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Research Scope



DL architecture research so far

Primarily focused on “dense” DNN layers (e.g., CNNs, RNNs, ...
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highly-parallel compute paradigms, such as SIMD/SIMT, effec-
tively address the computation requirement to achieve high
throughput, energy consumption still remains high as data
can be more exp than Accord-
ingly, finding a dataflow that supports parallel processing with
minimal data movement cost is crucial to achieving energy-
efficient CNN processing without compromising accuracy.
In this paper, we present a novel dataflow, called row-
stationary (RS), that minimizes data movemenl energy con-
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due to the accompanying bandwidth requirement. and the
energy consumption remains high as data movement can be
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datasets from a small initial labeled training dataset. GANs com-
bine a generative model, which atempts to create synthetic data
similar to the original training dataset, with a discriminative model,
aconventional DNN that attempts to discern if the data produced by
the generative model is synthetic, or belongs to the original training
dataset [1]. The generative and discriminative models compete
with each other in 2 minimax situation, resulting in a stronger
generator and discriminator. As such, GANs can create new
impressive datasets that are hardly discemible from the criginal
training datasets. With this power, GANs have gained popularity in
numerous domains, such as medicine, where overtly costly human-
centric studies need to be conducted to collect relatively small
labeled datasets [2], [3]. Furthermare, the ability to expand the
training datasets has gained considerable popularity in robotics [4],
autonomous driving [5]. and media synthesis [6]-[12] as well
‘Currently, advances in acceleration for conventional DNNs are
breaking the barriers o adoption [13-{18]. However, while GANs
are set to push the frontiers in deep learning, there is a lack of
hardware accel that address their ional needs. This
paper sets out to explore this state-of-the-art dimension in deep
leamning from the hardware acceleration perspective. Given the
abundance of the accelerators for conventional DNNs [15]-[43],
designing an accelerator for GANs will only be attractive if they
pase new challenges in architecture design. By studying the
structure of emerging GAN models [6]-[12], we observe that they

from network pruning during training and zero-\

usc a different type of ical operator in

that arise from the common ReLU operator. Specifically, SCNN em-
ploys a novel dataflow that enables maintaining the sparse weights
and activations in a compressed encoding, which eliminates unnec-
essary data transfers and reduces storage requirements. Furthermore,
the SCNN dataflow facilitates efficient delivery of those weights and
activations to a multiplier array, where they are extensively reused:
product accumulation is performed in a novel accumulator array.
On contemporary neural networks, SCNN can improve both perfor-
‘mance and energy by a factor of 2.7x and 2.3, respectively, over a
comparably provisioned dense CNN accelerator.

CCS CONCEPTS

+ Computer systems + Architectures: Parallel ar-

WO tasks: (1) training — in which the parameters of 4 neural network
are learned by observing massive numbers of training examples, and
(2) inference — in which a trained neural network is deployed in the
field and classifies the observed data. Today, training is often done
on GPUs [27] or farms of GPUs, while inference depends on the
application and can employ CPUs. GPUs. FPGAS or specially-built
ASICs.

During the training process. a deep learing expert will typi-
cally architect the network, establishing the number of layers, the
operation performed by each layer, and the connectivity between
layers. Many layers have parameters, typically filter weights, which
determine their exact computation. The objective of the trainin
process is to learn these weights. usually via a stochastic gradient

* Chen et al., "DaDianNao: A Machine-Learning Supercomputer”, ISCA-2014
* Chen et al., “Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks”, ISCA-2016
* Han et al., “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, ISCA-2016

* Parashar et al

“"SCNN: An Accelerator for Compressed-sparse Convolutional Neural Networks”, ISCA-2017

* Yazdanbakhsh et al., "GANAX: A Unified MIMD-SIMD Acceleration for Generative Adversarial Networks”, ISCA-2018
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Emerging DL applications?

“"Non” conventional DNN layers are causing a bottleneck

@P Mask LM Mask LM \
A 1 *

e ) e ) 1] -

BERT
0 I e N ) | e Y
fr LT L L L LT

O oOEa. B
\_‘_1 \_'_1

Masked Sentence A Masked Sentence B

. 3
Unlabeled Sentence A and B Pair

BERT

External Input External Output

CON S

Controller

SN

Read Heads Write Heads

T |

Neural Turing Machine

* Devlin et al., “Bert: Pre-training of Deep Bidirectional Transformers for Language Understanding”, arxiv.org, 2018

* Graves et al., “Neural Turing Machines”, arxiv.org, 2014

* Naumov et al., “Deep Learning Recommendation Model for Personalization and Recommendation Systems”, arxiv.org, 2019
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Personalized recommendation models

“Sparse” embedding layers (rather than dense DNNs) are the bottleneck
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What is an embedding?

Projection of sparse features into dense vector dimension (e.g., word2vec)
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* Mikolov et al., “Distributed Representations of Words and Phrases and their Compositionality”, NIPS-2013 KAIST




What is an embedding?

Stored as a large look-up table containing millions-to-billions of entries

User ID Embedding (vector)

0: Sam [0.49, 0.52, 0.23, 0.69, 0.32, ...]
1: Harry [0.24, 0.27, 0.13, 0.09, 0.79, ...]
2: Matt [0.31, 0.71, 0.46, 0.91, 0.07, ...]
3: John [0.83, 0.43, 0.81, 0.57, 0.09, ...]
4: Elicia [0.31, 0.83, 0.23, 0.69, 0.86, ...]
N: Danny [0.77, 0.18, 0.71, 0.59, 0.46, ...]

N: can be millions
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Recommendation model 101

Goal: predict a preference of user-item pair

Sam
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Recommendation model 101

Goal: predict a preference of user-item pair

Movie 0
Movie 1

Movie 2
Movie 3
Movie 4

Sam

Movie 5

Movie 6

Movie 7

Movie N

[Embedding table] KAIST




Recommendation model 101

Goal: predict a preference of user-item pair

Movie 0
Movie 1
Movie 2
Movie 3
Movie 4

Movie 6

[Embedding table]

Sam
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Recommendation model 101

Goal: predict a preference of user-item pair

Movie 0

Movie 1

Movie 2

Movie 3

Sam

Movie 4

Movie 6

Movie N

[Embedding table]

DNNs
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Recommendation model 101

Goal: predict a preference of user-item pair

Movie 0
Movie 1

Movie 2
Movie 3
Movie 4

Movie 6

Prediction

[Embedding table] KAIST




Key Primitives in Embedding Layers



#1 Embedding lookup (gather)

Copying target embeddings into contiguous address space
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[Embedding table]
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#1 Embedding lookup (gather)

Copying target embeddings into contiguous address space

Movie 0

“Contiguous address space”

Movie 7

Movie 3

Movie 5

Movie 7

[Output tensor]

Movie N

[Embedding table]
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#2: Tensor operation (reduction)

e.g., Averaging multiple embeddings, element-wise addition/multiplication
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#2: Tensor operation (reduction)

e.g., Averaging multiple embeddings, element-wise addition/multiplication
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#2: Tensor operation (reduction)
e.g., Averaging multiple embeddings, element-wise addition/multiplication
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Key challenges of embedding layers

Embedding gathers/reductions are extremely memory-bandwidth sensitive

Movie 0

Movie 3

Movie 5

Movie 7

Movie N

[Embedding lookup]
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+ Averaged embedding

[Tensor operation]
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Current Solutions for
Recommendation Systems



n

The memory wall for "Inference

Size of embedding tables can reach hundreds of GBs
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The memory wall for “Inference”

Size of embedding tables can reach hundreds of GBs

Capacity limited

Embedding lookup Reduction DNNs
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The memory wall for “Inference”

Size of embedding tables can reach hundreds of GBs
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Capacity limited

Embedding lookup Reduction DNNs
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Design#1: Hybrid CPU-GPU approach

CPU stores entire embedding tables, but DNNs executed using GPUs
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Design#1: Hybrid CPU-GPU approach

Challenges: need to copy multiple embeddings via narrow PCle channel
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Design#2: CPU-only approach

The CPU handles the entire steps of inference
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Design#2: CPU-only approach

Challenges: low throughput of CPUs slows down DNN computation

Computation
Bottleneck

Embedding lookup Reduction DNNs
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Design#3: GPU-only approach?

28

Unbuildable, oracular solution assuming infinite GPU memory capacity
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Design#3: GPU-only approach?

Unbuildable, oracular solution assuming infinite GPU memory capacity

No
Communications

\ J\ J\ )
1 1 1

Embedding lookup Reduction DNNs KAIST
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Design#3: GPU-only approach?

Unbuildable, oracular solution assuming infinite GPU memory capacity

No Fast
Communications DNN execution

\ J1 J\ )
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Embedding lookup Reduction DNNs KAIST
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Design#3: GPU-only approach?

Unbuildable, oracular solution assuming infinite GPU memory capacity

No Fast
Communications DNN execution

Higher
Bandwidth
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Embedding lookup Reduction DNNs KAIST
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Key challenges of existing solutions?
CPU-only and hybrid CPU-GPU (vs. GPU-only)
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Our Approach: "Near”-Memory Acceleration
(so Near-Memory Processing, NMP)
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TensorDIMM: a NMP for embeddings

Augment buffer device to add NMP cores for embedding gathers/reductions
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TensorDIMM: a NMP for embeddings

Augment buffer device to add NMP cores for embedding gathers/reductions
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Key advantage of TensorDIMM

“Effective” memory bandwidth scales proportional to the # of DIMMs/ranks

DRAM || DRAM || DRAM || DRAM
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-« .‘.,,I‘Ihmm . \;6 _ Buffer device
Memory Controller Memory Controller
(Memory Channel) (Memory Channel)
Processor Processor

Current system TensorDIMM approach KAIST
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Key advantage of TensorDIMM

“Effective” memory bandwidth scales proportional to the # of DIMMs/ranks

Embedding gathers/reductions
are done “locally” within a DIMM

T G 4G R - 209-30-1 £ kj ‘m
Memory Controller Memory Controller
(Memory Channel) (Memory Channel)
Processor Processor

Current system TensorDIMM approach KAIST




Key advantage of TensorDIMM

“Effective” memory bandwidth scales proportional to the # of DIMMs/ranks
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Key advantage of TensorDIMM

“Effective” memory bandwidth scales proportional to the # of DIMMs/ranks
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Key advantage of TensorDIMM

“Effective” memory bandwidth scales proportional to the # of DIMMs/ranks
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Key advantage of TensorDIMM

“Effective” memory bandwidth scales proportional to the # of DIMMs/ranks
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Mapping embedding tables in DRAMs

Leverage rank-level parallelism for maximal bandwidth utilization

256 dimension
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Mapping embedding tables in DRAMs

Leverage rank-level parallelism for maximal bandwidth utilization
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Mapping embedding tables in DRAMs

Leverage rank-level parallelism for maximal bandwidth utilization

256 dimension
embedding (1024 B)
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Tensor'
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A pooled memory architecture aggregated with multiple TensorDIMMs
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TensorNode as "remote” memory pools

Utilize high-speed links (e.g. NVLINK) for inter-device communication
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Putting everything together

A platform for scalable expansion of both memory bandwidth and capacity
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Evaluation
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Evaluation methodology

Combination of cycle-level simulation and emulation on real ML systems

d Cycle-level DRAM simulator (Ramulator*)

A Proof-of-concept software prototype on real ML systems (NVIDIA DGX-1V)

* Kim et al., "Ramulator: A Fast and Extensible DRAM Simulator”, IEEE Computer Architecture Letters, 2015 KAIST
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Evaluation methodology

Combination of cycle-level simulation and emulation on real ML systems

d Cycle-level DRAM simulator (Ramulator*)

Memory bandwidth for embedding gathers/reductions under our address mapping

* Kim et al., "Ramulator: A Fast and Extensible DRAM Simulator”, IEEE Computer Architecture Letters, 2015 KAIST
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Memory bandwidth utilization

Effective bandwidth scales proportional to number of ranks (avg 4x1)
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Evaluation methodology

Combination of cycle-level simulation and emulation on real ML systems

A Proof-of-concept software prototype on real ML systems (NVIDIA DGX-1V)
Intel’'s Math Kernel Library (MKL)
NVIDIA cuDNN / cuBLAS
In-house CUDA implementation of other layers
NVIDIA DGX-1V

Eight NVIDIA V100 GPUs

Two Intel Xeon E5-2698 v4

KAIST




TensorNode system modeling

A proof-of-concept software prototype to emulate TensorDIMM

GPU-side
Interconnect

~—__—

GPU GPU

Used as a “Emulated” as a
normal GPU TensorNode

NVLINK
(150 GB/sec)

Modern GPU architecture

M —— e e T s‘
1 1
: SM SM SM SM :
(Y [ W [ MR P S N —— |
Crossbar
'f ------ O e —  —l | [———— \\
[ \
| |
| |
| |
| |
| |
| |
| |
‘\ /’l

TensorNode’s NMP local memory channels
and the associated memory bandwidth

NMP
cores
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Evaluation methodology

A proof-of-concept software prototype to emulate TensorDIMM

Four system design points
CPU-only
Hybrid CPU-GPU
TensorDIMM (ours)

GPU-only (oracle)
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Latency breakdown
TensorDIMM helps reduce both embedding/MLP latency
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Latency breakdown
TensorDIMM helps reduce both embedding/MLP latency
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Latency breakdown
TensorDIMM helps reduce both embedding/MLP latency
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Latency breakdown

TensorDIMM achieves overall 6-9x speedup against the baselines

Latency
(normalized)

1.2

0.8
0.6
0.4
0.2

CPU-only

CPU-GPU

B Embedding lookup

O cudaMemcpy

B Computation

58

OElse
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TensorDIMM:

A Near-Memory Processing Architecture for Sparse Embedding Layers

The “first” architectural solution tackling
sparse embedding layers

III

A “practical” near-memory processing solution
for an important Al workload

Average “"6~9x"” performance improvement
on state-of-the-art DNN-based recommendation models
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Questions?



Backup Slides
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TensorDIMM design overheads

It's not free, but adding custom logics within DIMM has been done before

FBDIMM versus LR-DIMM

FBDIMM LRDIMM

Serjal point-to-point links
/ .

DpPPp  DDDP
\//

Buffer

DQ 063 oscns
CBO-7 g
cK

IBM centaur DIMM
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%125.’\|3~5: CLORAL Heterogenous OAMs

These Modules need not be of the same type

Each one may be suited for a specific
application/task

xPUs, FPGA, CPU, GPU, ASICs, SoCs...

Chained, pipelined processing stages

‘ (7 —

; d @:0CP (I~ —>
= ; W, 7 = Open:Tegetner:
San Jose Convention Center | San Jose, California —

March 14-15, 2019




A Grid of nterconnected OAMSs, With six inter-OAM Links With seven inler-OAM Links Six inter-module Links may
Max Bisection BW and one Host Link and ong Host Link create a 3D Mesh or Torus

Open. Together.

San Jose Convention Center | San Jose, California

March 14-15, 2019




OCP Accelerator Module Spec

Support both 12V and 48V as input

Up to 350w(12V) and up to 700w(48V) TDP

102mm x 165mm

Support single or multiple ASIC(s) per Module

Up to eight x16 Links (Host + inter-module Links)
® Support one or two x16 High speed link(s) to Host
® Up toseven x16 high speed interconnect links

Expect to support up to 450W (air-cooled) and 700W
(liquid-cooled)

Up to 8* Modules per system

System management and debug interfaces

San Jose Convention Center | San Jose, California

March 14-15, 2019




