “w/ copy” is mostly comparable
to that of G-Opt except for compute-intensive operations.
This implies that PCIe data transfer overhead is the key
performance barrier for dGPU when packet contents have
to be copied to dGPU memory. This is not surprising as
the PCIe bandwidth of dGPU is more than an order of
magnitude smaller than the memory bandwidth of dGPU.
It also implies that dGPU itself has a large potential to
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Figure 4: Correlation between speedup by G-Opt and the
CPU-cycles-per-memory-access value. MICA [37] is an
in-memory key-value store algorithm.

improve the performance of packet processing without
the DMA overhead. Third, for compute-intensive opera-
tions, even dGPU “w/ copy” outperforms G-Opt by a large
margin. By the performance-per-dollar metric, dGPU “w/-
copy” brings 1.3x to 4.8x performance improvements over
G-Opt for ChaCha20, SHA-1/SHA-2, and RSA. RSA
shows the largest performance boost with dGPU as it
transfers small data while it requires lots of computation.
This confirms that compute-intensive algorithms do bene-
fit from parallel computation cycles of GPU. Finally, and
most importantly, we note that iGPU presents the best
performance-per-dollar numbers in almost all cases. Even
by the raw throughput, the performance of iGPU is often
comparable to the baseline CPU with eight cores. This
is because iGPU can fully export its computing capacity
without PCIe overhead in dGPU.
Summary: We find that GPU-based packet processing not
only exploits transparent memory access hiding, but also
benefits from highly-parallel computation capacity. In con-
trast, CPU-based optimization helps accelerate memory-
intensive operations, but its benefit is limited when the
computation cycles are the key bottleneck. Also, dGPU
has huge computation power to improve the performance
of packet processing, but its improvement is curbed by the
PCIe data transfer overhead. This turns our attention into
iGPU as it produces high packet processing throughputs
at low cost without the DMA bottleneck.

3.4 Analysis on CPU-based Optimization
We now consider how one can deterministically tell
whether some packet processing task would benefit from
CPU-based memory access hiding or not. Roughly speak-
ing, if a task exhibits enough memory access that can
be overlapped with useful computation, techniques like
G-Opt would improve the performance. Otherwise, GPU
offloading could be more beneficial if the workload can
be easily parallelized.

To gain more insight, we measure the performance im-
provements by G-Opt for various packet processing algo-
rithms, and correlate them with the trend of “CPU-cycles-
per-memory-access”, which counts the average number of

CPU cycles consumed per each memory access. We mea-
sure the CPU-cycles-per-memory-access of each workload
by counting the number of last-level-cache-misses of its
baseline CPU code (without G-Opt optimization). For the
measurement, we use Performance Application Program-
ming Interface (PAPI) [11], a library that provides access
to performance hardware counters.

Figure 4 shows the results of various algorithms. We
use AMD CPU (in Figure 3(a)) for the measurement, but
the similar trend is observed for Intel CPUs as well. For
reference, we have a synthetic application that accesses
memory at random such that we add arbitrary amount of
computation between memory accesses. We mark this ap-
plication as ‘+’ in the graph. From the figure, we observe
the following. First, we see performance improvement
by G-Opt if x (CPU-cycles-per-memory-access) is be-
tween 50 and 1500. The best performance improvement is
achieved when x is around 300 (e.g., MICA [37]). G-Opt
is most beneficial if the required number of CPU cycles
is slightly larger than that of memory access, reflecting
a small amount of overhead to overlap computation and
memory access. We think the improved cache access
behavior after applying G-Opt 3 often improves the per-
formance by more than two times. Second, we see little
performance improvement if x is beyond 2500. This is not
surprising since there is not enough memory access that
can overlap with computation.

One algorithm that requires further analysis is Aho-
Corasick pattern matching (AC w/ or w/o Sort). “AC
w/o Sort” refers to the case where we apply G-Opt to the
plain AC code, and we feed 1514B packets to it. “AC w/
Sort” applies extra optimizations suggested by the G-Opt
paper [32] such that it pre-processes the packets with their
packet header to figure out which DFA each packet falls
into (called DFA number in [32]) and sorts the packets by
their DFA number and packet length before performing
AC. “AC w/o Sort” and “AC w/ Sort” show 1.2x and
2x performance improvements, respectively. While “AC
w/o Sort” shows better performance improvement, it may
be difficult to apply in practice since it needs to batch
many packets (8192 packets in the experiment) and the
performance improvement is subject to packet content.

4 APUNet Design and Implementation

In this section, we design and implement APUNet, an
APU-accelerated network packet processing system. For
high performance, APUNet exploits iGPU for parallel
packet processing while it utilizes CPU for scalable packet
I/O. We first describe the practical challenges in employ-
ing APU and then present the solutions that address them.

3For example, we see much better L1 cache hit ratio for MICA.
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4.1 Challenge and Approach
APU enables efficient data sharing between CPU and GPU,
but it also presents a number of practical challenges in
achieving high performance. First, sharing of DRAM in-
curs contention on the memory controller and bus, which
potentially reduces the effective memory bandwidth for
each processor. Given that many packet processing tasks
are memory-intensive and packet I/O itself consumes
memory bandwidth, memory bandwidth is one of the key
resources in network applications. Our approach is to
minimize this shared memory contention by extensive
zero-copy packet processing, which removes redundant
data copy between CPU and GPU as well as NIC and appli-
cation buffers. Second, we find that frequent GPU kernel
launch and teardown incur a high overhead in packet pro-
cessing. This is because GPU kernel launch and teardown
in APU execute heavyweight synchronization instructions
to initialize the context registers at start and to make the re-
sults visible to the CPU side at teardown. Our approach to
address this problem is to eliminate the overhead with per-
sistent thread execution. Persistent GPU thread execution
launches the kernel only once, then continues processing
packets in a loop without teardown. Lastly, APU does
not ensure cache coherency across CPU and GPU and
it requires expensive atomics operations to synchronize
the data in the cache of the two processors. We address
this challenge with group synchronization that implicitly
writes back the cached data into shared memory only when
data sharing is required. Our solution greatly reduces the
cost of synchronization.

4.2 Overall System Architecture
Figure 5 shows the overall architecture of APUNet.
APUNet adopts the single-master, multiple-worker frame-
work as employed in [29]. The dedicated master exclu-
sively communicates with GPU while the workers perform
packet I/O and request packet processing with GPU via
the master. The master and each worker are implemented
as a thread that is affinitized to one of the CPU cores. Both
CPU and GPU share a packet memory pool that stores an
array of packet pointers and packet payload. They also

share application-specific data structures such as an IP
forwarding table and keys for cryptographic operations.

We explain how packets are processed in APUNet.
APUNet reads incoming packets as a batch using the Intel
DPDK packet I/O library [4]. Each worker processes a
fraction of packets that are load-balanced by their flows
with receive-side scaling (RSS). When a batch of packets
arrive at a worker thread, the worker thread checks the
validity of each packet, and enqueues the packet point-
ers to master’s data queue. Then, the master informs
GPU about availability of new packets and GPU performs
packet processing with the packets. When packet pro-
cessing completes, GPU synchronizes the results with the
master thread. Then, the master notifies the worker thread
of the results by the result queue of the worker, and the
worker thread transmits the packets to the right network
port. Details of data synchronization are found in the
following sections.

4.3 Zero-copy Packet Processing
Zero-copy packet processing is highly desirable in
APUNet for efficient utilization of the shared memory
bandwidth. We apply zero-copying to all packet buffers
and pass only the pointers between CPU and GPU for
packet data access. In APU, one can implement zero-
copying with SVM and its OpenCL API.

While SVM provides a unified virtual memory space
between CPU and GPU, it requires using a separate mem-
ory allocator (e.g., clSVMAlloc()) instead of standard
malloc(). However, this makes it difficult to extend
zero copying to packet buffers as they are allocated in the
DPDK library with a standard memory allocator. What is
worse, the DPDK library allocates hugepages for packet
buffers that map its virtual address space to a contiguous
physical memory space. Unfortunately, DPDK does not
allow turning off hugepage allocation as the rest of the
code depends on the continuous physical memory space.

To address this problem, we update the DPDK code to
turn off the hugepage mode, and make it use the SVM
memory allocator to create packet buffers. We find that
this does not result in any performance drop as address
translation is not the main bottleneck in our applications.
To avoid dealing with physical address mapping, we cre-
ate an RDMA channel from one virtual address to an-
other using the InfiniBand API [41] in the Mellanox NIC
driver. We patch the DPDK code to support the driver in
DPDK [40] and page-lock SVM-allocated buffers to be
registered as the packet memory pool of the NIC. We then
create an interface that exposes the SVM buffers to the
application layer so that worker threads can access them
to retrieve packets. While the current version depends
on a particular NIC driver, we plan to extend the code to
support other drivers. The total number of lines required
for the modification is about 2,300 lines.
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4.4 Persistent Thread Execution
GPU-based packet processing typically collects a large
number of packets for high utilization of GPU threads.
However, such a model comes with two drawbacks. First,
it increases the packet processing delay to wait for the
packets. Second, each GPU kernel launch and teardown
incurs an overhead which further delays processing of the
next batch of packets. The overhead is significant in APU
as it has to synchronize the data between CPU and GPU
at each GPU kernel launch and teardown.

To address the problem, we employ persistent GPU ker-
nel execution. The basic idea is to keep a large number of
GPU threads running to process a stream of input packets
continuously. This approach has a great potential to re-
duce the packet processing delay as it completely avoids
the overhead of kernel launch and teardown and processes
packets as they are available. However, a naı̈ve imple-
mentation could lead to serious underutilization of GPU
as many GPU threads would end up executing a different
path in the same instruction stream.

APUNet strives to find an appropriate balance between
packet batching and parallel processing for efficient per-
sistent thread execution. For this, we need to understand
how APU hardware operates. Each CU in GPU has four
SIMT units and each unit consists of 16 work items (or
threads) that execute the same instruction stream in paral-
lel [17]. So, we feed the packets to GPU so that all threads
in an SIMT unit execute concurrently. At every dequeue
of master’s data queue, we group the packets in a multiple
of the SIMT unit size, and pass them to GPU as a batch.
We use 32 as the batch size in our implementation, and
threads in two SIMT units (that we call as GPU thread
group) process the passed packets in parallel. If the num-
ber of dequeued packets is smaller than the group size,
we keep the remaining GPU threads in the group idle to

make the number align with the group size. In this way,
when the next batch of packets arrive, they are processed
by a separate GPU thread group. We find that having
idle GPU threads produces a better throughput as feeding
new packets to a group of threads that are already active
results in control path divergence and expensive execution
serialization.

Figure 6 shows the overall architecture of persistent
thread execution. CPU and GPU share a per-group state
that identifies the mode of a GPU thread group as active
(i.e., non-zero) or idle (i.e. zero). The value of the state in-
dicates the number of packets to process. All GPU thread
groups are initialized as idle and they continuously poll on
the state until they are activated. When new packets arrive,
the master thread finds an idle thread group and activates
the group by setting the value of its group state to the num-
ber of packets to process. When the GPU thread group
detects a non-zero value in its state, each GPU thread in
the group checks whether it has a packet to process by
comparing its local ID with the state value. Those threads
whose local ID is smaller than the state value begin pro-
cessing the packet inside the packet pointer array indexed
by its unique global ID. Other threads stay idle waiting
on a memory barrier. When all threads in the group fin-
ish execution and meet at the barrier, the thread with the
minimum local ID switches the group state back to 0. The
master in CPU periodically polls on the state, and when
it sees that a group has completed, it retrieves the results
and returns them to workers.

4.5 Group Synchronization
Another issue in persistent GPU threads lies in how to
ensure cache coherency between CPU and GPU at a low
cost. When GPU finishes packet processing, its result
may not be readily visible in CPU as it stays in GPU’s L2
cache, a synchronization point for GPU threads. In order
to explicitly synchronize the update in GPU to main mem-
ory, OpenCL provides atomics instructions aligned with
C++11 standard [16]. Atomics operations are executed
through a coherent transaction path (dotted arrows in Fig-
ure 2) created by a coherent hub (CHUB) placed inside
graphics northbridge [20]. Unfortunately, they are expen-
sive operations as they require additional instructions such
as locking, and CHUB can handle only one atomics op-
eration at a time. As every atomics operation incurs an
overhead, serial handling of requests from thousands of
GPU threads would suffer from a significant overhead and
degrade the overall performance.

We minimize the overhead by group synchronization.
It attempts to implicitly synchronize the memory region
of packets that a GPU thread group finished processing.
For implicit synchronization, we exploit the LRU cache
replacement policy of GPU [17] to evict dirty data items
in GPU cache to main memory. We exploit idle GPU
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Figure 7: Packet latency with varying packet sizes

thread groups that are currently not processing packets
such that they carry out dummy data I/O on a separate
memory block and cause existing data in L2 cache to be
evicted. While this incurs some memory contention, we
find that synchronizing memory regions in a group is more
efficient than synchronizing one at a time with atomics
instructions. Note that idle threads (e.g., local ID larger
than its group state value) in an active GPU thread group
still wait on memory barrier since doing dummy data
I/O will deviate them from instruction stream of active
threads, making packet processing to be serialized. If all
GPU thread groups are active, all GPU threads contend for
GPU’s cache and cause dirty data in cache to be flushed
to main memory even without dummy data I/O. Finally,
we guarantee data coherency between CPU and GPU by
verifying the updates in packet payload (e.g., memory
region for IPsec’s digest contains non-zero values after
processing).

4.6 Tuning and Optimizations
APUNet maximizes the performance of GPU kernel exe-
cution by applying a number of well-known optimizations,
such as vectorized data accesses and arithmetic operations,
minimization of thread group divergence, and loop un-
rolling. It also exploits GPU’s high bandwidth local and
private memory. We configure the number of persistent
threads for maximum performance. We currently use a
fixed dummy memory block size for group synchroniza-
tion, and leave the design to dynamically configure the
size depending on machine platform (e.g., different cache
size) as a future work.

Finally, we enhance GPU’s memory access speed by
the hybrid usage of two SVM types: coarse- and fine-
grained. Coarse-grained SVM provides faster memory
access but needs explicit map and unmap operations to
share the data between CPU and GPU, which incurs a
high cost. Fine-grained SVM masks map/unmap over-
heads but shows longer memory access time due to pinned
memory [27]. We thus allocate data structures that seldom
change values (e.g., IP forwarding table) as coarse-grained
SVM while we allocate frequently modified buffers (e.g.,
packet memory pool) as fine-grained SVM.

5 Evaluation
In this section, we evaluate APUNet to see how much
performance improvement our design brings in packet pro-
cessing. We then demonstrate the practicality of APUNet
by implementing five real-world network applications and
comparing the performance over the CPU-only approach.

5.1 Test Setup
We evaluate APUNet on the AMD Carrizo APU platform
(shown as Integrated GPU Platform in Figure 3(a)) as a
packet processing server. APUNet uses one CPU core as
a master communicating with GPU while three worker
cores handle packet I/O. We use a client machine equipped
with an octa-core Intel Xeon E3-1285 v4 (3.50 GHz)
and 32GB RAM. The client is used to either generate
IP packets or HTTPS connection requests. Both server
and client communicate through a dual-port 40 Gbps Mel-
lanox ConnectX-4 NIC (MCX414A-B [3]). The maxi-
mum bandwidth of the NIC is 56 Gbps since it is using
an 8-lane PCIev3 interface. We run Ubuntu 14.04 (kernel
3.19.0-25-generic) on the machines.

5.2 APUNet Microbenchmarks
We see if our zero-copy packet processing and persistent
thread execution help lower packet processing latency, and
gauge how much throughput improvement group synchro-
nization achieves.

5.2.1 Packet Processing Latency
In this experiment, we measure the average per-packet
processing latency from the time of packet arrival until
its departure from the system. We evaluate the following
three configurations: (i) GPU-Copy: a strawman GPU
version with data copying between CPU and GPU ad-
dress spaces (standard memory allocation in CPU with
hugepages), (ii) GPU-ZC: GPU with zero-copy packet
processing, and (iii) GPU-ZC-PERSIST: GPU with zero-
copy packet processing and persistent thread execution
including group synchronization. We use IPsec as packet
processing task for the experiments, and use 128-bit AES
in CBC mode and HMAC-SHA1 for the crypto suite.

Figure 7 compares the packet processing latency for
each configuration with varying packet sizes. We set the
largest packet size to 1451B, not to exceed the maximum
Ethernet frame size after appending an ESP header and
an HMAC-SHA1 digest. As expected, GPU-Copy shows
the highest packet processing latency, which suffers from
data transfer overhead between CPU and GPU. On the
other hand, we see that GPU-ZC reduces the packet la-
tency by a factor of 4.2 to 5.4 by sharing packet buffer
pointers. GPU-ZC-PERSIST further reduces the latency
by 1.8 times, thanks to elimination of per-batch kernel
launch and teardown overheads. In total, APUNet success-
fully reduces the packet latency by 7.3 to 8.2 times, and
shows an impressive reduction in packet processing time.
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Figure 8: Performance of IPv4/IPv6 table lookup and packet forwarding

Moreover, it outperforms the CPU-only model by more
than 2x in throughput in real-world network evaluation
(Figure 9(a)).

5.2.2 Synchronization Throughput
We next evaluate the performance improvement of group
synchronization when compared with synchronization
with atomics operations. For this, we perform a stress
test in which we pass 64B IP packets to GPU that is run-
ning an IPsec kernel code. We choose an IPsec mod-
ule as our default GPU kernel since it completely up-
dates the IP payload during encryption. Hence the entire
packet content needs to be synchronized back to the CPU
side. Note that zero-copy packet processing and persis-
tent thread execution are implemented as baseline in both
cases. Through measurement, we observe that APUNet
achieves 5.7x throughput improvement with group syn-
chronization (0.93 Gbps vs. 5.31 Gbps) as atomically
synchronizing all dirty data serially via CHUB results in a
significant performance drop. We find that APUNet sig-
nificantly reduces the synchronization overhead between
CPU and GPU and maintains high performance with a
small cost of introducing additional memory usage from
dummy data I/O.

5.3 APUNet Macrobenchmarks
We determine the practicality of APUNet in real-world
network applications by comparing the throughputs of
CPU baseline and G-Opt enhanced implementations. We
begin by briefly describing the setup of each application
and then discuss the evaluation results.
IPv4/IPv6 packet forwarding: We have a client machine
transmit IPv4/IPv6 packets with randomized destination
IP addresses, and APUNet forwards the packets after car-
rying out IPv4/IPv6 table lookups. We use the same
IPv4/IPv6 forwarding tables as we used for experiments
in Section 3. For IPv6 table lookup, we evaluate a hashing-
based lookup algorithm as well as longest prefix matching
(LPM)-based algorithm. Figure 8 shows the forwarding
throughputs with varying packet sizes. We see that G-
Opt effectively hides memory accesses of IPv4/IPv6 ta-

ble lookups, improving CPU baseline performance by
1.25x and 2.0x, respectively. Unfortunately, we find that
APUNet performs worse in IPv4 forwarding due to a num-
ber of reasons. First, as IPv4 table lookup is a lightweight
operation, the communication overhead between CPU and
GPU takes up a relatively large portion of total packet pro-
cessing time. Second, APUNet dedicates one master CPU
core for communicating with GPU and employs only three
CPU cores to perform packet I/O, which is insufficient
to match the IPv4 forwarding performance of four CPU
cores. Lastly, there is a performance penalty from the con-
tention for a shared packet memory pool between CPU and
GPU. In contrast, IPv6 packet forwarding requires more
complex operations, APUNet outperforms hashing-based
CPU implementations by up to 1.6x. We note that the
LPM-based CPU implementations are resource-efficient
as it does not require hashing, and its G-Opt performance
is mostly comparable to that of APUNet.
IPsec gateway and SSL proxy: We now show how well
APUNet performs compute-intensive applications by de-
veloping an IPsec gateway and an SSL reverse proxy. Our
IPsec gateway encrypts packet payload with the 128-bit
AES scheme in CBC mode and creates an authentication
digest with HMAC-SHA1. Both CPU baseline and its
G-Opt version of the gateway exploit Intel’s AES-NI [6],
which is an x86 instruction set that runs each round of
AES encryption/decryption with a single AESENC/AES-
DEC instruction. We implement the GPU version of the
IPsec gateway in APUNet by merging AES-CBC and
HMAC-SHA1 code into a single unified kernel for persis-
tent execution. Figure 9(a) shows the evaluation results.
As discussed in Section 3, G-Opt fails to improve the
CPU baseline performance as AES is already optimized
with hardware instructions and HMAC-SHA1 operation is
compute-bound. On the other hand, APUNet delivers up
to 2.2x performance speedup, achieving 16.4 Gbps with
1451B packets.

For SSL reverse proxying, we evaluate how many SSL
handshakes APUNet can perform by offloading compute-
intensive RSA operations to GPU. The client machine
generates encrypted SSL requests using Apache HTTP
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Figure 10: Performance of network intrusion detection
system.

benchmark tool (ab) v2.3, that are then sent to APUNet.
APUNet runs both SSL reverse proxy and Web server
(nginx v1.4.6 [8]) where the proxy resides in the middle
to translate between encrypted and plaintext messages.
For SSL, we use TLS v1.0 with a 2048-bit RSA key,
128-bit AES in CBC mode, and HMAC-SHA1 as cipher-
suite. Figure 9(b) shows the number of HTTP transactions
processed per second with an increasing number of con-
current connections. Like IPsec, CPU-based optimization
does not help much while our GPU-based implementa-
tion provides a performance boost for compute-intensive
RSA and SHA-1 operations. Note that we have not ap-
plied persistent kernels for SSL as SSL requires switching
across multiple crypto operations. Nevertheless, APUNet
outperforms CPU-based approaches by 2.0x-2.8x.
Network intrusion detection system: We port a
signature-based network intrusion detection system
(NIDS) to APUNet. Our APUNet-based NIDS uses the
Aho-Corasick (AC) pattern matching algorithm to scan
ingress network traffic for known attack signatures. For
evaluation, we port a full NIDS [30] that uses a Snort-
based [43] attack ruleset to monitor malicious activity in a
network and apply G-Opt to the AC pattern matching code
for the G-Opt version. Under heavy stress, it is capable of
offloading pattern matching tasks to GPU.

Figure 10 shows the throughputs against innocent syn-
thetic traffic with randomized payload and varying packet

sizes. Interestingly, we find that the full NIDS no longer
benefits from G-Opt, different from 1.2x performance im-
provement of AC pattern matching (“AC w/o Sort”) in
Figure 4. This is because a fully functional NIDS would
access a large number of data structures (e.g., packet ac-
quisition, decoding and detection modules) during packet
analysis and can cause data cache contention, resulting
in eviction of already cached data by other prefetches
before they are used. One may try to implement loop
interchanging and sorting by DFA ID and packet length
optimizations on all data structures as in [32] (described
in Section 3.4), but this is still challenging to apply in
practice as it requires batching a large number of pack-
ets (8192). In contrast, APUNet requires batching of a
smaller number of packets in multiples of an SIMT unit
size (e.g., 32). As a result, APUNet helps NIDS outper-
form AC-based CPU-only approaches by up to 4.0x for
large packets. For small-sized packets, the computation
load becomes small (only 10B of payload is scanned for
64B packets), making GPU offloading inefficient similar
to IPv4 forwarding.

One notable thing is that DFC [22]-based NIDS out-
performs APUNet -based NIDS by 7% to 61%. DFC is a
CPU-based multi-string pattern matching algorithm that
uses cache-friendly data structures and significantly re-
duces memory access at payload scanning [22]. Given that
the synthetic traffic is innocent, almost all byte lookups
would be hits in CPU cache as DFC uses a small table
for quick inspection of innocent content. This shows that
a resource-efficient algorithm often drastically improves
the performance without the help of GPU. We leave our
GPU-based DFC implementation as our future work.

6 Related Works
We briefly discuss previous works that accelerate network
applications by optimizing CPU code or offloading the
workload to GPU.

CPU code optimization: RouteBricks [28] scales the
software router performance by fully exploiting the par-
allelism in CPU. It parallelizes packet processing with
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multiple CPU cores in a single server as well as distribut-
ing the workload across a cluster of servers, and achieves
35 Gbps packet forwarding performance with four servers.
DoubleClick [33] improves the performance of the Click
router [35] by employing batching to packet I/O and com-
putation. Using PSIO [10], DoubleClick batches the re-
ceived packets and passes them to a user-level Click ele-
ment to be processed in a group, showing 10x improve-
ment to reach 28 Gbps for IPv4 forwarding. Similarly,
we show that our APUNet prototype with recent CPU
achieves up to 50 Gbps performance for IPv4/IPv6 packet
forwarding. Kalia et al. [32] have introduced the G-Opt
framework that applies memory access latency hiding to
CPU code. It implements software pipelining by stor-
ing the context information in an array, then executing
prefetch-and-switch to another context whenever mem-
ory access is required. Although beneficial for memory-
intensive workloads, our cost-efficiency analysis shows
that G-Opt is limited in improving the performance of
compute-intensive applications .

GPU offloading: Most GPU-based systems have focused
on exploiting discrete GPU for accelerating packet pro-
cessing. PacketShader [29] is the seminal work that
demonstrates a multi-10 Gbps software router by offload-
ing workload to discrete GPU, showing close to 40 Gbps
for 64B IPv4/IPv6 forwarding, and 20 Gbps for IPsec.
MIDeA [47] and Kargus [30] implement GPU-based,
high-performance NIDSes (10-33 Gbps). MIDeA par-
allelizes packet processing via multiple NIC queues and
offloads pattern matching tasks to GPU whereas Kargus
can offload both pattern matching and regular expression
matching workloads to GPU. SSLShader [31] optimizes
SSL crypto operations by exploiting GPU parallelization
and demonstrates 3.7x-6.0x SSL handshake performance
improvement over a CPU-only approach.

There have also been attempts to build a general GPU-
based network framework. GASPP [46] integrates com-
mon network operations (e.g., flow tracking and TCP
reassembly) into GPU to consolidate multiple network
applications. NBA [34] extends the Click router with
batched GPU processing and applies adaptive load bal-
ancing to dynamically reach near-optimal throughputs
in varying environments. Although a great platform for
achieving high performance, we find that discrete GPU
is less cost-efficient than integrated GPU for many net-
work applications as they suffer heavily from data transfer
overhead, having RSA as a notable exception.

More recently, Tseng et al. [45] developed a packet
processing platform using Intel GT3e integrated GPU.
They employ a continuous thread design similar to our
persistent thread execution but uses a shared control object
supported by Intel Processor Graphic Gen8 to synchronize
the data between CPU and GPU. As a result, they show
a small performance improvement of 2-2.5x over 1 CPU

core for IPv4/IPv6 based applications. PIPSEA [42] is
another work that implements an IPsec gateway on top
of APU. PIPSEA designs a packet scheduling technique
that sorts the packets by their required crypto suite and
packet lengths to minimize control-flow divergence. In
contrast to our work, PIPSEA does not address architec-
tural overheads of APU such as memory contention and
communication overhead, showing 10.4 Gbps throughput
at 1024B packet size, which is lower than 15.5 Gbps of
APUNet on a similar hardware platform. To the best of our
knowledge, APUNet delivers the highest performance for
a number of network applications on a practical integrated
GPU-based packet processor.

7 Conclusion
In this work, we have re-evaluated the effectiveness of dis-
crete and integrated GPU in packet processing over CPU-
based optimization. With the cost efficiency analysis, we
have confirmed that CPU-based memory access hiding
effectively helps memory-intensive network applications
but it has limited impact on compute-bound algorithms
that have little memory access. Moreover, we observe
that relative performance advantage of CPU-based opti-
mization is mostly due to the high data transfer overhead
of discrete GPU rather than lack of its inherent capacity.
To avoid the PCIe communication overhead, we have de-
signed and implemented APUNet, an APU-based packet
processing platform that allows efficient sharing of packet
data. APUNet addresses practical challenges in building
a high-speed software router with zero-copy packet pro-
cessing, efficient persistent thread execution, and group
synchronization. We have demonstrated the practicality
of APUNet by showing multi-10 Gbps throughputs with
low latency for a number of popular network applications.
We believe that APUNet will serve as a high performance,
cost-effective platform for real-world applications.
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