Neural Network Acceleration on Mobile Devices

Dongyoung Kim

Machine learning team Hyperconnect Seoul, South Korea dongyoung.kim@hpcnt.com

Agenda

• Introduction

• Neural Processing Unit (NPU)

- NPU utilizing sparsity
 - Zero-aware neural network accelerator (ZeNA)
- NPU utilizing reduced precision
 - Outlier quantization and Precision highway
- Working as an Al System Architect in the Industry
- On-device Machine Learning
 - Neural network acceleration on mobile CPU
 - Optimizing neural network for mobile devices
 - Temporal convolution for real-time keyword spotting on mobile devices

Introduction

Deep Neural Network (DNN)

• Deep neural networks are ubiquitous in various applications.

DNN on Real-time Mobile Devices

Self driving car

Virtual Reality (VR)

Augmented Reality (AR)

• Especially, DNN shows reliable result on **real-time mobile devices**.

Challenges of DNN Applications on Mobile Devices

• DNN based applications perform well on large devices which have abundant resources but they are **unsuitable for mobile devices**.

Neural Processing Unit (NPU)

Neural Processing Unit (NPU)

NPU Utilizing Sparsity

Sparsity

Layer	Zero Weight [%]	Zero Activation [%]		
conv1	15.7	0		
Pruning	62.1	50.9	Pol II	
	65.4	76.3	Relu	
conv4	62.8	61.8		
conv5	63.1	59.0		
	AlexNet			

- Significant portion of **input values** in a convolutional layer is **zero**.
- Large number of **ineffectual computations can be skipped**.
- However, it is difficult to utilize sparsity on CPU.

Previous Works

Layer	Zero Weight [%]	Zero Activation [%	
conv1	15.7		En avera d
conv2	62.1	Energy ↓	Energy 🗸
conv3	65.4	Runtime .l.	Runtime J
conv4	62.8		· · · · · ·
conv5	63.1	59.0	
	AlexNet		

• **DaDianNao:** wide SIMD-like architecture.

Exploit zero values in both kernel weights and input activations

• **Cambricon-X:** utilizes zero weights for performance and energy.

Basic Idea of Zero-aware Neural Network Accelerator (ZeNA)

ZeNA Architecture Overview

PE array

Work Group (WG)

Work Group (WG)

Work Group (WG)

Computation Procedure

• Our accelerator performs convolution with activation and kernel tiles **iteratively** to compute output feature maps.

Data Flow and Computation: Kernel Broadcast

HYPER CONNECT

Data Flow and Computation: Activation Broadcast

HYPER CONNECT

Data Flow and Computation: Activation Broadcast

Zero-aware PE

Zero-induced Load Imbalance

Before kernel allocation is applied <u>Total runtime</u>

• Typically, kernel weights are allocated to PEs based on the kernel index.

Zero-aware Kernel Allocation

Before kernel allocation is applied <u>Total runtime</u> After Rerhersholder the sets of the sets.

Performance

- 4x (AlexNet) and 5.2x (VGG-16) speed up *w.r.t. Eyeriss*.
- 1.8x (AlexNet) and 2.1x (VGG-16) speed up w.r.t. AZ (Cnvlutin).
- 19.6% (AlexNet) and 25.8% (VGG-16) speed up w.r.t. WAZ.

Energy

• 11.3% (AlexNet) and 18% (VGG-16) energy reduction w.r.t. Eyeriss.

NPU Utilizing Reduced Precision

Reduced Precision

	FP	32			INT8			
			Calibration using 5 batches		Calibration using 10 batches		Calibration using 50 batches	
NETWORK	Top1 Top5		Top1	Top5	Top1	Top5	Top1	Top5
Resnet-50	73.23%	91.18%	73.03%	91.15%	73.02%	91.06%	73.10%	91.06%
Resnet-101	74.39%	91.78%	74.52%	91.64%	74.38%	91.70%	74.40%	91.73%
Resnet-152	74.78%	91.82%	74.62%	91.82%	74.66%	91.82%	74.70%	91.78%
VGG-19	68.41%	88.78%	68.42%	88.69%	68.42%	88.67%	68.38%	88.70%
Googlenet	68.57%	88.83%	68.21%	88.67%	68.10%	88.58%	68.12%	88.64%
Alexnet	57.08%	80.0						
NETWORK	Top1	To 5	Diff Top1	Diff Top5	Diff Top1	Diff Top5	Diff Top1	Diff Top5
Resnet-50	73.23%	91.1	0.20%	0.03%	0.22%	0.13%	0.13%	0.12%
Resnet-101	74.39%	91.7	-0.13%	0.14%	0.01%	0.09%	-0.01%	0.06%
Resnet-152	74.78%	91.8	0.15%	0.01%	0.11%	0.01%	0.08%	0.05%
VGG-19	68.41%	88.7	-0.02%	0.09%	-0.01%	0.10%	0.03%	0.07%
Googlenet	68.57%	88.8	0.36%	0.16%	0.46%	0.25%	0.45%	0.19%
Alexnet	57.08%	80.0	0.08%	0.08%	0.08%	0.07%	0.03%	-0.01%

- Neural network shows comparable accuracy after applying quantization.
- Quantization method reduces **computation complexity** and **memory footprint**.

Outlier Quantization

- Outlier: weight and activation having larger value than threshold.
- Outlier incurs quantization error.
- Outlier-aware Quantization
 - Keep outliers in high-precision.
 - Apply linear quantization to data except outliers.

Accuracy

- 4-bit quantization with **outliers of 0.5%** already gives good accuracy **without fine-tuning**.
- Outliers of 3.5% lose only <1% accuracy.

Precision Highway

- Precision Highway
 - Keep **residual path** in **high-precision** (8-bit).
 - Apply low-bit linear quantization (2-bit) to data except residual path.

Precision Highway vs. Zhuang's (2-bit)

Laplace	Teacher	Highway	ResNet-18	ResNet-50
	\checkmark	\checkmark	61.66 / 84.28 62.66 / 85.00 65.83 / 86.71 66 71 / 87.40	70.50 / 89.84 71.70 / 90.39 72.99 / 91.19 73.55 / 91.40
Full-precision Zhuang's (ours) Zhuang's (ours) + Teacher		70.15 / 89.27 60.06 / 83.34 61.21 / 84.36	76.00 / 92.98 69.04 / 89.14 70.48 / 89.83	

Zhuang's: [Bohan Zhuang et al. Towards effective low-bitwidth convolutional neural networks. Computer Vision and Pattern Recognition(CVPR), 2018.]

• **Precision highway** shows **66.71%** and **73.55%** TOP-1 accuracy in ResNet-18 and ResNet-50, respectively.

NPU Supporting Mixed-precision Computation (OLAccel)

- Mixed-precision computation
 - In case of outlier:

4-bit data (dense)

- + 16-bit activation/8-bit weight outliers (sparse)
- In case of precision highway:

2-bit data (dense)

+ 8-bit residual path (sparse)

Area and Energy Reduction

- 82.3 % reduction in chip area (16-bit vs. 3-bit).
- **73.1** % reduction in **energy consumption** (16-bit vs. 3-bit).

Working as an AI System Architect in the Industry

하이퍼커넥트

HYPER**CONNECT**

모바일에 최적화된 머신 러닝 기술

모바일 WebRTC를 최초로 상용화

기술력

- 서버에 데이터를 보내지 않고 모바일에서 실시간으로 데이터를 처리하는 On-device Al - 낮은 CPU 성능, 적은 메모리 환경에서도 빠르게 동작하는 딥러닝 가속 기술

- 전 세계 어느 국가, 어느 통신사, 어느 단말기에서도 안정적으로 영상 통화 가능 - 지구 반대편 남미의 통신사별 망 품질관리 모니터링 가능한 글로벌 인프라 확보

오피스 라이프

Neural Network Acceleration on Mobile CPU

Running AI Applications Using Mobile CPU

- Al applications are widely used even on low-end mobile devices where NPU is absent.
- **CPU is required** for executing specific operations utilized in state-of-the-art neural networks.

Example of 1X1 Convolution

Example of 1X1 Convolution

1X1 Convolution on ARM CPU with 8-bit Quantization (w/o quality loss)

1X1 Convolution on ARM CPU with 8-bit Quantization (w/o quality loss)

1X1 Convolution on ARM CPU with 8-bit Quantization (w/ quality loss)

Pseudo code	Pseudo code (int8 w/ quality loss)				
# assuming NCHW data format, int8 arithmetic operation and ARMv8 architecture	# assuming NCHW data format, int8 arithmetic operation and ARMv8 architecture				
for $\mathbf{i} = 0$ to 3	for $\mathbf{i} = 0$ to 1				
• load output activation [$O_B[4 \times i]$, $O_B[4 \times i + 1]$, $O_B[4 \times i + 2]$, $O_B[4 \times i + 3]$] #int32x4	- load output activation [$O_B[8 \times i]$, $O_B[8 \times i + 1]$, , $O_B[8 \times i + 7]$] #int32x4				
for i = 0 to 7	for <u>i</u> = 0 to 7				
 load input activation [I_{SB}[i][0],, I_{SB}[i][15]] #int8x16 	 load input activation [I_{SB}[i][0],, I_{SB}[i][15]] #int8x16 				
for j = 0 to 3 * MAC $(I_{crn}[i][4\times i] \propto I_{crn}[i][4\times i + 3]$ Were $[i]_{crn}[4\times i] \propto 1$	• MAC $(I_{SB}[i][0] \sim I_{SB}[i][7], W_{SB \times 4}[i], O_B[0] \sim O_B[7])$ #int16x8				
$O_B[4 \times j + 3]$) #int32x4	• MAC $(I_{SB}[i][8] \sim I_{SB}[i][15], W_{SB \times 4}[i], O_B[8] \sim O_B[15])$ #int16x8				
for i = 0 to 3					
* store output activation [$O_B[4 \times i]$, $O_B[4 \times i + 1]$, $O_B[4 \times i + 2]$, $O_B[4 \times i + 3]$] #int32x4	* store output activation $[O_B[8 \times i], O_B[8 \times i + 1], \dots, O_B[8 \times i + 7]]$ #int16x8				

1X1 Convolution on ARM CPU with 8-bit Quantization (w/ quality loss)

Optimizing Neural Network for Mobile Devices

Neural Network Optimization for Mobile Devices

AR glass (Google, Microsoft)

Robot (Amazon)

loT devices (Naver, Google, Amazon, Apple, …)

Self driving car (Tesla, Waymo, Uber)

- IT industries are interested in IoT, AR/VR, robotics and self driving car.
- They require tremendous computations.
- Neural network optimization for mobile devices is required.

Keyword Spotting (KWS)

- Keyword spotting (KWS) deals with the identification of predefined keywords in utterances.
- Recognizing wake-up word ("Hey Siri" and "OK Google") and distinguishing common command ("yes" or "no").

CNN-based KWS

- CNN-based KWS studies show remarkable accuracy.
- Most of CNN-based KWS approaches **receive features as a 2D input** of a convolutional network.

Challenges of KWS on Real-time Mobile Devices

• Since use of **KWS** is commonly **concentrated on mobile devices**, the response of KWS should be both **fast** and **accurate**.

Preliminary: Spectrogram

• **Time-frequency** representation of a speech signal is referred to as spectrogram.

- It is observed that human ears act as filter.
- Mel-frequency filters are **non-uniformly spaced on the frequency axis**.

Preliminary: Mel-frequency Cepstral Coefficients (MFCC)

• Cepstral coefficients obtained from Mel-spectrogram are referred to as Mel-Frequency Cepstral Coefficients (MFCC).

• **MFCC:** speech signal is represented as a sequence of cepstral vectors.

Conventional 2D Convolution for KWS

Input feature map $X_{2d} \in \mathbb{R}^{t \times f \times 1}$

Weights $W_{2d} \in \mathbb{R}^{3 \times 3 \times 1 \times c}$

Output feature map $Y_{2d} \in \mathbb{R}^{t \times f \times c}$

 Conventional 2D convolution for KWS utilizes input tensor X ∈ ℝ^{w×h×c} where w = t, h = f (or vice versa), and c = 1.

Conventional 2D Convolution for KWS

Input feature map $X_{2d} \in \mathbb{R}^{t \times f \times 1}$

Weights $W_{2d} \in \mathbb{R}^{3 \times 3 \times 1 \times c}$

Output feature map $Y_{2d} \in \mathbb{R}^{t \times f \times c}$

 Conventional 2D convolution slides window along the large spatial dimension (2D) of input feature map.

Proposed Temporal Convolution for KWS

Proposed Temporal Convolution for KWS

*

Input feature map $X_{1d} \in \mathbb{R}^{t \times 1 \times f}$

Weights $W_{1d} \in \mathbb{R}^{3 \times 1 \times f \times c'}$

(1 MFCC $I \in \mathbb{R}^{t \times 1 \times f}$ frequency (f) time (t)

Proposed temporal convolution slides window along the **small spatial dimension (1D)** of input feature map.

Problem of Conventional 2D Convolution for KWS

- Both low-and-high frequency data at the same time step includes informative features.
- Since modern CNNs commonly utilize small kernels, it is difficult to capture informative features from both low and high frequencies.

Small Receptive Field of Conventional 2D Convolution

- Assume that N convolutional layers of 3 × 3 weights with a stride of one exist, the receptive field of the network only grows up to 2N+ 1.
- Conventional 2D convolution requires a large number of operations to increase receptive field.

Large Receptive Field of Proposed Temporal Convolution

Small Footprint and Low Computational Complexity

Note that both the parameters of a conventional 2D convolution and that of the temporal convolution have the same size in this example by setting t = 98, f = 40, c = 160, and $c^{\circ} = 12$.

End-to-end Pipeline for Mobile Devices

- End-to-end pipeline for Mobile Devices
 - We release end-to-end pipeline codebase for training, evaluating, and benchmarking the baseline models and together with the proposed models.
- Proposed codebase includes following components:
 - TensorFlow models
 - Scripts to convert the models into the **TensorFlow Lite models** (mobile devices)
 - Pre-built TensorFlow Lite Android benchmark tool (mobile performance measurement)
- Git repo
 - <u>https://github.com/hyperconnect/TC-ResNet</u>

Accuracy and Inference Time

Model	Acc. (%)	Time (<i>ms</i>)	FLOPs	Params
CNN-1	90.7*	32	76.1M	524K
CNN-2	84.6*	1.2	1.5M	148K
DS-CNN-S	94.4*	1.6	5.4M	24K
DS-CNN-M	94.9*	5.2	19.8M	140K
DS-CNN-L	95.4*	16.8	56.9M	420K
Res8-Narrow	90.1*	47	143.2M	20K
Res8	94.1*	174	795.3M	111K
Res15-Narrow	94.0*	107	348.7M	43K
Res15	95.8 *	424	1950.0M	239K
TC-ResNet8	96.1	1.1	3.0M	66K
TC-ResNet8-1.5	96.2	2.8	6.6M	145K
TC-ResNet14	96.2	2.5	6.1M	137K
TC-ResNet14-1.5	96.6	5.7	13.4M	305K

• TC-ResNet8 improves 11.5%p accuracy with comparable latency compared to latency state-of-the-art (CNN-2).

Accuracy and Inference Time

Model	Acc. (%)	Time (<i>ms</i>)	FLOPs	Params
CNN-1	90.7*	32	76.1M	524K
CNN-2	84.6*	1.2	1.5M	148K
DS-CNN-S	94.4*	1.6	5.4M	24K
DS-CNN-M	94.9*	5.2	19.8M	140K
DS-CNN-L	95.4*	16.8	56.9M	420K
Res8-Narrow	90.1*	47	143.2M	20K
Res8	94.1*	174	795.3M	111K
Res15-Narrow	94.0*	107	348.7M	43K
Res15	95.8 *	424	1950.0M	239K
TC-ResNet8	96.1	1.1	3.0M	66K
TC-ResNet8-1.5	96.2	2.8	6.6M	145K
TC-ResNet14	96.2	2.5	6.1M	137K
TC-ResNet14-1.5	96.6	5.7	13.4M	305K

• TC-ResNet8 achieves 385x speedup while improving 0.3%p accuracy compared to accuracy state-of-theart (Res15).

Conclusion

Neural Network Optimization in the Future

AR glass (Google, Microsoft)

Robot (Amazon)

Self driving car (Tesla, Waymo, Uber)

loT devices (Naver, Google, Amazon, Apple, …)

- Edge devices will run more complex tasks in the future.
- Neural network acceleration becomes more important in the future.

Thanks

References

• ZeNA

- Dongyoung Kim, Soobeom Kim, Sungjoo Yoo, "FPGA Prototyping of Low-Precision Zero-Skipping Accelerator for Neural Networks," in *Rapid System Prototyping (RSP)*, Nov. 2018.
- O Dongyoung Kim, Junwhan Ahn, and Sungjoo Yoo, "ZeNA: Zero-Aware Neural Network Accelerator," in IEEE Design & Test, Aug. 2017.
- Dongyoung Kim, Junwhan Ahn, and Sungjoo Yoo, "A Novel Zero Weight/Activation-Aware Hardware Architecture of Convolutional Neural Network," in Proc. Design Automation and Test in Europe (DATE), Mar. 2017.

Outlier quantization and Precision highway

- Eunhyeok Park, Dongyoung Kim, Sungjoo Yoo, "Energy-Efficient Neural Network Accelerator based on Outlier-Aware Low Precision Computation," in *International Symposium on Computer Architecture (ISCA)*, June 2018.
- Eunhyeok Park, Dongyoung Kim, Sungjoo Yoo, Peter Vajda, "Precision Highway for Ultra Low-Precision Quantization," *arXiv preprint arXiv:1812.09818*, Dec. 2018.

• Temporal convolution for real-time KWS

 Seungwoo Choi, Seokjun Seo, Beomjun Shin, Hyeongmin Byun, Martin Kersner, Beomsu Kim, Dongyoung Kim, Sungjoo Ha, "Temporal Convolution for Real-time Keyword Spotting on Mobile Devices," *in Annual Conference of the International Speech Communication Associatio* (INTERSPEECH), Sep. 2019.