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Spring Semester 2021 

KAIST EE209 

Programming Structures for Electrical Engineering 

 

Mid-term Exam 

 

Name:        

 

Student ID:       

 

This exam is closed book and notes. Read the questions carefully and focus your answers on 

what has been asked. You are allowed to ask the instructor/TAs for help only in understanding 

the questions, in case you find them not completely clear. Be concise and precise in your 

answers and state clearly any assumption you may have made. You have 120 minutes (1:10 PM 

– 3:10 PM) to complete your exam. You can submit your answers early but you can leave the 

zoom session from 3:00PM. Good luck. 
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Assume all programs in this exam run on 64-bit Linux (x86-64). That is, assume that the code 

runs on eelab6.kaist.ac.kr 

 

 

1. (10 points) Numbers & Strings 
 

(a) (2 points) what's the output of the following code? 
 

1 

2 

3 

4 

#include <stdio.h> 

int main( ) { 

 char x = -1; printf (“x =%d\n”, (int)(unsigned char)x); return 0; 

 } 

 

Your answer: x = ____255_______   

 

 

(b) (6 points) what's the output of the following code? (1 point each ) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

#include <stdio.h> 

#include <string.h> 

int main( ) { 

 char *p ="abc"; 

 char a[] ="abc"; 

printf (“sizeof(p) = %zu\n”, sizeof(p)); 

printf (“sizeof(*p) =%zu\n”, sizeof(*p)); 

printf (“sizeof(a) = %zu\n”, sizeof(a)); 

printf (“sizeof(*a) = %zu\n”, sizeof(*a)); 

printf (“sizeof(&*a) = %zu\n”, sizeof(&*a)); 

printf (“strlen(p) = %d\n”, strlen(p)); 

return 0;  } 

Line 6:  sizeof(p) = _____8_______   

 

Line 7:  sizeof(*p) = ____1_______   

 

Line 8:  sizeof(a) = _____4_______   

 

Line 9:  sizeof(*a) = ____1_______   

 

Line 10: sizeof(&*a) = ___8_______   

 

Line 11: strlen(p) = ______3_______   
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(c) (2 points) How many times is Line 7 executed? 

1 

2 

3 

4 

5 

6 

7 

8 

10 

#include <stdio.h> 

#define NELEMS(x) (sizeof(x)/sizeof(x[0])) 

int main( ) { 

int i; 

int y[10]; 

for (i = 10; i - NELEMS(y) >= 0; i-= 10) 

   printf("current i is %d\n", i); 

return 0;   

} 

 

 

 
Your answer: ____infinite number – infinite loop, the code never gets out the loop____   
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2.  (20 points) Data Types, Functions & Pointers 
 

Consider the following C program. (a)/(b) 

1 

2 

3 

4 

5 

6 

7 

#include <stdio.h> 

int main( ) { 

    char ch; 

    while ((ch = getchar()) != EOF) putchar(ch); 

printf(“OK I’m ready to stop\n”); 

return 0; 

} 

 

(a) (2 points) I run the program without any command line arguments, and then type 

Ctrl+D right away (which would end stdin). Which one of the followings is correct? 

(1) The program prints out the message in line 5 and stops 

(2) The program never reaches line 5, so it does not stop 

 

Your answer: ____(1)____   

 

(b) (3 points) I changed the type of ch to unsigned char (to unsigned char ch; in line 3) 

and I compiled the code, and repeat what I did for (a) -- run the program without any 

command line arguments, and then type Ctrl+D right away. Which one of the 

followings is correct? 

(1) The program prints out the message in line 5 and stops 

(2) The program never reach line 5 and does not stop. 

 

Your answer: ____(2)____   

 

(c) (5 points) I compiled the code below, and ran it. I typed in 345 and an enter (‘\n’). 

Then, I see “x’s address is 0x7fffe66ff82c” on my monitor. What’s the output from 

line 7? 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

#include <stdio.h> 

int main() { 

  int x; 

  unsigned long int y = (long int)&x; 

  scanf("%d", (int *)y);  

  printf("x’s address is %p\n", &x); 

  printf("x = %d y = %lx\n", x, y);   // %lx prints the argument as hexadecimal format 

  return 0; 

} 
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Your answer: : ____x = 345  y=0x7fffe66ff82c____   

 

 

(d) (5 points) What's the output of the following program? Information: Intel CPU is a 

little endian processor where the least significant byte of an integral type (e.g., short, int, 

long) is placed at the lowest memory address. For example, let’s say int x; and x’s 

address is 0x1234. Then x’s least significant byte is at 0x1234 and the next byte is at 

0x1235, and the most significant byte is at 0x1237. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

#include <stdio.h> 

union X { int x; unsigned char y;}; 

int main() { 

  union X a; 

  int *p = &a.x; 

  printf("p is %p\n", p); 

  printf("a.y's address is %p\n", &a.y); 

  a.x = -1; 

  printf("1: a.x =%d a.y =%d\n", a.x, a.y); 

  a.y = 0xfe; 

  printf("2: a.x =%d a.y =%d\n", a.x, a.y); 

  return 0; 

} 

 

At line 6, the program prints out “p is 0x7fffea930f0c”. Fill out the blanks. 

 

Line 7:  a.y's address is ___________0x7fffea930f0c____________ 

 

Line 9:  1: a.x =____-1_________  a.y = _______255_______ 

 

Line 11:  2: a.x =___-2__________   a.y = ________254__________ 
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(e) (5 points) Line 10 in the code below prints out “str is = 0x7fb869200807 arr is 

0x7ffffb7c8e4d” to the monitor.  

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

#include <stdio.h> 

void f(char a[], char *p) { 

   printf(“a is = %p p is %p\n”, a, p); 

   a[0] = ‘A’; 

*p = ‘A’; 

} 

int main() { 

char *str = “Hi EE209A”; 

char arr[] = “Hi EEE209B”; 

printf(“str is = %p arr is %p\n”, str, arr); 

f(str, arr); 

  return 0; 

} 

 

(e-1) What’s the output in Line 3?  (2 points) 

 

 

Your answer:  a is ____0x7fb869200807___   p is___0x7ffffb7c8e4d_____ 

 

 

(e-2) The program crashes when it runs. At which line does it crash (1 point)? Explain 

why it crashes (2 points). 

 

 

Your answer: The program crashes at Line _____4________   

 

The It crashes because __it tries to modify/update the value of a string constant (or it 

tries to update the memory content at read-only memory section)_________ 
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3. (15 points) Let’s implement StrToLong(). This function works exactly the same as 

your assignment 2 except that it does not have the base argument (assume it is 10). 

The input string can have spaces (or tabs) at start and it can have non-digit characters 

at the end. It can start with a sign symbol (‘+’ or ‘–‘ but ‘+’ is optional), and the 

address of the first non-digit character should be stored at the passed pointer (endp). 

Note that endp could be NULL, which implies the caller does not want the address. It 

returns LONG_MAX if it overflows, LONG_MIN if it underflows. 

 

#include <ctype.h> 

#include <limits.h> 

long int StrToLong(char *p, char **endp) 

{ 

  long int x = 0;             // result 

  int minus = 0, overflow = 0; // if it’s a negative value, any overflow happens 

   

/* skip spaces (space, tab, etc.) at the start */ 

 

 

 /* set minus to 1 if it starts with a negative sign. skip a positive sign if any */ 

   

 

/* 1. compute the number by reading one digit at a time – it is computed as a positive 

number, and we’ll apply the sign at the time of return. 

  2. set overflow to 1 if the number overflows. */ 

  while (*p && isdigit (*p)) { 

    x = 10 * x + (*p - '0'); 

 

   } 

/* update the value that endp points to to point to the first non-digit char */ 

   

 

/* return if it’s overflow */ 

if (overflow)  

   

 

/* return the computed value */ 

  return (minus) ? -x : x; 

} 

 

(1) 

(2)    

(3)    

(4)    

(5)    
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(a) Fill in the blank (1) (3 points) 

 

Your answer: while (*p && isspace(*p)) p++; 

 

(b) Fill in the blank (2). (3 points) 

 

Your answer:  

if (*p == '-') {minus = 1; p++;} 

     else if (*p == '+') {p++;} 

 

(c) Fill in the blank (3). (3 points) 

 

Your answer:   

 if (x < 0) overflow = 1;  

     p++; 

 

(d) Fill in the blank (4). (3 points) 

 

Your answer:  

if (endp) 

  *endp = p; 

 

(e) Fill in the blank (5). (3 points) 

 

Your answer:  

return (minus) ? LONG_MIN: LONG_MAX; 
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4. (5 points) Write void reverse(char *s); reverse() gets an input string as an argument, and 

reverses the string. For example, if s = “abcde”, reverse(s); printf(“s=%s”, s); then printf() 

would print out “edcba”. Fill in the blank in the code below. 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

void reverse(char *s)  

{ 

char *e, temp; 

   assert(s != NULL); 

 

   e = s + strlen(s) -1; /* e points to the last character in the string */ 

   while (s < e) { 

/* swap *s and *e, increment s by 1, decrement e by 1 */ 

 

} 

} 

 

 

Your answer:  

temp =*s;*s =*e; *e =temp; s++, e--; 

  

(1) 
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5. (20 points) Recursion  

 

(a) (5 points) Fun function – consider the following code snippet. 

1 

2 

3 

4 

5 

int fun(int x, int y) 

{ 

If (x == 0) return y; 

return fun(x-1, x+y); 

} 

 

(a-1) (2 points) what does fun(3, 2) return?  

 

Your answer: _________8_____________________ 

 

 

(a-2) (3 points) Briefly explain what this function calculates in terms of x and y. 

 

 

Your answer: ________it calculates x(x+1)/2+y or (1+2+...+x)_______________ 
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(b) (15 points) PrintAll(int x) prints all possible binary numbers with the length, x. For 

example, PrintAll(2) prints out four binary numbers – 00, 01, 10, 11. We implement this 

function with recursion. The key idea is to define PrintWithPrefix(int x, char prefix[], int 

len) where x is the original length, prefix is the binary prefix that has been constructed so 

far, and len is the length of the current prefix. If len becomes x, the function has finished 

constructed ONE binary number whose length is x. So, it prints out the prefix.  

 

1 

2 

3 

4 

5 

void PrintWithPrefix(int x, char prefix[], int len) 

{ 

   /* len is the length of prefix, if len == x, we need to print it out */ 

   if (len == x) { 

     prefix[len] = 0; 

     printf("%s\n", prefix); 

     return; 

   } 

   /* add ‘0’ to the current prefix,  

and print all binary numbers with the newly constructed prefix */ 

   prefix[len] ='0';  

   PrintWithPrefix(x, prefix,                  ); 

 

/* add ‘1’ (instead of ‘0’) to the current prefix, and do the same thing */ 

   

} 

 

void PrintAll(int x) 

{ 

  char buf[x+1];      // dynamically allocates x + 1 bytes to buf 

  PrintWithPrefix(x, buf, 0); 

} 

(b-1) (5 points) What should be the parameter that goes into (1)? 

 

Your answer: ______________len+1________________________ 

 

(b-1) (10 points) Write the code for (2). Hint: Two lines should be enough. 

 

Your answer:  

prefix[len] ='1';  

printWithPrefix(x, prefix, len+1); 

 

(1) 

 

(2) 
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6. (10 points) Dynamic Memory Allocation  

 

Consider the following code snippet. Assume # of input from stdin is smaller than 1 

millions 

1 

2 

3 

4 

5 

6 

7 

8 

int size = 2, i = 0; 

int *p = malloc(size * sizeof(int)); // assume malloc() is successful 

while (scanf(“%d”,  p + i) != EOF) { 

   if (i++ == size) {  

size *= 2;  

realloc(p, size * sizeof(int));    // assume realloc() is always successful 

}  

 } 

 

The code above crashes at line 3. Fix two lines in the code above to avoid the crash. Explain 

why original lines are wrong in each line. (5 points each) 

 

Your answer: 

1. Line 4 should be if (i++ == size -1) or if (++i == size). Why? i++ increments i after the 

line, so i holds the last index which is (# of integers read so far) - 1. 

2. Line 6 should be p = realloc(p, size); if realloc() never fails. Why? The expanded 

memory by realloc() could be different from the original location (p). So, p should be 

updated to point to the new location. But in practice, realloc() can return NULL, so a 

safe way something like  

int *k = realloc(p, size);  

if (k != NULL) { p = k; }  

else { error processing; }  
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7. (20 points) Key-value store with a hash table 

 

The below header file provides the interface of a hash table for a key-value store 

1 

2 

3 

4 

5 

/* table.h */ 

Table *Table_create(void);  

void Table_add(Table* t, const char *key, int value);  

int Table_search(Table* t, const char *key, int * value); 

int Table_remove(Table* t, const char *key); // remove a node whose key matches  

 

The code below is the implementation of the hash table. Assume malloc() and calloc() are 

always successful – but in practice you must check if the return value is NULL. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

/* table.c */ 

#include <stdio.h> 

#include <stdlib.h> 

#include "table.h" 

 

enum {BUCKET_COUNT = 1024}; 

struct Node { 

   const char *key; 

   int value; 

   struct Node *next; 

}; 

 

struct Table { 

   struct Node *array[BUCKET_COUNT]; 

}; 

 

unsigned int hash(const char *x) { 

   int i; 

   unsigned int h = 0U; 

   for (i=0; x[i]!='\0'; i++) 

      h = h * 65599 + (unsigned char)x[i]; 

   return h % BUCKET_COUNT; 

} 

 

struct Table *Table_create(void) { 

   struct Table *t; 
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27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

   t = (struct Table*)calloc(1, sizeof(struct Table)); 

   return t; 

} 

 

void Table_add(struct Table *t, const char *key, int value)  

{ 

   struct Node *p = (struct Node*)malloc(sizeof(struct Node)); 

   int h = hash(key); 

   p->key = key; 

   p->value = value; 

   p->next = t->array[h]; 

   t->array[h] = p; 

} 

 

int Table_search(struct Table *t, const char *key, int *value)  

{ 

   struct Node *p; 

   int h = hash(key); 

   for (p = t->array[h]; p != NULL; p = p->next) 

      if (strcmp(p->key, key) == 0) { 

         *value = p->value; 

         return 1; 

      } 

   return 0; 

} 

 

 

 

 

(a) (10 points) table.c is incomplete as Table_remove() is missing. Please fill in the 

function below. It removes the node whose key matches the parameter key. It returns 

1 if it removed the node, 0 if a node with the matching key does not exist. 

 

 

 

 

 

Your answer: one possible solution is 
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int Table_remove(struct Table *t, const char *key)  

{ 

struct Node *p, *prev = NULL; 

     int h = hash(key); 

     for (p = t->array[h]; p != NULL; prev = p, p = p->next) 

      if (strcmp(p->key, key) == 0) { 

         if (prev == NULL) t->array[h] = p->next; 

         else prev->next = p->next; 

         free(p); 

         return 1; 

      }    

return 0; 

} 
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(b) The following code is a client 
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2 
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13 
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/* client.c */ 

#include <string.h> 

#include "table.h" 

int main ( ) { 

 char k[10] = “EE209A” 

 int value =0, res; 

Table* t = Table_create(); // assume it’s successful. 

 Table_add(t, k, 10); 

strcpy(k, “EE209B”); 

res = Table_remove(t, “EE209A”); 

printf(“Table_remove() returns %d\n”, res); 

res = Table_search(t, “EE209B”, &value); 

printf(“Table_search() returns %d and value is %d\n”, res, value); 

return 0; 

} 

 

Assume hash(“EE209A”) != hash(“EE209B”) 

(b-1) (5 points) What does Line 11 print out? Explain why Table_remove() returns such a 

value? 

 

Your answer; ___Table_remove() returns 0. Why? As it cannot find the node with 

“EE209A” as its key since the keyt is changed from “EE209A” to “EE209B” in Line 9______ 

 

(b-2) (5 points) What does Line 13 print out? Explain  

 

Your answer; ___Table_search() returns 0 and value is 0. Why? As it cannot find the node 

with “EE209B” as its key since hash(“EE209B”) != hash(“EE209A”), so it looks the node in 

the different bucket than the one Line 8 added the node to._________ 


