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Introduction
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Deep Neural Network (DNN)
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e Deep neural networks are ubiquitous in various applications.
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DNN on Real-time Mobile Devices

Self driving car Virtual Reality (VR) Augmented Reality (AR)

e Especially, DNN shows reliable result on real-time mobile devices.
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Challenges of DNN Applications on Mobile Devices

GPU server Embedded systems

e DNN based applications perform well on large devices which have abundant
resources but they are unsuitable for mobile devices.
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Neural Processing Unit (NPU)
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Neural Processing Unit (NPU)

Bionic |

A11/ A12 Bionic .
(Apple) (Samsung)

Snapdragon 855
(Qualcomm)
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NPU Utilizing Sparsity
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Sparsity

Zero Weight [%] Zero Activation [%] I

0
50.9
76.3
61.8
59.0

AlexNet

e Significant portion of input values in a convolutional layer is zero.

e Large number of ineffectual computations can be skipped.

e However, it is difficult to utilize sparsity on CPU.
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Previous Works

Zero Weight [%] Zero Activation [%

Energy J Energy {
Runtime \l, Runtime \l/

e DaDianNao: wide SIMD-like architecture.

Exploit zero values in both kernel weights and input activations

e Cambricon-X: utilizes zero weights for performance and energy.
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Basic Idea of Zero-aware Neural Network Accelerator (ZeNA)

Broadcast

K: kernel weights
A: input activations

P: partial sums

[ ]
PE 1
mfﬁﬁfﬁﬁ_’f}?ﬁﬂ
%
A .
Zero bit-vectors

I [ 0

[ ]

Proportional to intersection of non-zero inputs

Cambricon-X

Cnvlutin
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ZeNA Architecture Overview

Act SRAM stores Activation
Activations Psum
Output partial sums

RebUmacdia gensiates
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Kernel weights

Non-zero bit-vectors

PE array
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Work Group (WG)

PPV
o999 | / PP P

Mﬁ Activation Kernel

o e [N [
e Work group (WG): Spatial ' M

dimension of input activations is Activation
divided into work groups.

Kernel
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Work Group (WG)
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Work Group (WG)

Sub-WG 0 of WG 0

e >

Activation

Kernel

Sub-WG 0 of WG 1

ﬁ

Sub-WG 0 of WG 0

A
Lo
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11506004 kevael tiles.

Kernel

Activation

Activation tiles

A
Lo

Kernel tiles
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Computation Procedure

Activation Kernel

A

o099 T2

PSS\

Sub-WG 1

Output feature map

WG 0
\-
WG 1

e Our accelerator performs convolution
with activation and kernel tiles iteratively

to compute output feature maps.
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Data Flow and Computation: Kernel Broadcast

Activation

Psum

Output FM

Bitvec

RelLU
module

Conv result

Weight

PE array

PE group 0

PE group 1
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Data Flow and Computation: Kernel Broadcast
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Activation Kernel
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Weight

PE array

PE group 0
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Data Flow and Computation: Activation Broadcast

Activation

Psum

Output FM

Bitvec

RelLU
module

Conv result

Weight

PE array

PE group 0

PE group 1
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Data Flow and Computation: Activation Broadcast

Act SRAM

Previous activation tiles are stored in local buffer

Activation

-

PE group 0

Il! ,

Sub-WG 0

Sub-WG 1

PE group 1

N o o

’————————————————~

Actlvat|on Kernel Output feature map,

——————————————————————————————————————————————————

PE array
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Zero-aware PE

PE Fetch controller

nextl-dx

Non-zero index

Act zero bit-vector

Psum buffer

Act buffer
i

Weight buffer
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Zero-induced Load Imbalance

Sub-WG 0 Sub-WG 1
PE 0 PEO
* * T,
| 4, | [ Runtimp 4, | R cime
PE1 . d ' PE1 o
B @ N W 2
% *
| Ay | | Ao |
L K ]
A Before kernel allocation is applied [ lLlotalrunt me
. e Typically, kernel weights are allocated to PEs based on the
5 e | kernel index.
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Zero-aware Kernel Allocation

Sub-WG 0 Sub-WG 1

PEQ PEO o
— BN «H B

| A, | | 4, | Runtime
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Performance

6 BWZ OAZ EWAZ BWAZ+KA 21x 258%

1 8x 19.6%  4x

Zlﬂ

AlexNet

Speedup

e 4x (AlexNet) and 5.2x (VGG-16) speed up w.r.t. Eyeriss.
e 1.8x (AlexNet) and 2.1x (VGG-16) speed up w.r.t. AZ (Cnvlutin).
e 19.6% (AlexNet) and 25.8% (VGG-16) speed up w.r.t. WAZ.
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Energy

0.8

0.6

0.4

0.2

Normalized energy / Image

e 11.3% (AlexNet) and 18% (VGG-16) energy reduction w.r.t. Eyeriss.

B SRAM leakage OSRAM @ Local buffer

Exploiting zero weights

AlexNet

B Logic

VGG-16
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NPU Utilizing Reduced Precision
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Reduced Precision

Calibration using 5 batches

Calibration using 10 batches

Calibration using 50 batches

NETWORK Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5
Resnet-50 73.23% 91.18% 73.03% 91.15% 73.02% 91.06% 73.10%

Resnet-101 74.39% 91.78% 74.52% 91.64% 74.38% 91.70% 74.40%

Resnet-152 T4.78% 91.82% 74.62% 91.82% 74.66% 91.82% 74.70%

VGG-19 68.41% 88.78% 68.42% 88.69% 68.42% 88.67% 68.38%

Googlenet 68.57% 88.83% 68.21% 8B.67% 68.10% 88.58% 68.12%

Alexnet 57.08% I

NETWORK Topt
Resnet-50 73.23% m
Resnot10 ZET
Resnet 152 a7e%
vGos E 7 - ‘
Googlenet 68.57% L

Alexnet

Neural network shows comparable accuracy after applying quantization.
Quantization method reduces computation complexity and memory
footprint.
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Outlier Quantization

Outliers

Relative scale [log(count)]

Relative scale [log(count)]

-0.2 -0.1 0.0 0.1 0.2 -0.2 =0, 0.0 0. 0.2

Value of weight Value of weight
Low-precision linear High-precision outliers (1~3 %)
quantization (No quantization error)
(Small quantization error)

e Outlier: weight and activation having larger value than threshold.
e Outlier incurs quantization error.

e Outlier-aware Quantization
o Keep outliers in high-precision.
o Apply linear quantization to data except outliers.
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Accuracy

(a) Weight distribution

e 4-bit quantization with outliers of 0.5% i
already gives good accuracy without fine-tuning. :
e Ouitliers of 3.5% lose only <1% accuracy. :
Top- 1 Top-5 g (b) Linear quantization
80 rY & . 4 . 2 4 + L g 4 4 g i
! :
g?ﬁo | . 1 - . o ° o—o ;
5 40 -0.2 —6.1 e iowmuht D..:I. 0.l2
E _ (c) Outlier quantization
< 20 5
0 0.01 0.02 0.03 0.04 0.05 % 02

Value of weight

Outlier ratio
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Precision Highway

Conventional approach Precision highway

y=F(xt+e)+r+e=F(x)+x+e +e y=F(r+e)+x=F(x)+x+e,

\ Quantization Error I
Y |

|
|
§#E%ﬂ — .

SR NS | S—

RelU

(a)

(b)
e Precision Highway
o Keep residual path in high-precision (8-bit).
o Apply low-bit linear quantization (2-bit) to data except residual path.
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Precision Highway vs. Zhuang’s (2-bit)

Laplace Teacher Highway  ResNet-18 ResNet-50
v 61.66/84.28 70.50/89.84
v v 62.66/85.00 71.70/90.39
v v 65.83/86.71 72.99/91.19
v v v 66.71/87.40 73.55/91.40
Full-precision 70.15/89.27 76.00/92.98
Zhuang’s (ours) 60.06/83.34 69.04/89.14
Zhuang’s (ours) + Teacher 61.21/84.36 70.48 / 89.83

Zhuang’s: [Bohan Zhuang et al. Towards effective low-bitwidth convolutional
neural networks. Computer Vision and Pattern Recognition(CVPR), 2018.]

e Precision highway shows 66.71% and 73.55% TOP-1 accuracy in
ResNet-18 and ResNet-50, respectively.
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NPU Supporting Mixed-precision Computation (OLAccel)

Swarm buffer

Swarm controller

1
L
T — Normal
i : Outlier MAC: | accumulation
activation Group e naladliian L
ks activation " Normal MACS: [
g |__buffer | : g Cluster
g Group . output v
weight . e i ¥ | tri-buffers g
> buffer : a
Cluster Group EC = E
weight controller :
buffer o
=
Coatar © Full-precision MACs |:|
controller =X : i !
. Qutlier
Outlier accumulation
unit

From swarm buffer

H - H
activation : :
e —-®_®_.

_Qutlier PE group

PE clusters L&

PE swarm

e Mixed-precision computation
o In case of outlier:

4-bit data (dense)
+ 16-bit activation/8-bit weight
outliers (sparse)

o In case of precision
highway:

2-bit data (dense)
+ 8-bit residual path (sparse)
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Area and Energy Reduction

1 -
— 0 On-chip SRAM
0.8 - Local buffer
m Logi
T0.6 - ogic
N
E i —
E0.4
30.2 -  E—
0 [ |

16-bit 8-bit 4-bit 3-bit 2-bit

ized Energy

[ ODRAM

¥ Local buffer

® Logic

On-chip SRAM
16-bit 8-bit 4-bit 3-bit 2-bit

e 82.3 % reduction in chip area (16-bit vs. 3-bit).
e 73.1 % reduction in energy consumption (16-bit vs. 3-bit).
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Working as an Al System Architect
in the Industry
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Neural Network Acceleration
on Mobile CPU
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Running Al Applications Using Mobile CPU

SAMSUNG

e Al applications are widely used even on low-end mobile devices where
NPU is absent.

e CPU is required for executing specific operations utilized in state-of-the-art
neural networks.
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Example of 1X1 Convolution

WB € R1><1><8

IB = R16><1><8

Input activation Output activation

Weight
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Example of 1X1 Convolution

Wp = [WSB[O]: o Wsp[7]]
WSB[i] = R1><1><1

8
Ip = [ISB[O]: s Isp[7]] /

ISB [l] € R16X1X1

OB = R16><1><1

Input activation Output activation

Weight HYPER



1X1 Convolution on ARM CPU with 8-bit Quantization (w/o quality loss)

Example of 1X1 convolution

Iy = [Isp[0], ..., Isp[7]]
ISB [l] = R16><1><1

OB € R16><1><1

Input activation Output activation

Weight

Pseudo code

- a MmN\

# assuming NCHW data format, int8 arithmetic operation and
ARMv8 architecture

for i =0 to 3

load output activation [0p[4xi], Og[4xi+ 1], Og[4xi+
2] , Op[4xi+3]] #int32x4

for i =0 to 7

load input activation [Igp[i][0], .. , Isg[i][15]]
#int8x16

for j =0 to 3

© MAC (Isp[i][4%)] ~ Isplil[4%]+ 3], Wspxali], Op[4xj] ~
Opgl[4xj + 3]) #int32x4

for 1 =0 to 3

store output activation [0pg[4xi], Op[4xi+ 1], Og[4xi+
2] , Op[4xi+ 3]] #int32x4
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1X1 Convolution on ARM CPU with 8-bit Quantization (w/o quality loss)

Pseudo code (float32; 72 cycle)

Pseudo code (int8; 48 cycle)

for i = 0 to 3
ad output activation [Op[4xi], Og[4xi+1],
LN A [SW(4xi + 2], 0p[4xi+3]] #float32xd

for 1 =0 to 7
for j =9 to 3

* load input activation [

j+1], Iggli][4%xj+2], I
64 cycle - -

#float32x4
* MAC (Isp[i][4xj] ~ Igpli][4%X) + 3], Wspxali],
05[4%j] ~ Op[4xj+3]) #float32x4

for 1 =0 to 3

re output activation [Op[4xi], Og[4xi+1],
[4xi+ 2], Op[4xi+ 3]] #float32x4

1.5x speed up

for i =0 to 3

* load output activation [0p[4Xi], Op[4xi+ 1],
4 cycle

0p[4xi+2] , Opg[4xi+3]] #int32x4

t activation [Igg[i][0], .. , Isg[i][15]]

o3

(Isp[il[4xj] ~ Isgli][4X)j + 3], Wspxalil,
03[4)(]] ~ 03[4)(}‘1‘3]) #int32x4

for i =90 to 3

store output activation [O0p[4xi], Og[4xi+ 1],
OB[4XI+2] 3 03[4Xi+3]] #int32x4

4 cycle
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1X1 Convolution on ARM CPU with 8-bit Quantization (w/ quality loss)

Pseudo code

- a N\

Pseudo code (int8 w/ quality loss)

# assuming NCHW data format, int8 arithmetic operation and
ARMv8 architecture

for i =0 to 3

* load output activation [0p[4xi], Opg[4xi+ 1], Og[4xi+
2] , Op[axi+3]] #int32x4

for i =0 to 7

* load input activation [Igz[i][0], .. , Isgli][15]]
#int8x16

MAC (Isp[i][4%)] ~ Isglil[4%j + 3], Wspxali], Op[4Xj] ~

Opgl[4xj + 3]) #int32x4

# assuming NCHW data format, int8 arithmetic operation and
ARMv8 architecture

for i =0 to1l

* load output activation [0p[8Xi], Op[Bxi+ 1], .. ,
Op[8xi+ 7]] #int32x4

for i =0 to 7

* load input activation [Igg[i][0], .. , Isg[i][15]]
#int8x16

© MAC (Isp[i][0] ~ Ispli][7], Wspxali]l, Op[0] ~ 0g[7])
#int16x8

© MAC (Isp[i][8] ~ Isplil[15], Wgpxali], Op[8] ~ 0p[15])
#intl6xs

for 1 =0 to 3

* store output activation [Op[4xi], Og[4xi+ 1], Og[4xi+
2] , Opl4xi+ 3]] #int32x4

fori=0to1

+ store output activation [0p[8xi], Og[8xi+1], ..,
Op[8xi+ 7]] #int16x8
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1X1 Convolution on ARM CPU with 8-bit Quantization (w/ quality loss)

Pseudo code (float32; 72 cycle) Pseudo code (int8 w/ quality loss; 28 cycle)

for 1 =0 to 3 for 1 =0 to 1

d output activation [Op[4Xxi], Op[4xi+1], load output activation [Op[8xi], Op[8Xxi+1], .. ,
4 CYCIG 4xi+ 2], Op[4xi+ 3]] #float32x4 2 CyC|e Op[8xi+ 7]] #int16x8

for 1 =0 to 7 for 1 =0 to 7

for j =0 to 3 activation [Igp[i][0], .. , Igg[i][15]]

* load input activation [Igp

64 cycle IARRCUCIRTIRMT 2.6x Speed BV O I ~ 155(11(7], Wsnasli], 05[0] ~ 05(7))

#float32x4

© MAC (Igp[i][4%j] ~ Ispli][4xj B] ~ Ispli][15], Wgpyali], 0p[8] ~ 0p[15])

Opl4xj] ~ Opl4xj + 3]) #float32xa #int16x8

for 1 =0 to 3

Mre output activation [Opg[4xi], Op[4xi+ 1],

+or 1 = 8161

store output activation [0p[8Xi], Op[8%i+ 1], ..,
Op[8Xi+ 7]] #int16x8

4xi+2], Og[4xi+3]] #float32x4
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Optimizing Neural Network
for Mobile Devices
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Neural Network Optimization for Mobile Devices

loT devices
(Naver, Google, Amazon,

Apple, ...)

AR glass (Google, Microsoft)

Self driving car (Tesla, Waymo,
Uber)

e |T industries are interested in loT, AR/VR, robotics and self driving car.
e They require tremendous computations.
e Neural network optimization for mobile devices is required.
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Keyword Spotting (KWS)

e Keyword spotting (KWS) deals with the identification of predefined
keywords in utterances.

e Recognizing wake-up word (“Hey Siri” and “OK Google”) and distinguishing
common command (“yes” or “no”).
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CNN-based KWS

12 :1?1. L u’.‘lTr i X JITE I
oy | ol '!?'Fl Il‘!tll!ll‘ ) II‘II l i

MFCC Coefficients

@
@
(]
@
@
]
(]
(]

2D input
Utterance (e.g., MFCC)

e CNN-based KWS studies show remarkable accuracy.
e Most of CNN-based KWS approaches receive features as a 2D input of a

convolutional network.
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Challenges of KWS on Real-time Mobile Devices

It is challenging to implement fast and accurate KWS on
mobile dewces with restrlcted hardware resources

e Since use of KWS is commonly concentrated on mobile devices, the
response of KWS should be both fast and accurate.
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Preliminary: Spectrogram

Speech signal

Amplitude

Time i[L

Sampling %
¢
Y \

Frequency

Amplitude

.
_ / oo o
Spectrogram T o N/ \

Frequency

Amplitude

e Time-frequency representation of a speech signal is referred to as

spectrogram.
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Preliminary: Mel-frequency Filter

A

Speech signal

Amplitude

Time

Spectrogram

Mel-spectrogram

<= . s
o
o
o

e |tis observed that human ears act as filter.

Amplitude

Mel-frequency filters

A

WAV

\

v

Frequency

e Mel-frequency filters are non-uniformly spaced on the frequency axis.
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Preliminary: Mel-frequency Cepstral Coefficients (MFCC)

4

Speech signal

Amplitude

MFCC

%
Mel-spectrogram H LA
{

Amplitude

Ml

‘ "' | .“I. [

Cepstral analysis

| TITTRERS
HMH i

|
jillf
1AL

v

Frequency

e Cepstral coefficients obtained from Mel-spectrogram are referred to as
HYPER

Mel-Frequency Cepstral Coefficients (MFCC).




Preliminary: Mel-frequency Cepstral Coefficients (MFCC)

Speech signal

MFCC

A

Amplitude

MFC Coefficients
(represent frequency)

%

G

Time

“(

1
[ﬂ

“

H ]' ;', I\ ‘fy;",a.,%ﬁ.‘:

*I“

.HII

28

e

Iﬂlll”‘l‘l I‘]i lllll

T

‘ Ii||||ﬂ
|I I

Tiime

MFC Coefficients

\ MFC

Coefficient

Time

(==1)

e MFCC: speech signal is represented as a sequence of cepstral vectors.
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Conventional 2D Convolution for KWS

Input feature map x,; € R/ !

—
—

?’f

| |
: MFCC I
S :
! 2 I
| % Ie ]IRtXf 1
! o |
! o I
! I

Weights W, € R¥eX1x¢ Output feature map Y,, € R*/x¢

.

e Conventional 2D convolution for KWS utilizes
input tensor X € R¥*"*¢ wherew =t, h =f (or
vice versa), and c = 1.
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Conventional 2D Convolution for KWS

Input feature map x,; e R/ *1 Weights W, € R¥x3x1xc Output feature map Y,; € RP>/xc

) (2)

M| % — I

D \
. MFCC |
LT i e Conventional 2D convolution slides window along
| § I € R : the large spatial dimension (2D) of input feature
8 i map.
: I
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Proposed Temporal Convolution for KWS

Conventional approach Proposed temporal convolution

Input feature map x,, e R/ ! Input feature map X, € R™*%/
t
A
g
P - 1
! I
: MFCC I
S |
I g I
I 2 I
I o I € RS I
I >
(o |
1 @ I
| e I
I I

e e e e e e e e e e e e e == HYPERCONNEC



Proposed Temporal Convolution for KWS

Input feature map X, € R™"/ Weights Wia € R?* /% Output feature map v,, € R>x1x¢’
4
g 2 t
1 ( ) C}/’ A
* L —
c P _—
]

e Proposed temporal convolution slides window
along the small spatial dimension (1D) of input
feature map.

— e o o o o mm mm o= =)

HYPERCONNECT



Problem of Conventional 2D Convolution for KWS

Receptive field
(3%3)

80)

Conventional
2D convolution

(max

MFC Coefficients (f)

] 11
Tiime (t)

1st conv
Input MFCC (3%3 weight)

e Both low-and-high frequency data at the same time step includes
informative features.

e Since modern CNNs commonly utilize small kernels, it is difficult to capture
informative features from both low and high frequencies.
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Small Receptive Field of Conventional 2D Convolution

Receptive field
(2N+1) x (2N+1)

&
Conventional 2 d
2D convolution $ . : :
o real-time mobile devices
= —
Tiime (t)
1st conv 2nd conv N th conv
Input MFCC (3%3 weight) (3x3 weight) (3%3 weight)

e Assume that N convolutional layers of 3 x 3 weights with a stride of one exist,
the receptive field of the network only grows up to 2N+ 1.

e Conventional 2D convolution requires a large number of operations to

increase receptive field.
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Large Receptive Field of Proposed Temporal Convolution

SN N R 1)
%5‘ |||( :i| ||I'|]||J'
Conventional 27 ['u 1 e
2D convolution $ §
SE
L
=
Tiime (t)
1st conv 2nd conv N th conv
Input MFCC (3%3 weight) (3x3 weight) (3%3 weight)
is covered e In the proposed method,
= T ‘ all lower-level features
= | S~ . .
Proposed 83 I 1 'u always participate in
Temporal x| = forming the higher-level
convolution S gl LB :
i - - features in the next layer.
=

Tiime (t)
1st conv

Input MFCC (3x1 weight)

HYPERCONNECT



Small Footprint and Low Computational Complexity

Input feature map Xx,, € R®/*! Weights W, € R¥*3x1xc Output feature map v,, e R&/*¢
1 C
5 Z

* |

c—

Conventional
2D convolution

MACs i MACs
=3x3x1xfxtxc ==3x1xfxtx1xc’
= 5,644,800 =141,120
Proposed
Temporal
convolution

Note that both the parameters of a conventional 2D convolution and that of the temporal convolution
have the same size in this example by setting t = 98, f =40, ¢ = 160, and ¢’ = 12.
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End-to-end Pipeline for Mobile Devices

e End-to-end pipeline for Mobile Devices

o We release end-to-end pipeline codebase for training, evaluating, and
benchmarking the baseline models and together with the proposed models.

e Proposed codebase includes following components:
o TensorFlow models

o Scripts to convert the models into the TensorFlow Lite models (mobile devices)

o Pre-built TensorFlow Lite Android benchmark tool (mobile performance
measurement)

e Gitrepo

o https://github.com/hyperconnect/TC-ResNet
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Accuracy and Inference Time

Acc. Time FLOPs Params

Model %) (ms) e TC-ResNet8 improves 11.5%p
CNN-1 90.7* 32 76.1M 524K accuracy with comparable latency
CNN-2 846* 12| 15M 148K compared to latency state-of-the-art
DS-CNN-S 944 16  54M 24K

DS-CNN-M 949* 52  19.8M 140K (CNN-2).

DS-CNN-L 954* 168  569M 420K

Res8-Narrow 90.1* 47 143.2M 20K

Res8 94.1* 174  7953M 111K

Res15-Narrow 94.0* 107 348.7M 43K

Res15 95.8* 424  1950.0M 239K

TC-ResNet8 96.1 1.1 3.0M 66K

TC-ResNet8-1.5 _ 96.2 2.8 6.6M 145K

TC-ResNet14 962 2.5 6.1M 137K

TC-ResNetl4-1.5  96.6 5.7 13.4M 305K
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Accuracy and Inference Time

Acc. Time FLOPs  Params e TC-ResNet8 achieves 385x speedup

Model (%) (ms)

while improving 0.3%p accuracy
CNN-1 90.7* 32 76.1M 524K
CNN-2 46* 12 LSM 148K compared to accuracy state-of-the-
DS-CNN-S 944* 1.6 5.4M 24K art (Res15).
DS-CNN-M 94.9* 52 19.8M 140K
DS-CNN-L 954* 168  569M 420K

Res8-Narrow 90.1* 47 143.2M 20K
Res8 94.1* 174 795.3M 111K
Res15-Narrow 94.0* 107 348.7M 43K

Res15 95.8*  424] 1950.0M 239K

ITC-ResNetS 96.1 1.1 I 3.0M 66K

TC-ResNet8-1.5 96.2 2.8 6.6M 145K
TC-ResNet14 96.2 2.5 6.1M 137K
TC-ResNetl4-1.5  96.6 5.7 13.4M 305K
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Conclusion
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Neural Network Optimization in the Future

) -~ loT devices
AR glass (Google, Microsoft) B M s (Naver, Google, Amazon,

Apple, ...)

Self driving car (Tesla, Waymo,
Uber)

e Edge devices will run more complex tasks in the future.
e Neural network acceleration becomes more important in the future.
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