TensorDIMM: A Practical Near-Memory Processing Architecture for Embeddings and Tensor Operations in Deep Learning

KAIST

Youngeun Kwon, Yunjae Lee, and Minsoo Rhu

DL architecture research so far

Primarily focused on "dense" DNN layers (e.g., CNNs, RNNs, ...)

2014 -	47th Annual IEEE/ACM International Symposium on Microarchitecture			2018 ACM/IEEE 45th Annual International Sym
Da Yunji Chen ¹ , T	DianNao: A Machine-Learning Supercomputer	EIE: Efficient Inference E Song Han* Xingyu L Mark A. *Sta	al International Symposium on Computer Architecture ngine on Compressed Deep Neural Net	GANAX: A Unified MIMD-S Generative Adversaries Amir Yazdanbakhin Kambiz Samadi Nam S Alternative Computing Technolog deorgia Institute of Technolog ¹ Qualcomm Technologis, Inc. ¹ Uture (deorgia Institute of Technolog ¹ Qualcomm Technologis, Inc. ¹ Uture (deorgia Institute of Technolog ¹ Qualcomm Technologis, Inc. ¹ Uture (deorgia Institute of Technolog) ¹ Qualcomm Technologis, Inc. ¹ Uture (deorgia Institute of Technolog) ¹ Qualcomm Technologis, Inc. ¹ Uture (deorgia Institute of Technolog) ¹ Qualcomm Technologis, Inc. ¹ Uture (deorgia Institute of Technologis) ¹ Qualcomm Technologis, Inc. ¹ Uture (deorgia Institute of Technologis) ¹ Qualcomm Technologis, Inc. ¹ Uture (deorgia Institute of Technologis) ¹ Qualcomm Technologis, Inc. ¹ Uture (deorgia Institute of Technologis) ¹ Qualcomm Technologis, Inc. ¹ Uture (deorgia Institute of Technologis) ¹ Qualcomm Technologis, Inc. ¹ Uture (deorgia Institute of Technologis) ¹ Qualcomm Technologis, Inc. ¹ Uture (deorgia Institute of Technologis) ¹ Qualcomm Technologis, Inc. ¹ Uture (deorgia Institute of Technologis) ¹ Qualcomm Technologis, Inc. ¹ Uture (deorgia Institute of Technologis) ¹ Qualcomm Technologis, Inc. ¹ Uture (deorgia Institute of Technologis) ¹ Qualcomm Technologis, Inc. ¹ Uture (deorgia Institute of Technologis) ¹ Qualcomm Technologis, Inc. ¹ Uture (deorgia Institute of Technologis) ¹ Qualcomm Technologis, Inc. ¹ Uture (deorgia Institute of Technologis) ¹ Qualcomm Technologis) ¹ Qualcommeter
Abstract—Many companies for consumers or industry, machine-learning algorithms large amounts of data. The st such machine-learning algorit Neural Networks (CNNs and both computationally and m neural networks (CNNs and concernation the constraints) remain hampered by memory However, unlike the memo general-purpose workloads, footprint, while large, is not chip storage of a multi-chip so with the CNN/DNN algorithmi internal bandwidth and low ear a turn enable high-deg area cost. In this article, we machine-learning architecture on a subset of the largest k	highly-parallel compute paradigms, such as SIMD/SIMT, effec- tively address the computation requirement to achieve high throughput, energy consumption still remains high as data movement can be more expensive than computation. Accord- ingly, finding a dataflow that supports parallel processing with minimal data movement cost is crucial to achieving energy- efficient CNN processing without compromising accuracy. In this paper, we present a novel dataflow, called row- paper, we present a novel dataflow, called row-	Abstract—State-of-the-art deep neural networ have hundreds of millions of connections and are b tationally and memory intensive, making them dill ploy on embedded systems with limited hardware tee power budgets. While custom hardware helps here to the state of the system and the system of the power. The system of the system of the system of the power. Provides the system of the system of the system to fit large DNNs (AlexNet and VGGNet) fully SRAM. This compression is achieved by pruning the connections and having multiple connections share a weight. We propose a neary efficient inference on the aregored and the system of the system of the connections and having multiple connections share accelerates the resulting sparse matrix-vector mu- with weight sharing. Going from DRAM to SRAM 120× energy awing Exploiting sparsity ares 10 and the system of the system DNAM to SRAM 120× and 13× faster when compared to CPU implementations of the SRM	Convolutional Neural Networks (CNNs) have et damental technology for machine learning. High extreme energy efficiency are critical for deploym pecially in mobile platforms such as autonomous s and electronic personal assistants. This paper intro	retension of deep kerning into many domains (e.g., medicin, notics, content synthesis) requires many serves et al labels that is generally either unavailable or prohibitively costly to collect. Although GANs are gaining prominence in various fields, there they a new operator, called transposed convoltion, that exposes in working a new operator, called transposed convoltion, that exposes in the second transposed convoltion and the second term though there is a convolution stapic spreases. Here though there is a convolution stapic proses the GANX acceleration of the computer sources when the inserted zeros lead to undervillization of the computer sources when the inserted zeros lead to undervillization of the computer sources when the inserted zeros lead to undervillization of the computer sources when the inserted zeros lead to undervillization of the computer sources when the inserted zeros lead to undervillization of the computer sources when the inserted zeros lead to undervillization of the computer sources and the inserted zeros mainted inconsequential multiply adds on the zeros. This computer prominent in convolution accelerators. Therefore, we propose and the sources concurrence by 18 MMD mode. The interesting of MMD source parages which has donersite diminialed due to the inserted zeros the concurrence by 18 MMD mode. The interesting of an eartin network are learned by observing massive multiparts and that processing in Control paramed operation. To amortice the cost of MMD execution, we prove a documpting observing massive multiparts of an eart network are learned by observing massive multiparts of an eart network are learned by observing massive multiparts of an eart network are learned by observing massive multiparts of an eart network are learned by observing massive multiparts of an eart network are learned by observing massive multiparts of an eart network are learned by observing massive multiparts of an eart network are learned by observing massive multiparts of an eart network are learned by obs
			CCS CONCEPTS	determine their exact computation. The objective of the training

posium on Computer Architecture

IMD Acceleration for ial Networks

ung Kim^b Hadi Esmaeilzadeh[§] gies (ACT) Lab rsity of Illinois at Urbana-Champaign [§]UC San Diego

nskim@illinois.edu hadi@eng.ucsd.edu

Computer systems organization → Architectures; Parallel ar process is to learn these weights, usually via a stochastic gradient

ets from a small initial labeled training dataset. GANs comgenerative model, which attempts to create synthetic data r to the original training dataset, with a discriminative model, ventional DNN that attempts to discern if the data produced by nerative model is synthetic, or belongs to the original training et [1]. The generative and discriminative models compete each other in a minimax situation, resulting in a stronger ator and discriminator. As such, GANs can create new ssive datasets that are hardly discernible from the original ig datasets. With this power, GANs have gained popularity in rous domains, such as medicine, where overtly costly humanstudies need to be conducted to collect relatively small d datasets [2], [3]. Furthermore, the ability to expand the ng datasets has gained considerable popularity in robotics [4], omous driving [5], and media synthesis [6]-[12] as well.

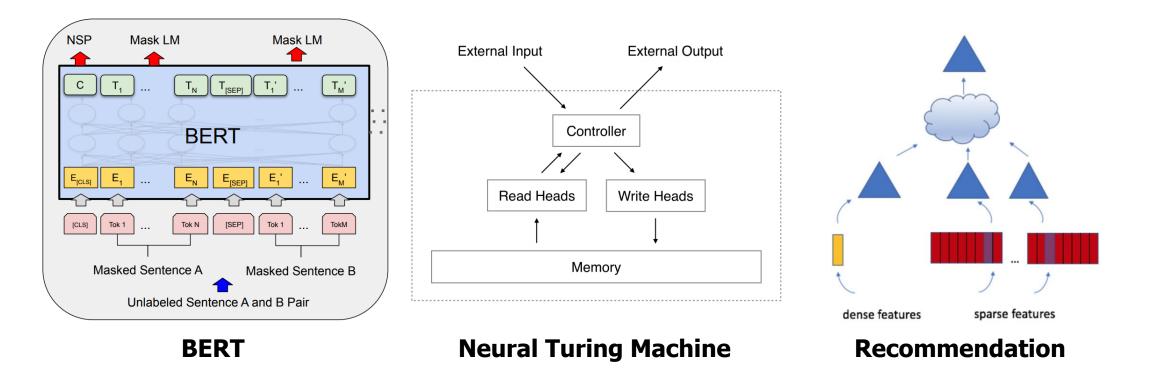
rrently, advances in acceleration for conventional DNNs are ing the barriers to adoption [13]-[18]. However, while GANs to push the frontiers in deep learning, there is a lack of are accelerators that address their computational needs. This sets out to explore this state-of-the-art dimension in deep ng from the hardware acceleration perspective. Given the ance of the accelerators for conventional DNNs [15]-[43], ning an accelerator for GANs will only be attractive if they new challenges in architecture design. By studying the are of emerging GAN models [6]-[12], we observe that they fundamentally different type of mathematical operator in

* Chen et al., "DaDianNao: A Machine-Learning Supercomputer", ISCA-2014

- * Chen et al., "Everiss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks", ISCA-2016
- * Han et al., "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA-2016
- * Parashar et al., "SCNN: An Accelerator for Compressed-sparse Convolutional Neural Networks", ISCA-2017
- * Yazdanbakhsh et al., "GANAX: A Unified MIMD-SIMD Acceleration for Generative Adversarial Networks", ISCA-2018

Emerging DL applications?

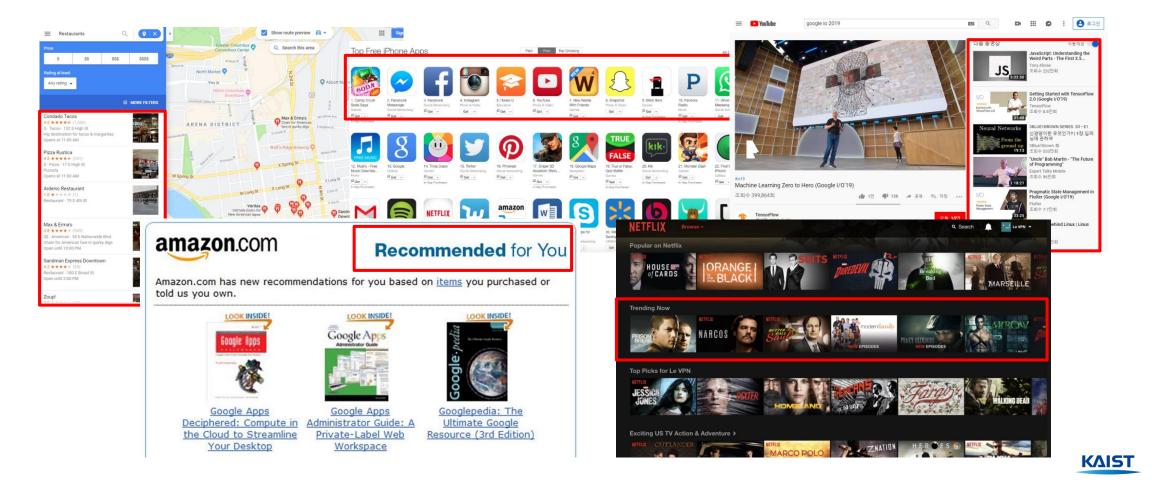
"Non" conventional DNN layers are causing a bottleneck



- * Devlin et al., "Bert: Pre-training of Deep Bidirectional Transformers for Language Understanding", arxiv.org, 2018
- * Graves et al., "Neural Turing Machines", arxiv.org, 2014
- * Naumov et al., "Deep Learning Recommendation Model for Personalization and Recommendation Systems", arxiv.org, 2019

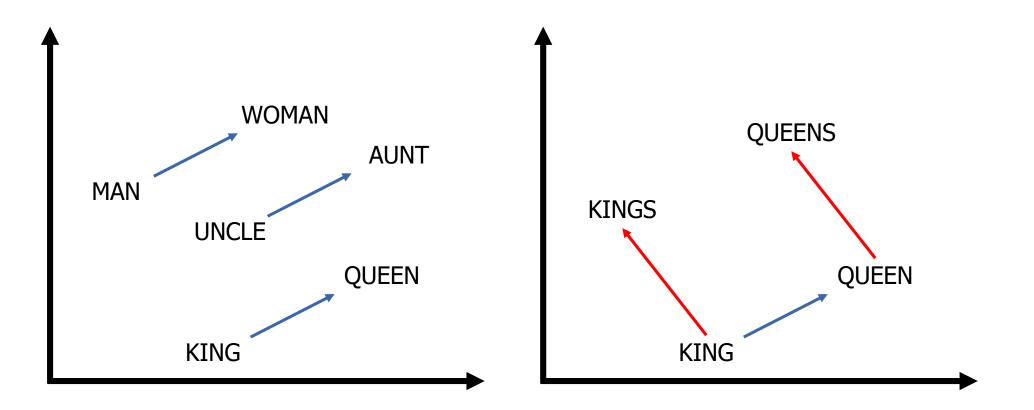
Personalized recommendation models

"Sparse" embedding layers (rather than dense DNNs) are the bottleneck



What is an embedding?

Projection of sparse features into dense vector dimension (e.g., word2vec)



What is an embedding?

Stored as a large look-up table containing millions-to-billions of entries

User ID	Embedding (vector)
0: Sam	[0.49, 0.52, 0.23, 0.69, 0.32,]
1: Harry	[0.24, 0.27, 0.13, 0.09, 0.79,]
2: Matt	[0.31, 0.71, 0.46, 0.91, 0.07,]
3: John	[0.83, 0.43, 0.81, 0.57, 0.09,]
4: Elicia	[0.31, 0.83, 0.23, 0.69, 0.86,]
N: Danny	[0.77, 0.18, 0.71, 0.59, 0.46,]

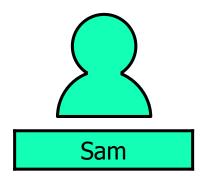
N: can be millions

Goal: predict a preference of user-item pair

Sam

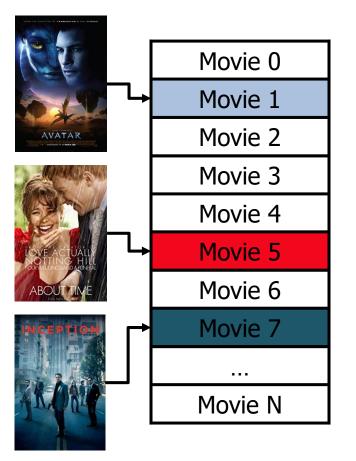
Goal: predict a preference of user-item pair

Movie 0
Movie 1
Movie 2
Movie 3
Movie 4
Movie 5
Movie 6
Movie 7
Movie N



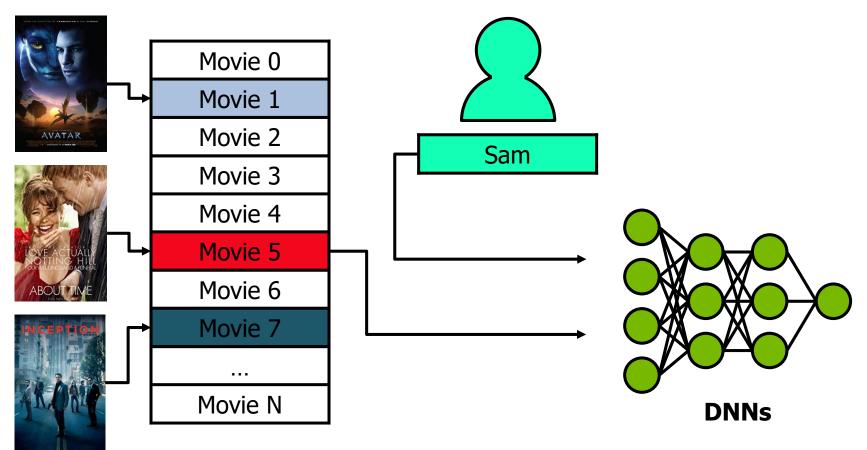
[Embedding table]

Goal: predict a preference of user-item pair



[Embedding table]

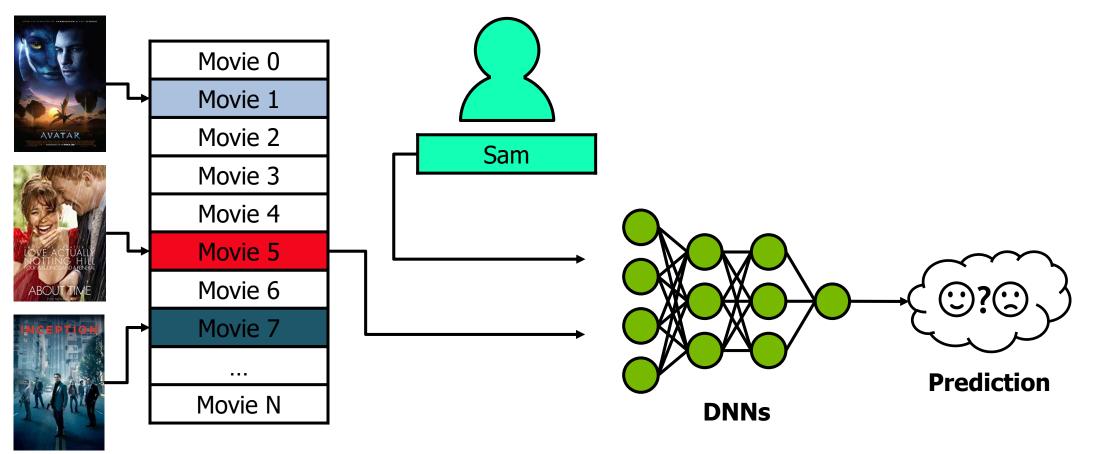
Goal: predict a preference of user-item pair



[Embedding table]

KAIST

Goal: predict a preference of user-item pair



[Embedding table]

Key Primitives in Embedding Layers

#1: Embedding lookup (gather)

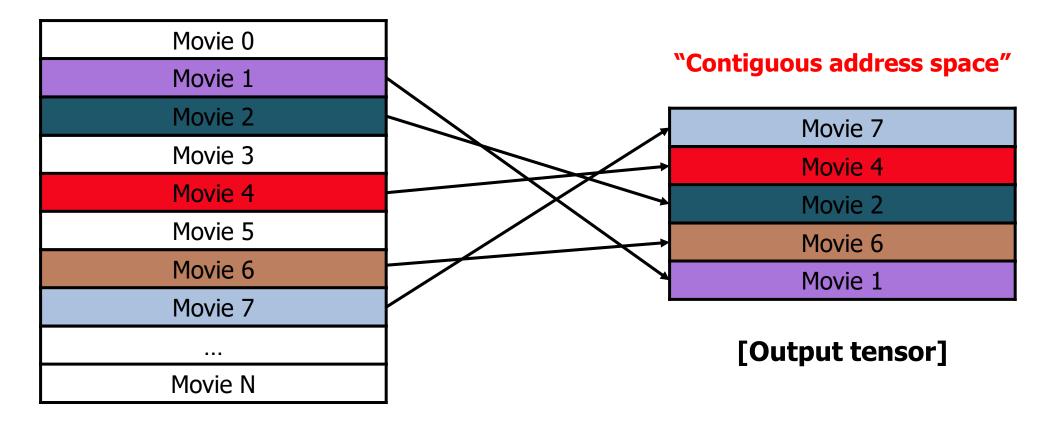
Copying target embeddings into contiguous address space

Movie 0
Movie 1
Movie 2
Movie 3
Movie 4
Movie 5
Movie 6
Movie 7
Movie N

[Embedding table]

#1: Embedding lookup (gather)

Copying target embeddings into contiguous address space

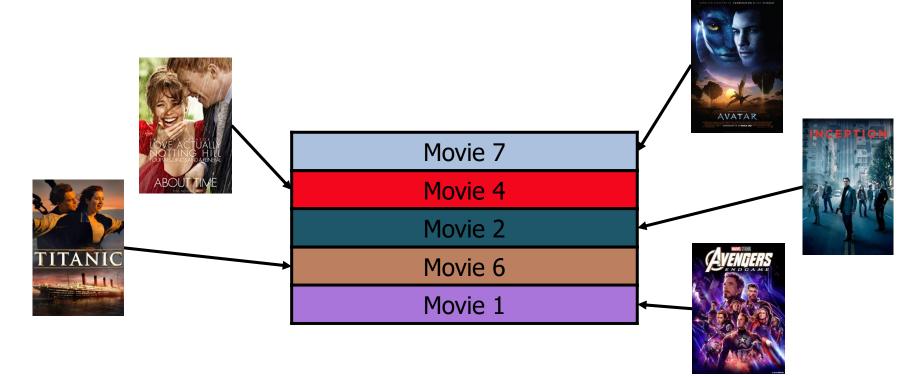


[Embedding table]

ΚΔΙΣΤ

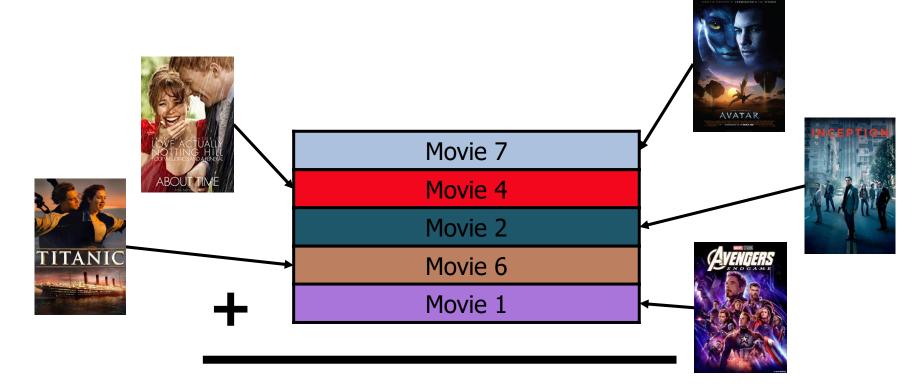
#2: Tensor operation (reduction)

e.g., Averaging multiple embeddings, element-wise addition/multiplication



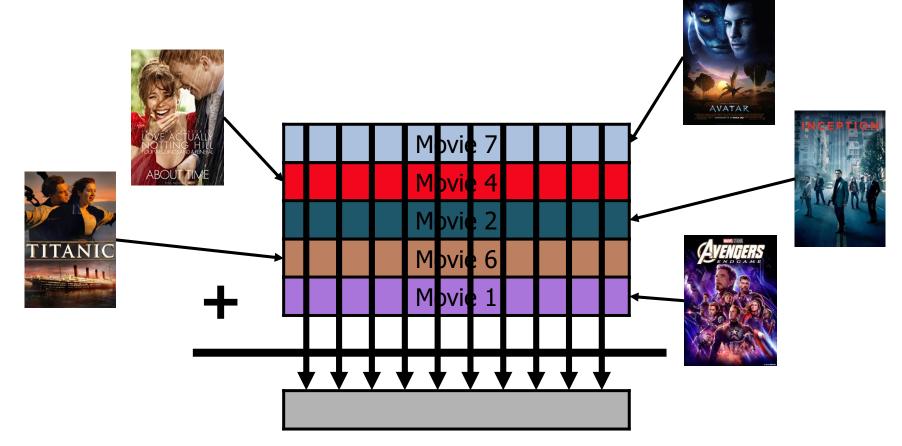
#2: Tensor operation (reduction)

e.g., Averaging multiple embeddings, element-wise addition/multiplication



#2: Tensor operation (reduction)

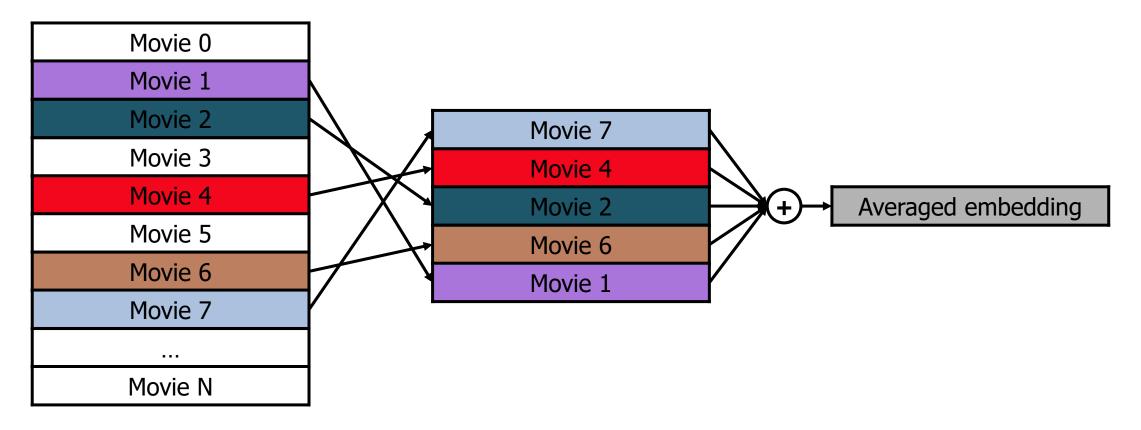
e.g., Averaging multiple embeddings, element-wise addition/multiplication



<Average movie embedding>

Key challenges of embedding layers

Embedding gathers/reductions are extremely memory-bandwidth sensitive



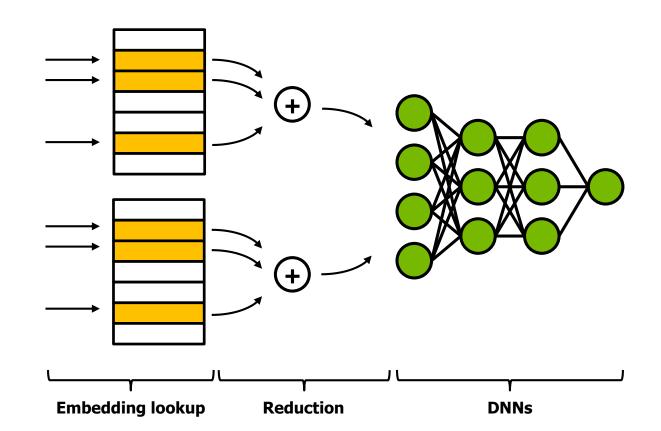
[Embedding lookup]

[Tensor operation]

Current Solutions for Recommendation Systems

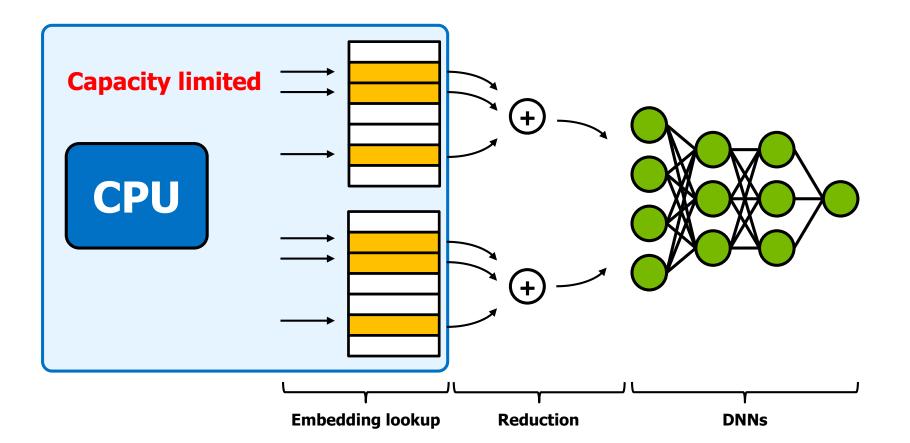
The memory wall for "Inference"

Size of embedding tables can reach hundreds of GBs



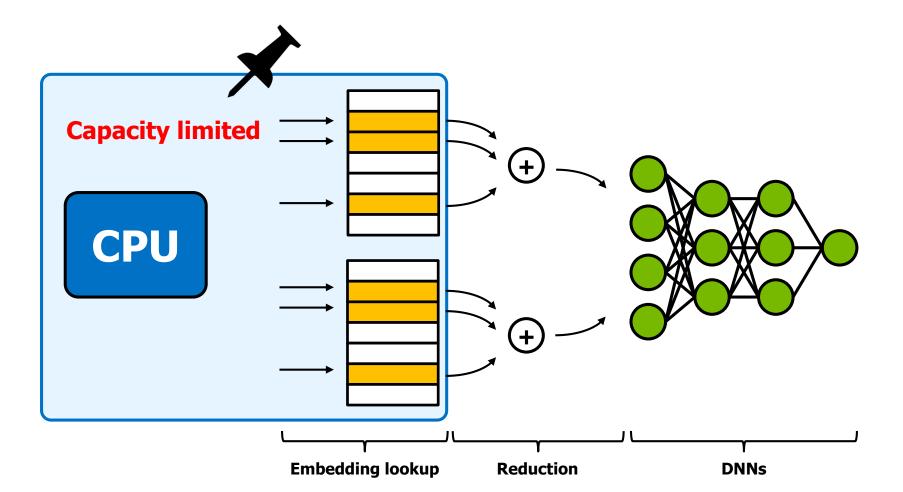
The memory wall for "Inference"

Size of embedding tables can reach hundreds of GBs



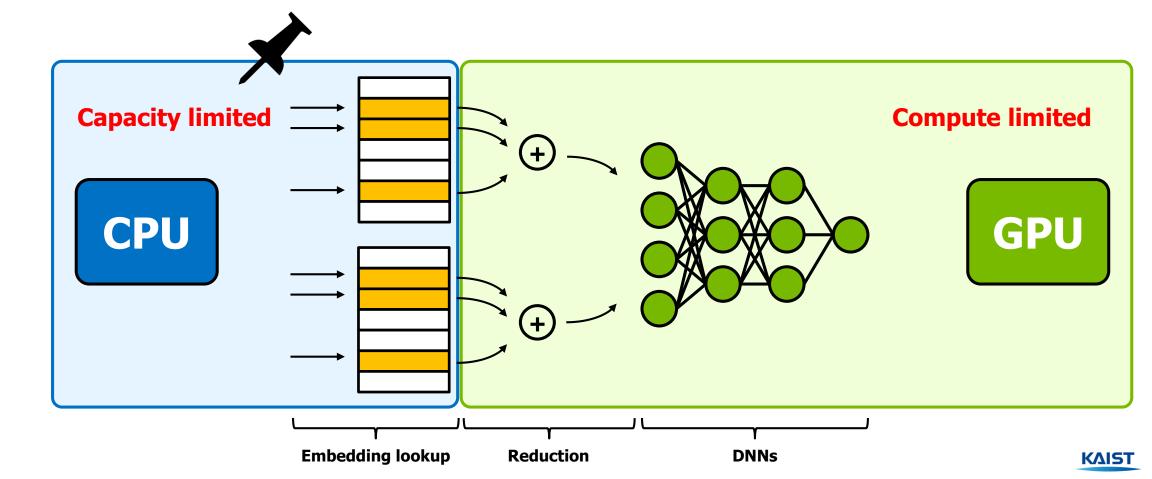
The memory wall for "Inference"

Size of embedding tables can reach hundreds of GBs



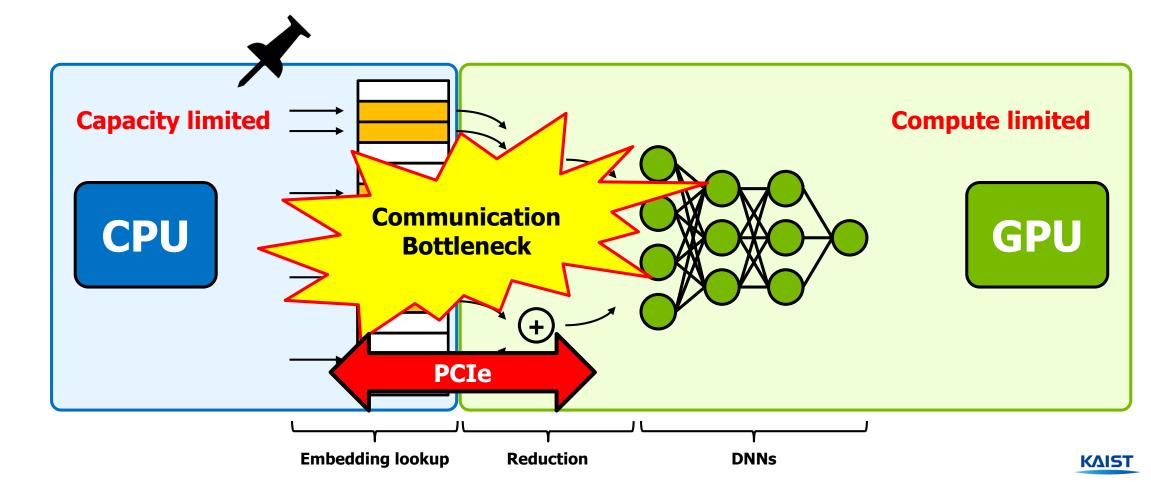
Design#1: Hybrid CPU-GPU approach

CPU stores entire embedding tables, but DNNs executed using GPUs

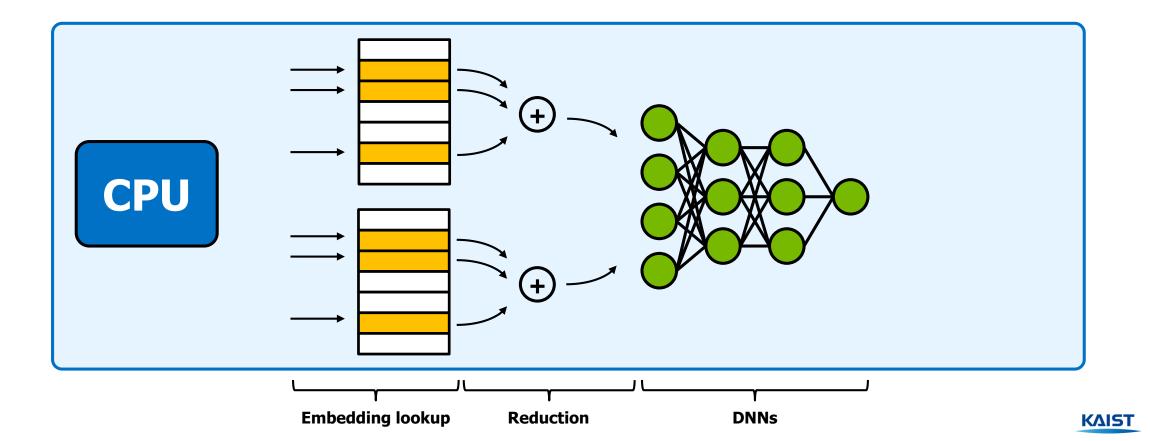


Design#1: Hybrid CPU-GPU approach

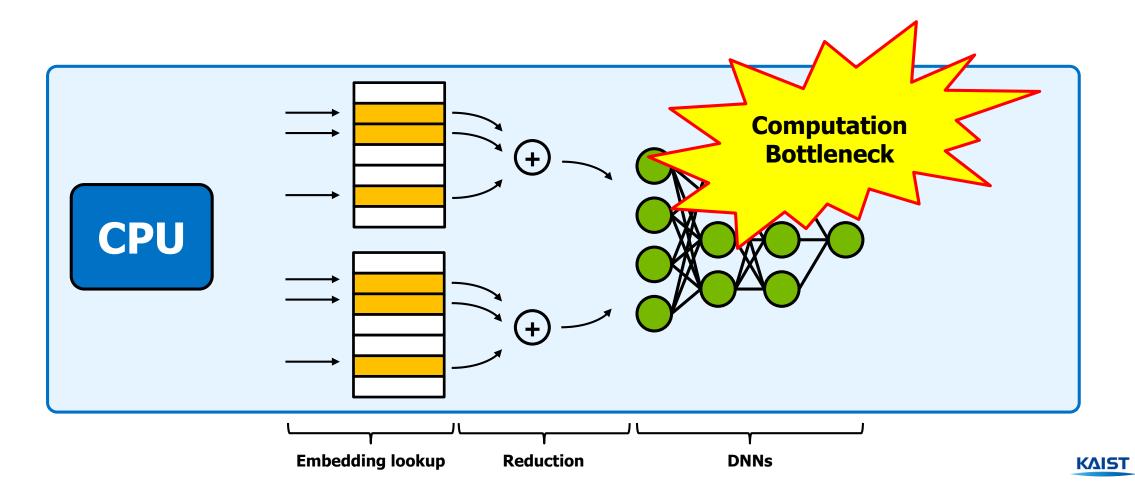
Challenges: need to copy multiple embeddings via narrow PCIe channel

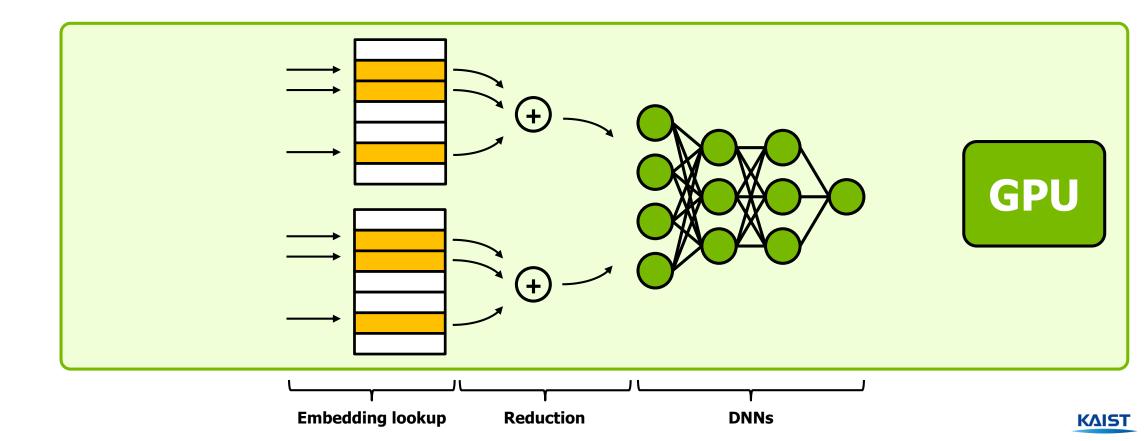


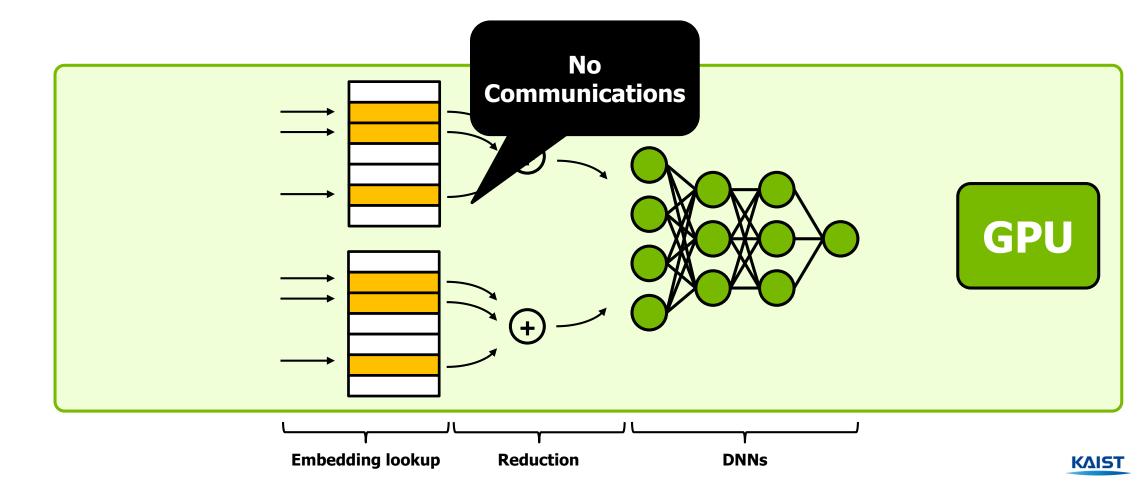
The CPU handles the entire steps of inference

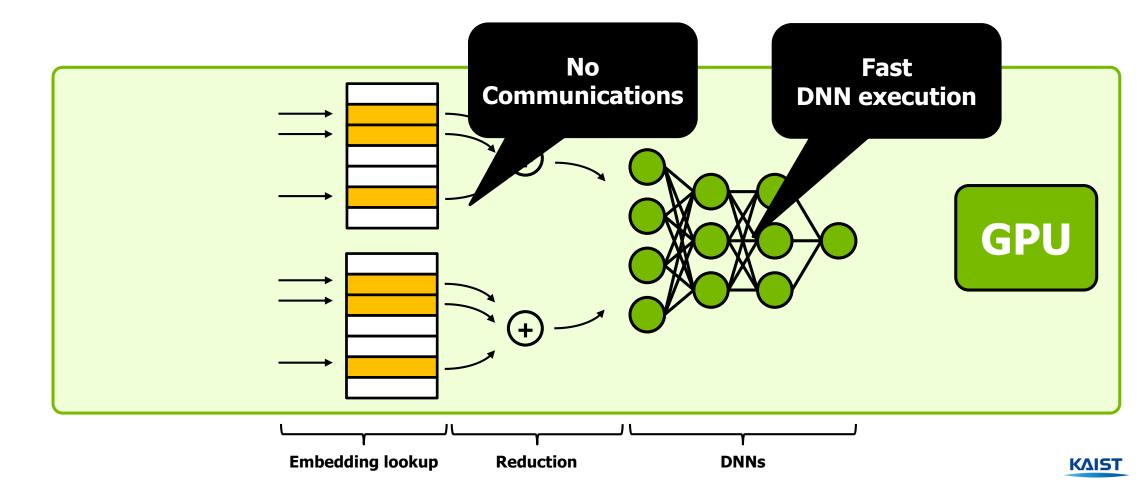


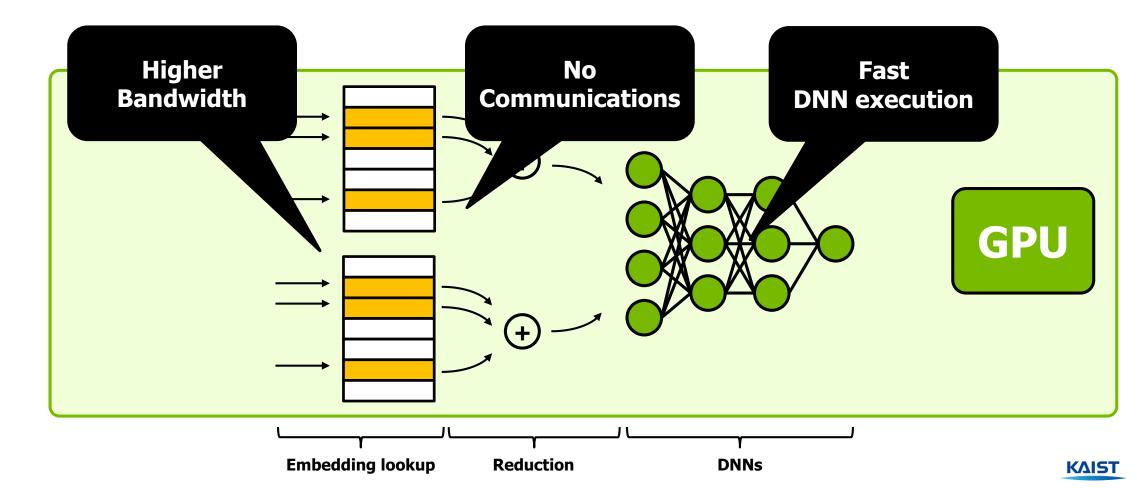
Challenges: low throughput of CPUs slows down DNN computation





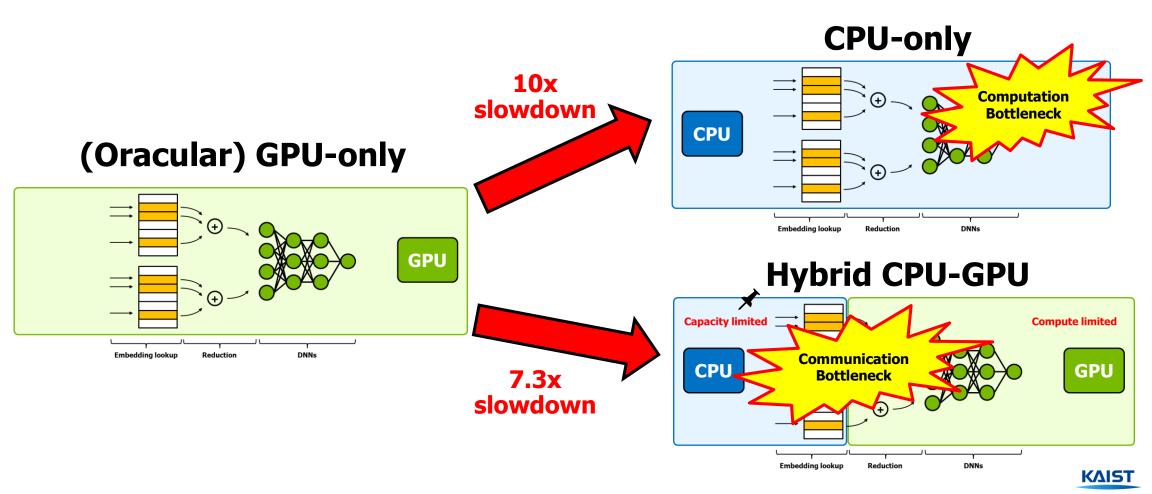






Key challenges of existing solutions?

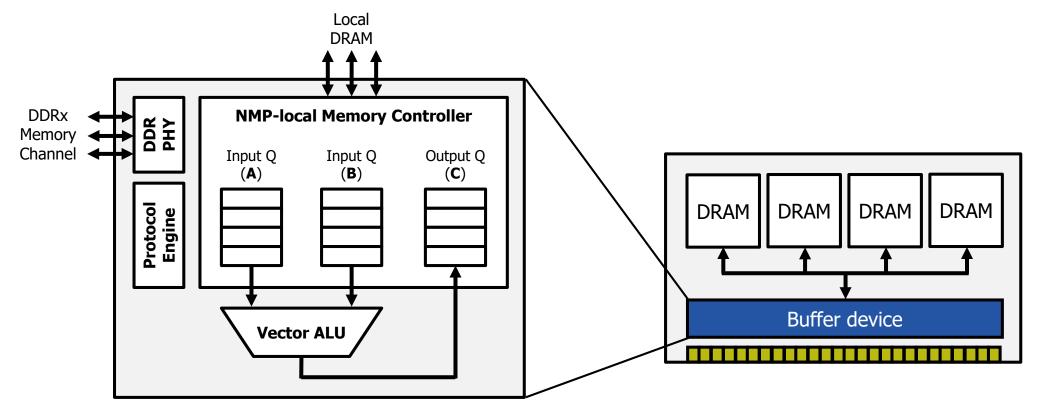
CPU-only and hybrid CPU-GPU (vs. GPU-only)



Our Approach: "Near"-Memory Acceleration (so Near-Memory Processing, NMP)

TensorDIMM: a NMP for embeddings

Augment buffer device to add NMP cores for embedding gathers/reductions

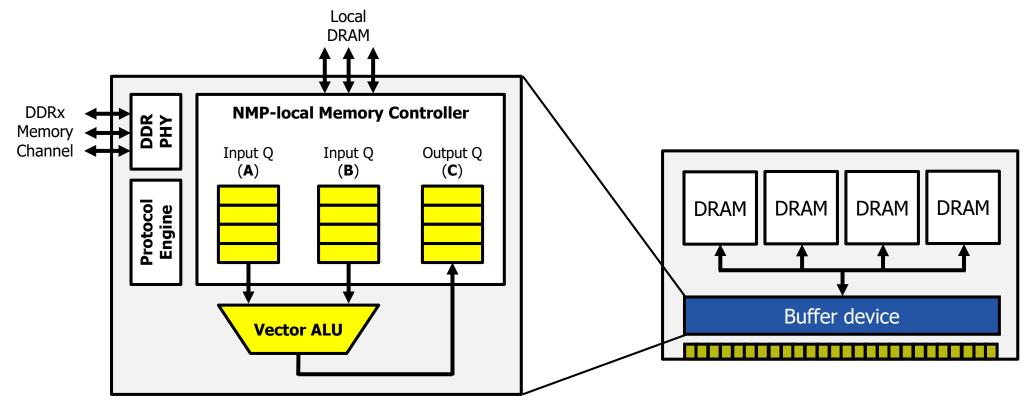


(a) NMP core

(b) TensorDIMM

TensorDIMM: a NMP for embeddings

Augment buffer device to add NMP cores for embedding gathers/reductions

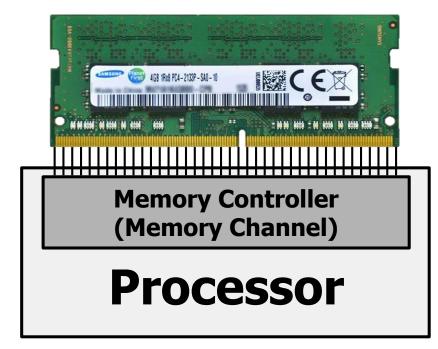


(a) NMP core

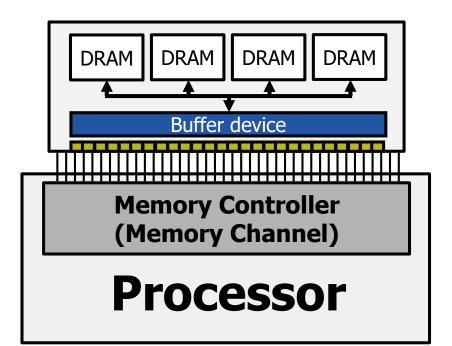
(b) TensorDIMM

Key advantage of TensorDIMM

"Effective" memory bandwidth scales proportional to the # of DIMMs/ranks

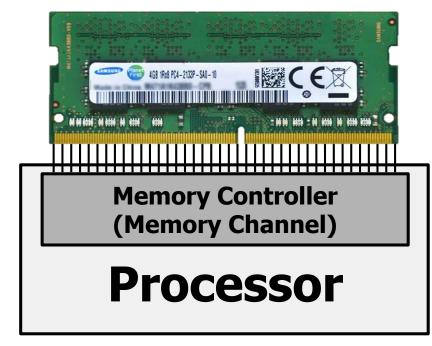


Current system



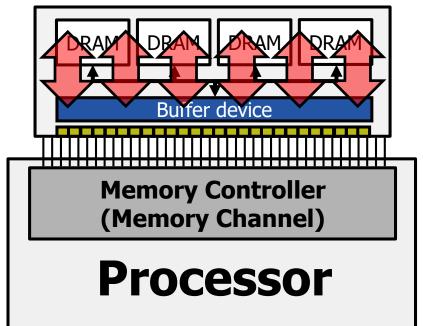
TensorDIMM approach

"Effective" memory bandwidth scales proportional to the # of DIMMs/ranks

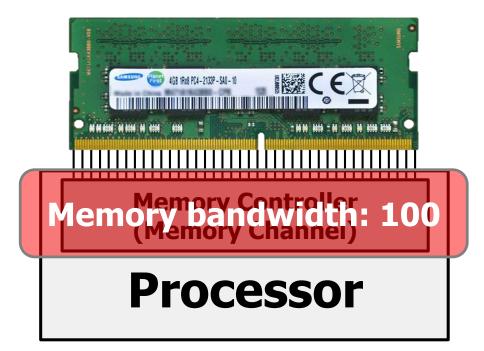


Current system

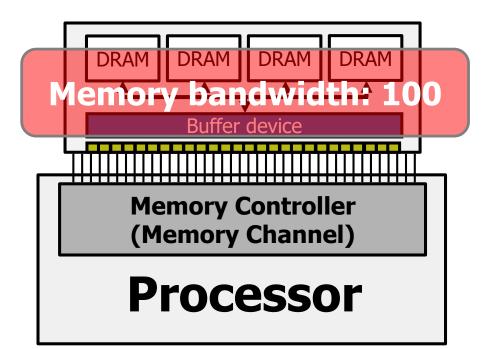
Embedding **gathers/reductions** are done **"locally"** within a DIMM



"Effective" memory bandwidth scales proportional to the # of DIMMs/ranks

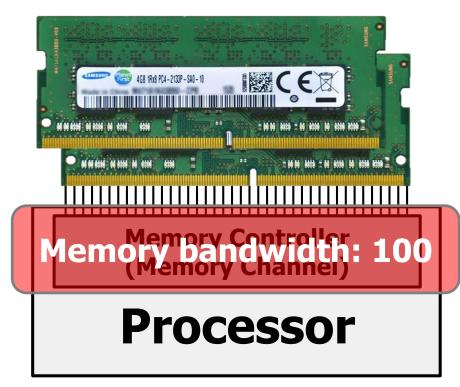


Current system

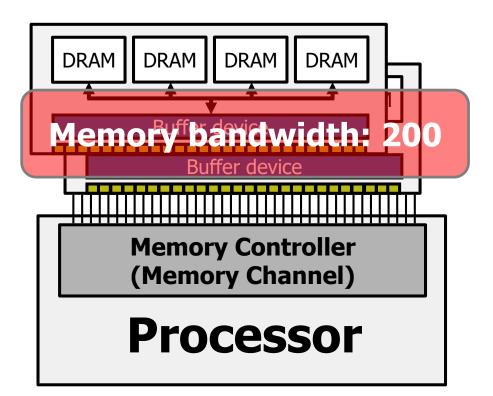


TensorDIMM approach

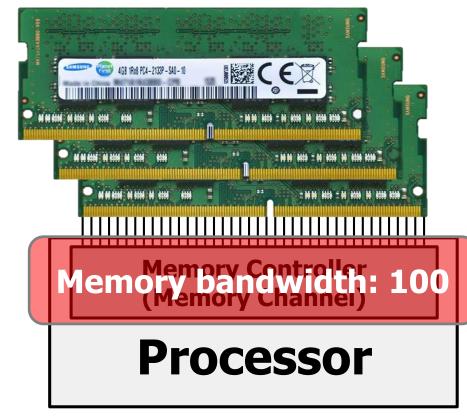
"Effective" memory bandwidth scales proportional to the # of DIMMs/ranks



Current system



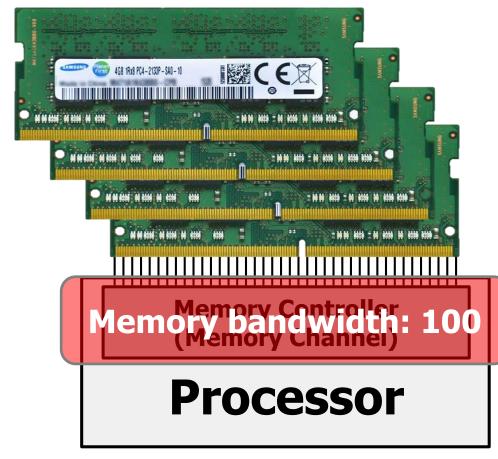
"Effective" memory bandwidth scales proportional to the # of DIMMs/ranks



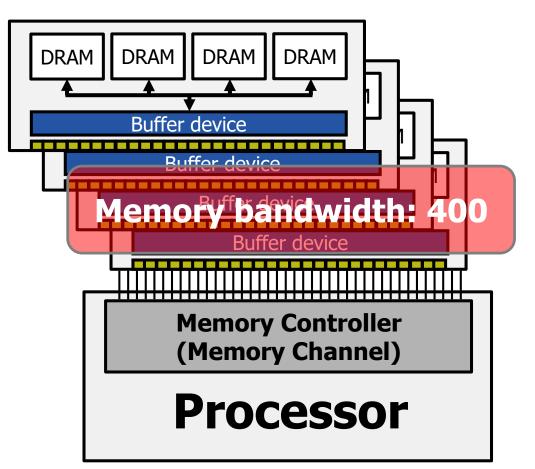
DRAM DRAM **DRAM** DRAM Ruffor dovice Memory bandwidth: Buffer device **Memory Controller** (Memory Channel) Processor

Current system

"Effective" memory bandwidth scales proportional to the # of DIMMs/ranks



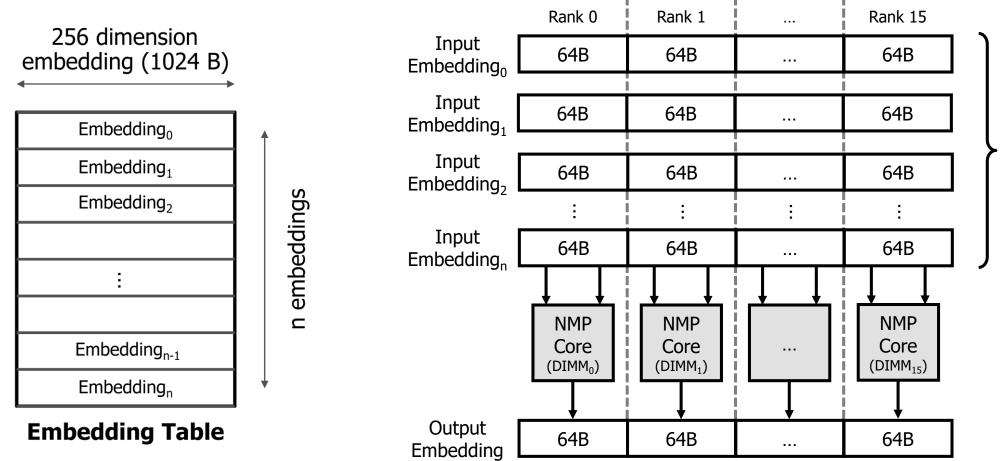
Current system



TensorDIMM approach

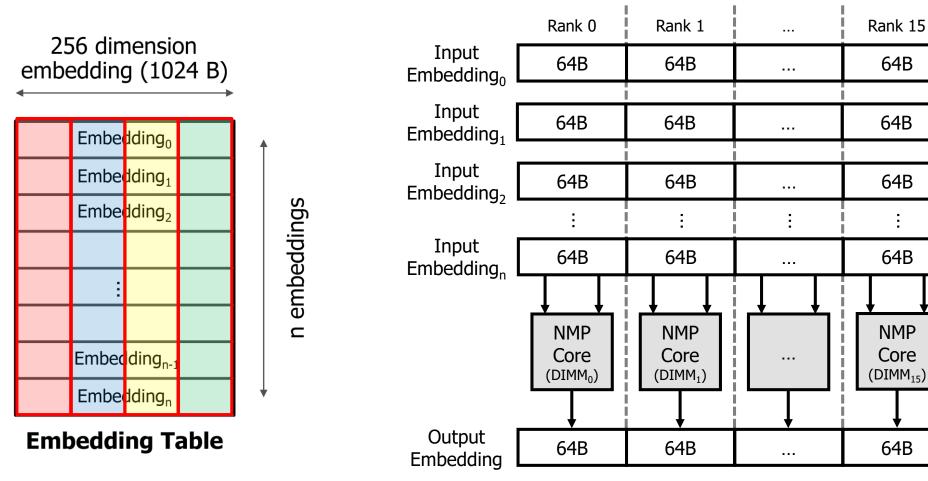
Mapping embedding tables in DRAMs

Leverage rank-level parallelism for maximal bandwidth utilization



Mapping embedding tables in DRAMs

Leverage rank-level parallelism for maximal bandwidth utilization

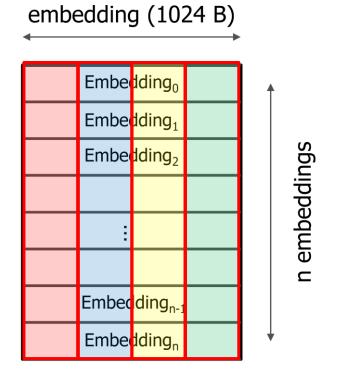


Subject for element-wise operations

KAIST

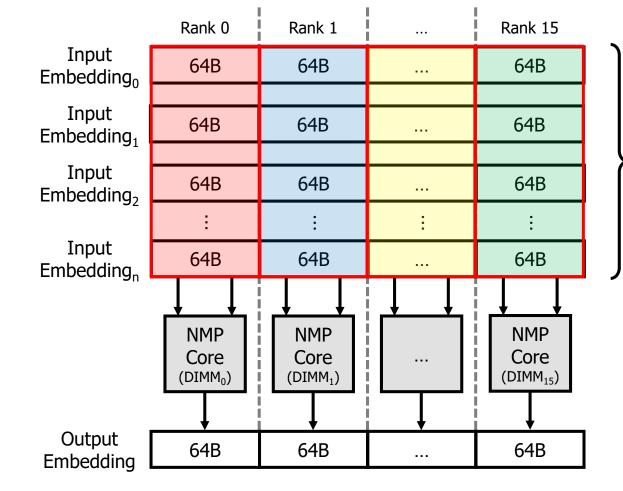
Mapping embedding tables in DRAMs

Leverage rank-level parallelism for maximal bandwidth utilization



256 dimension

Embedding Table

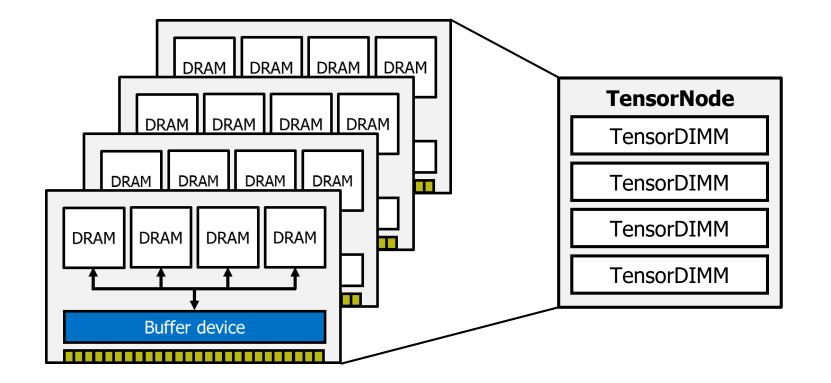


44

KAIST

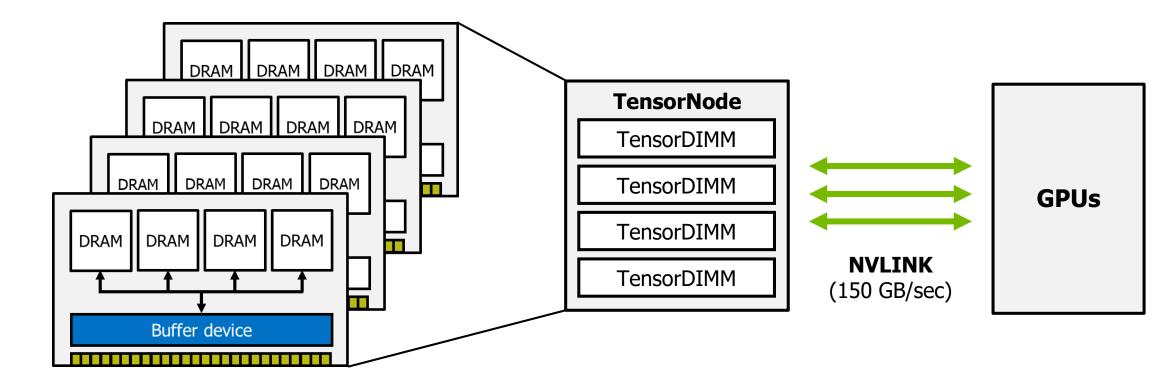
Tensor"Node" using TensorDIMMs

A pooled memory architecture aggregated with multiple TensorDIMMs



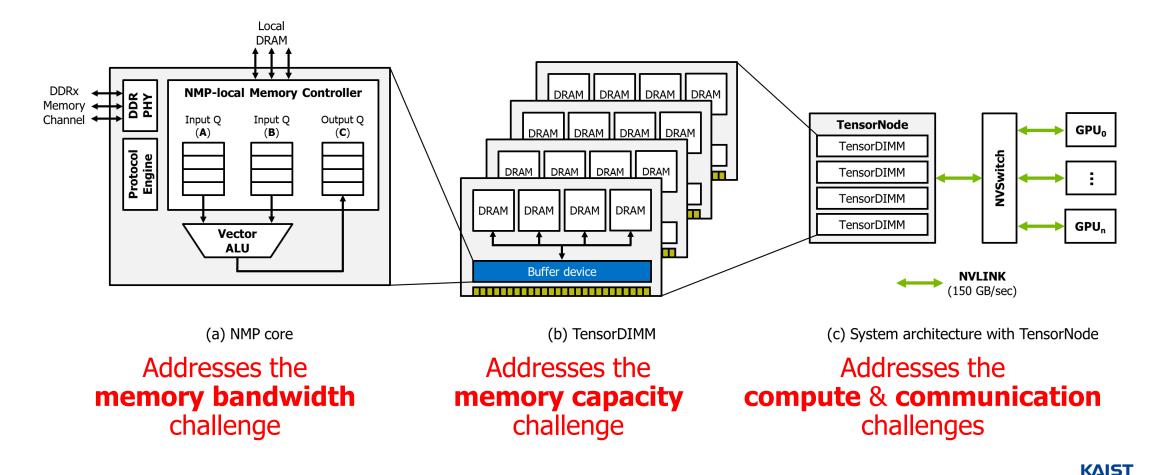
TensorNode as "remote" memory pools

Utilize high-speed links (e.g. NVLINK) for inter-device communication



Putting everything together

A platform for scalable expansion of both memory bandwidth and capacity



Evaluation

Evaluation methodology

Combination of cycle-level simulation and emulation on real ML systems

□ Cycle-level DRAM simulator (Ramulator*)

□ Proof-of-concept software prototype on real ML systems (NVIDIA DGX-1V)

Evaluation methodology

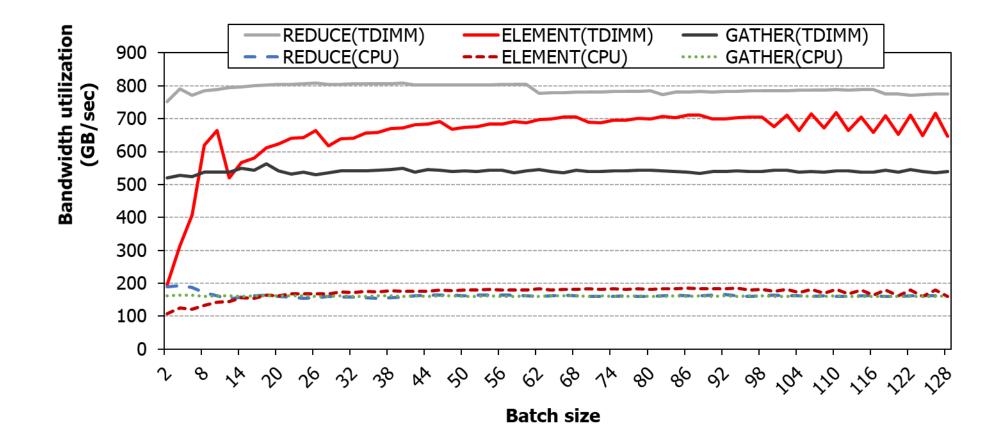
Combination of cycle-level simulation and emulation on real ML systems

□ Cycle-level DRAM simulator (Ramulator*)

- Memory bandwidth for embedding gathers/reductions under our address mapping
- □ Proof-of-concept software prototype on real ML systems (NVIDIA DGX-1V)

Memory bandwidth utilization

Effective bandwidth scales proportional to number of ranks (avg $4x\uparrow$)



Evaluation methodology

Combination of cycle-level simulation and emulation on real ML systems

□ Cycle-level DRAM simulator (Ramulator*)

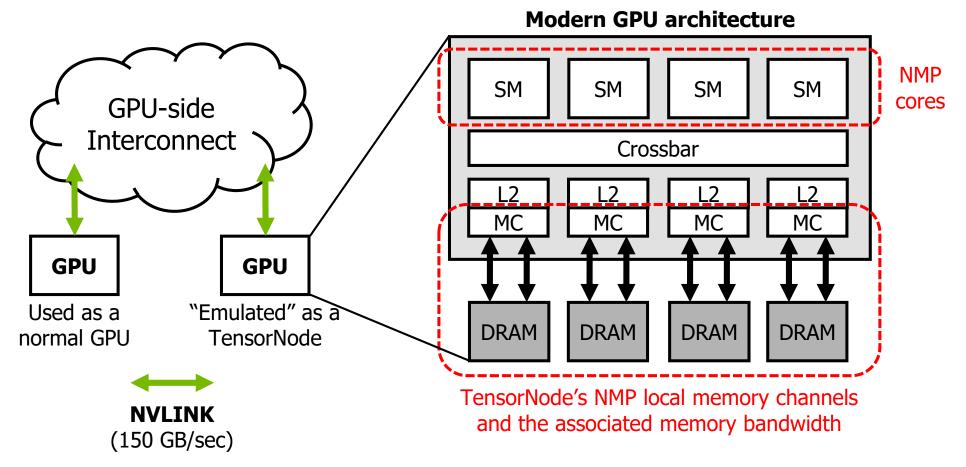
Memory bandwidth for embedding gathers/reductions under our address mapping

□ Proof-of-concept software prototype on real ML systems (NVIDIA DGX-1V)

- Intel's Math Kernel Library (MKL)
- NVIDIA cuDNN / cuBLAS
- In-house CUDA implementation of other layers
- NVIDIA DGX-1V
 - Eight NVIDIA V100 GPUs
 - Two Intel Xeon E5-2698 v4

TensorNode system modeling

A proof-of-concept software prototype to emulate TensorDIMM



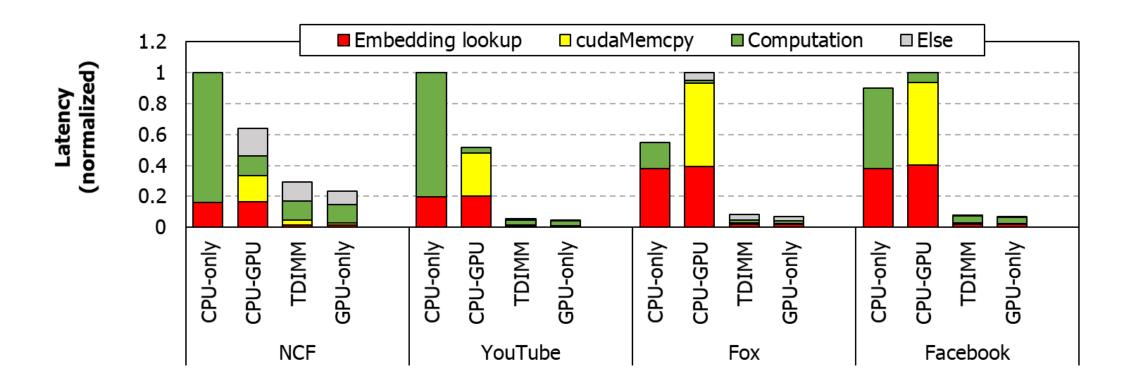
Evaluation methodology

A proof-of-concept software prototype to emulate TensorDIMM

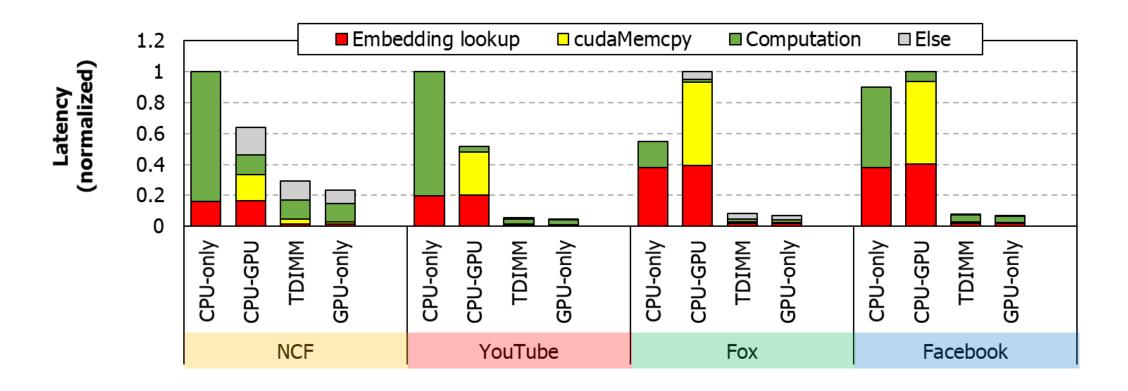
Four system design points

- CPU-only
- Hybrid CPU-GPU
- TensorDIMM (ours)
- GPU-only (oracle)

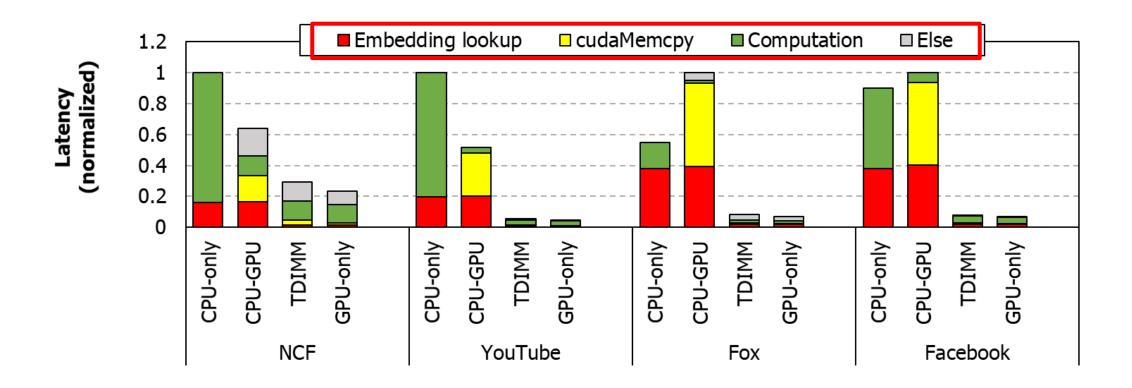
TensorDIMM helps reduce both embedding/MLP latency



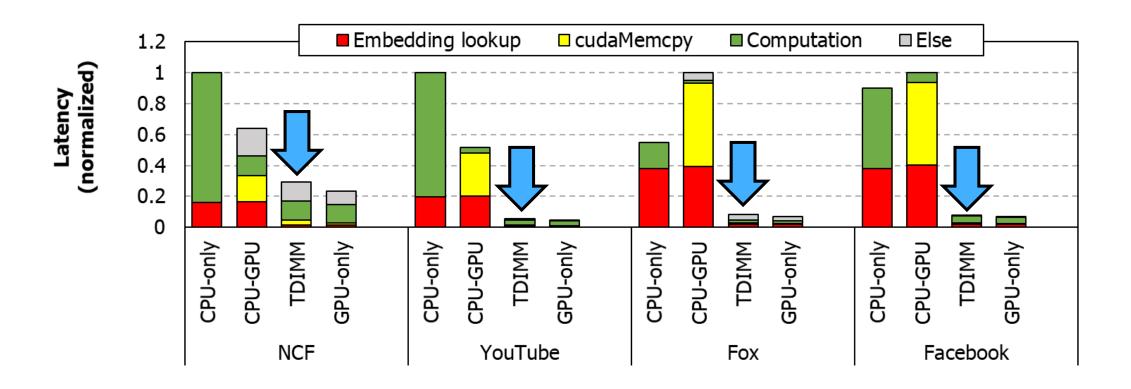
TensorDIMM helps reduce both embedding/MLP latency



TensorDIMM helps reduce both embedding/MLP latency



TensorDIMM achieves overall 6-9x speedup against the baselines



TensorDIMM:

A Near-Memory Processing Architecture for Sparse Embedding Layers

The **"first"** architectural solution tackling sparse embedding layers

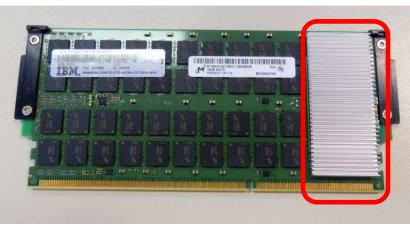
A "practical" near-memory processing solution for an important AI workload

Average "6~9x" performance improvement on state-of-the-art DNN-based recommendation models

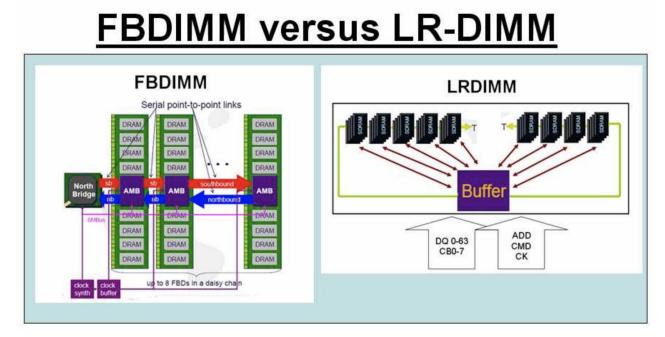
Backup Slides

TensorDIMM design overheads

It's not free, but adding custom logics within DIMM has been done before



IBM centaur DIMM



KAIST

OCP GLOBAL SUMMIT

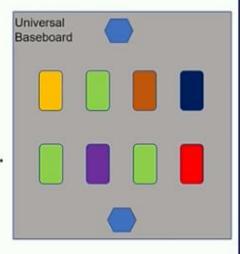
Heterogenous OAMs

These Modules need not be of the same type

Each one may be suited for a specific application/task

xPUs, FPGA, CPU, GPU, ASICs, SoCs, Memory, ...

Chained, pipelined processing stages

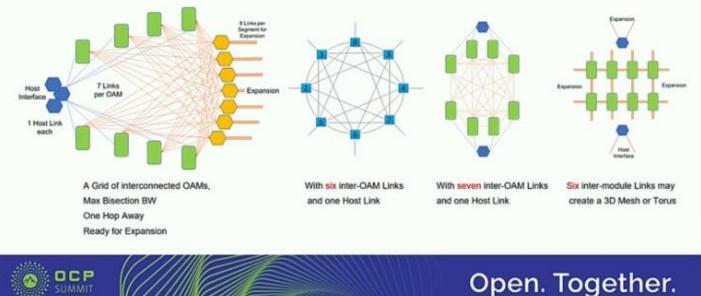


Open. Together.

San Jose Convention Center | San Jose, California

March 14-15, 2019

With different interconnect topologies



San Jose Convention Center | San Jose, California

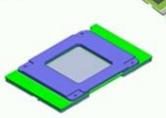
March 14-15, 2019

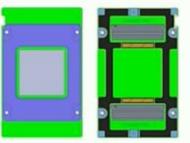
61

CP

OCP Accelerator Module Spec

- Support both 12V and 48V as input
- Up to 350w(12V) and up to 700w(48V) TDP
- 102mm x 165mm
- Support single or multiple ASIC(s) per Module
- Up to eight x16 Links (Host + inter-module Links) 0
 - Support one or two x16 High speed link(s) to Host
 - Up to seven x16 high speed interconnect links
- Expect to support up to 450W (air-cooled) and 700W (liquid-cooled)
- Up to 8* Modules per system
- System management and debug interfaces





Open. Together.

San Jose Convention Center San Jose, California

March 14-15, 2019