
1

TensorDIMM: A Practical Near-Memory Processing Architecture 

for Embeddings and Tensor Operations in Deep Learning

KAIST

Youngeun Kwon, Yunjae Lee, and Minsoo Rhu



2

Research Scope



3

Primarily focused on “dense” DNN layers (e.g., CNNs, RNNs, …)

DL architecture research so far

* Chen et al., “DaDianNao: A Machine-Learning Supercomputer”, ISCA-2014
* Chen et al., “Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks”, ISCA-2016
* Han et al., “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, ISCA-2016
* Parashar et al., “SCNN: An Accelerator for Compressed-sparse Convolutional Neural Networks”, ISCA-2017
* Yazdanbakhsh et al., “GANAX: A Unified MIMD-SIMD Acceleration for Generative Adversarial Networks”, ISCA-2018



4

“Non” conventional DNN layers are causing a bottleneck

Emerging DL applications?

* Devlin et al., “Bert: Pre-training of Deep Bidirectional Transformers for Language Understanding”, arxiv.org, 2018
* Graves et al., “Neural Turing Machines”, arxiv.org, 2014
* Naumov et al., “Deep Learning Recommendation Model for Personalization and Recommendation Systems”, arxiv.org, 2019

BERT Neural Turing Machine Recommendation



5

“Sparse” embedding layers (rather than dense DNNs) are the bottleneck

Personalized recommendation models



6

Projection of sparse features into dense vector dimension (e.g., word2vec)

What is an embedding?

* Mikolov et al., “Distributed Representations of Words and Phrases and their Compositionality”, NIPS-2013

KING

QUEEN

UNCLE

AUNT

MAN

WOMAN

KING

QUEEN

KINGS

QUEENS



7

Stored as a large look-up table containing millions-to-billions of entries

What is an embedding?

User ID Embedding (vector)

0: Sam [0.49, 0.52, 0.23, 0.69, 0.32, …]

1: Harry [0.24, 0.27, 0.13, 0.09, 0.79, …]

2: Matt [0.31, 0.71, 0.46, 0.91, 0.07, …]

3: John [0.83, 0.43, 0.81, 0.57, 0.09, …]

4: Elicia [0.31, 0.83, 0.23, 0.69, 0.86, …]

… …

N: Danny [0.77, 0.18, 0.71, 0.59, 0.46, …]

N: can be millions



8

Goal: predict a preference of user-item pair

Recommendation model 101

Sam



9

Goal: predict a preference of user-item pair

Recommendation model 101

[Embedding table]

Movie 0

Movie 1

Movie 2

Movie 3

Movie 4

Movie 5

Movie 6

Movie 7

…

Movie N

Sam



10

Goal: predict a preference of user-item pair

Recommendation model 101

[Embedding table]

Movie 0

Movie 1

Movie 2

Movie 3

Movie 4

Movie 5

Movie 6

Movie 7

…

Movie N

Sam



11

Goal: predict a preference of user-item pair

Recommendation model 101

[Embedding table]

Movie 0

Movie 1

Movie 2

Movie 3

Movie 4

Movie 5

Movie 6

Movie 7

…

Movie N

Sam

DNNs



12

Goal: predict a preference of user-item pair

Recommendation model 101

[Embedding table]

Movie 0

Movie 1

Movie 2

Movie 3

Movie 4

Movie 5

Movie 6

Movie 7

…

Movie N

Sam

DNNs

🙂?🙁

Prediction



13

Key Primitives in Embedding Layers



14

Copying target embeddings into contiguous address space

#1: Embedding lookup (gather)

[Embedding table]

Movie 0

Movie 1

Movie 2

Movie 3

Movie 4

Movie 5

Movie 6

Movie 7

…

Movie N



15

Copying target embeddings into contiguous address space

#1: Embedding lookup (gather)

[Embedding table]

Movie 7

[Output tensor]

Movie 4

Movie 2

Movie 6

Movie 1

Movie 0

Movie 1

Movie 2

Movie 3

Movie 4

Movie 5

Movie 6

Movie 7

…

Movie N

“Contiguous address space”



16

e.g., Averaging multiple embeddings, element-wise addition/multiplication

#2: Tensor operation (reduction)

Movie 7

Movie 4

Movie 2

Movie 6

Movie 1



17

e.g., Averaging multiple embeddings, element-wise addition/multiplication

#2: Tensor operation (reduction)

Movie 7

Movie 4

Movie 2

Movie 6

Movie 1+



18

e.g., Averaging multiple embeddings, element-wise addition/multiplication

#2: Tensor operation (reduction)

+

Movie 7

Movie 4

Movie 2

Movie 6

Movie 1

<Average movie embedding>



19

Embedding gathers/reductions are extremely memory-bandwidth sensitive

Key challenges of embedding layers

[Embedding lookup]

Movie 7

Movie 4

Movie 2

Movie 6

Movie 1

Movie 0

Movie 1

Movie 2

Movie 3

Movie 4

Movie 5

Movie 6

Movie 7

…

Movie N

Averaged embedding

[Tensor operation]

+



20

Current Solutions for
Recommendation Systems



21

The memory wall for “Inference”

+

+

DNNsReductionEmbedding lookup

Size of embedding tables can reach hundreds of GBs



22

Size of embedding tables can reach hundreds of GBs

The memory wall for “Inference”

+

+

DNNsReductionEmbedding lookup

CPU

Capacity limited



23

Size of embedding tables can reach hundreds of GBs

The memory wall for “Inference”

+

+

DNNsReductionEmbedding lookup

CPU

Capacity limited



24

CPU stores entire embedding tables, but DNNs executed using GPUs

Design#1: Hybrid CPU-GPU approach

+

+

DNNsReductionEmbedding lookup

CPU GPU

Capacity limited Compute limited



25

Challenges: need to copy multiple embeddings via narrow PCIe channel

Design#1: Hybrid CPU-GPU approach

+

+

DNNsReductionEmbedding lookup

CPU GPU

Capacity limited Compute limited

Communication 
Bottleneck

PCIe



26

The CPU handles the entire steps of inference 

Design#2: CPU-only approach

+

+

DNNsReductionEmbedding lookup

CPU



27

Challenges: low throughput of CPUs slows down DNN computation

Design#2: CPU-only approach

+

+

DNNsReductionEmbedding lookup

CPU

Computation 
Bottleneck



28

Unbuildable, oracular solution assuming infinite GPU memory capacity

Design#3: GPU-only approach?

+

+

DNNsReductionEmbedding lookup

GPU



29

Unbuildable, oracular solution assuming infinite GPU memory capacity

Design#3: GPU-only approach?

+

+

DNNsReductionEmbedding lookup

GPU

No 
Communications



30

Unbuildable, oracular solution assuming infinite GPU memory capacity

Design#3: GPU-only approach?

+

+

DNNsReductionEmbedding lookup

GPU

No 
Communications

Fast 
DNN execution



31

Unbuildable, oracular solution assuming infinite GPU memory capacity

Design#3: GPU-only approach?

+

+

DNNsReductionEmbedding lookup

GPU

No 
Communications

Higher 
Bandwidth

Fast 
DNN execution



32

CPU-only and hybrid CPU-GPU (vs. GPU-only)

Key challenges of existing solutions?

7.3x 
slowdown

10x 
slowdown

(Oracular) GPU-only

CPU-only

Hybrid CPU-GPU

Communication 
Bottleneck

Computation 
Bottleneck



33

Our Approach: “Near”-Memory Acceleration
(so Near-Memory Processing, NMP)



34

Augment buffer device to add NMP cores for embedding gathers/reductions

TensorDIMM: a NMP for embeddings

DRAM

Buffer device

DRAM DRAM DRAM

Vector ALU

D
D

R
 

P
H

Y NMP-local Memory Controller

Input Q
(A)

Input Q
(B)

Output Q
(C)

P
ro

to
c
o

l 
E

n
g

in
e

Local
DRAM

DDRx
Memory
Channel

(a) NMP core (b) TensorDIMM



35

Augment buffer device to add NMP cores for embedding gathers/reductions

TensorDIMM: a NMP for embeddings

DRAM

Buffer device

DRAM DRAM DRAM

Vector ALU

D
D

R
 

P
H

Y NMP-local Memory Controller

Input Q
(A)

Input Q
(B)

Output Q
(C)

P
ro

to
c
o

l 
E

n
g

in
e

Local
DRAM

DDRx
Memory
Channel

(a) NMP core (b) TensorDIMM



36

“Effective” memory bandwidth scales proportional to the # of DIMMs/ranks

Key advantage of TensorDIMM

Memory Controller
(Memory Channel)

Memory Controller
(Memory Channel)

DRAM

Buffer device

DRAM DRAM DRAM

Current system TensorDIMM approach

ProcessorProcessor



37

“Effective” memory bandwidth scales proportional to the # of DIMMs/ranks

Key advantage of TensorDIMM

Memory Controller
(Memory Channel)

Processor

Memory Controller
(Memory Channel)

Processor

DRAM

Buffer device

DRAM DRAM DRAM

Current system TensorDIMM approach

Embedding gathers/reductions
are done “locally” within a DIMM



38

“Effective” memory bandwidth scales proportional to the # of DIMMs/ranks

Key advantage of TensorDIMM

Memory Controller
(Memory Channel)

Memory Controller
(Memory Channel)

DRAM

Buffer device

DRAM DRAM DRAM

Current system TensorDIMM approach

Memory bandwidth: 100

Memory bandwidth: 100

ProcessorProcessor



39

“Effective” memory bandwidth scales proportional to the # of DIMMs/ranks

Key advantage of TensorDIMM

Memory Controller
(Memory Channel)

Memory Controller
(Memory Channel)

DRAM

Buffer device

DRAM DRAM DRAM

Current system TensorDIMM approach

Memory bandwidth: 100

DRAM

Buffer device

DRAM DRAM DRAM

Memory bandwidth: 200

ProcessorProcessor



40

“Effective” memory bandwidth scales proportional to the # of DIMMs/ranks

Key advantage of TensorDIMM

Memory Controller
(Memory Channel)

Memory Controller
(Memory Channel)

DRAM

Buffer device

DRAM DRAM DRAM

Current system TensorDIMM approach

Memory bandwidth: 100

DRAM

Buffer device

DRAM DRAM DRAM

DRAM

Buffer device

DRAM DRAM DRAM

Memory bandwidth: 300

ProcessorProcessor



41

“Effective” memory bandwidth scales proportional to the # of DIMMs/ranks

Key advantage of TensorDIMM

Memory Controller
(Memory Channel)

Memory Controller
(Memory Channel)

DRAM

Buffer device

DRAM DRAM DRAM

Current system TensorDIMM approach

Memory bandwidth: 100

DRAM

Buffer device

DRAM DRAM DRAM

DRAM

Buffer device

DRAM DRAM DRAM

DRAM

Buffer device

DRAM DRAM DRAM

Memory bandwidth: 400

ProcessorProcessor



42

Leverage rank-level parallelism for maximal bandwidth utilization

Mapping embedding tables in DRAMs

Input
Embedding0

Input
Embedding1

Output
Embedding

Input
Embedding2

Input
Embeddingn

S
u
b
je

ct
 f
o
r 

e
le

m
e
n
t-

w
is

e
 o

p
e
ra

ti
o
n
s

Rank 0 Rank 1 … Rank 15

64B 64B … 64B

…… ……

NMP 
Core

(DIMM0)

NMP 
Core

(DIMM1)

…
NMP 
Core

(DIMM15)

64B 64B … 64B

64B 64B … 64B

64B 64B … 64B

64B 64B … 64B



43

Leverage rank-level parallelism for maximal bandwidth utilization

Mapping embedding tables in DRAMs

Input
Embedding0

Input
Embedding1

Output
Embedding

Input
Embedding2

Input
Embeddingn

S
u
b
je

ct
 f
o
r 

e
le

m
e
n
t-

w
is

e
 o

p
e
ra

ti
o
n
s

Rank 0 Rank 1 … Rank 15

64B 64B … 64B

…… ……

NMP 
Core

(DIMM0)

NMP 
Core

(DIMM1)

…
NMP 
Core

(DIMM15)

64B 64B … 64B

64B 64B … 64B

64B 64B … 64B

64B 64B … 64B



44

Leverage rank-level parallelism for maximal bandwidth utilization

Mapping embedding tables in DRAMs

Input
Embedding0

Input
Embedding1

Output
Embedding

Input
Embedding2

Input
Embeddingn

S
u
b
je

ct
 f
o
r 

e
le

m
e
n
t-

w
is

e
 o

p
e
ra

ti
o
n
s

Rank 0 Rank 1 … Rank 15

64B 64B … 64B

…… ……

NMP 
Core

(DIMM0)

NMP 
Core

(DIMM1)

…
NMP 
Core

(DIMM15)

64B 64B … 64B

64B 64B … 64B

64B 64B … 64B

64B 64B … 64B



45

A pooled memory architecture aggregated with multiple TensorDIMMs

Tensor“Node” using TensorDIMMs

TensorNode

TensorDIMM

TensorDIMM

TensorDIMM

TensorDIMM



46

Utilize high-speed links (e.g. NVLINK) for inter-device communication

TensorNode as “remote” memory pools

TensorNode

TensorDIMM

TensorDIMM

TensorDIMM

TensorDIMM
NVLINK

(150 GB/sec)

GPUs



47

A platform for scalable expansion of both memory bandwidth and capacity

Putting everything together

Addresses the
memory capacity 

challenge

Addresses the
memory bandwidth

challenge

Addresses the
compute & communication

challenges



48

Evaluation



49

 Cycle-level DRAM simulator (Ramulator*)

 Proof-of-concept software prototype on real ML systems (NVIDIA DGX-1V)

Combination of cycle-level simulation and emulation on real ML systems

Evaluation methodology

* Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator”, IEEE Computer Architecture Letters, 2015



50

 Cycle-level DRAM simulator (Ramulator*)

 Memory bandwidth for embedding gathers/reductions under our address mapping

 Proof-of-concept software prototype on real ML systems (NVIDIA DGX-1V)

Combination of cycle-level simulation and emulation on real ML systems

Evaluation methodology

* Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator”, IEEE Computer Architecture Letters, 2015



51

Effective bandwidth scales proportional to number of ranks (avg 4x↑)

Memory bandwidth utilization



52

 Cycle-level DRAM simulator (Ramulator*)

 Memory bandwidth for embedding gathers/reductions under our address mapping

 Proof-of-concept software prototype on real ML systems (NVIDIA DGX-1V)

 Intel’s Math Kernel Library (MKL)

 NVIDIA cuDNN / cuBLAS

 In-house CUDA implementation of other layers

 NVIDIA DGX-1V

• Eight NVIDIA V100 GPUs

• Two Intel Xeon E5-2698 v4

Combination of cycle-level simulation and emulation on real ML systems

Evaluation methodology

* Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator”, IEEE Computer Architecture Letters, 2015



53

A proof-of-concept software prototype to emulate TensorDIMM

TensorNode system modeling

SM SM SM SM

Crossbar

MC

L2

MC

L2

MC

L2

MC

L2

DRAM DRAM DRAM DRAM

Modern GPU architecture

NMP 
cores

TensorNode’s NMP local memory channels 
and the associated memory bandwidth

GPU-side
Interconnect

GPU

Used as a
normal GPU

GPU

“Emulated” as a 
TensorNode

NVLINK
(150 GB/sec)



54

Four system design points

 CPU-only

 Hybrid CPU-GPU

 TensorDIMM (ours)

 GPU-only (oracle)

A proof-of-concept software prototype to emulate TensorDIMM

Evaluation methodology



55

TensorDIMM helps reduce both embedding/MLP latency 

Latency breakdown



56

TensorDIMM helps reduce both embedding/MLP latency 

Latency breakdown



57

TensorDIMM helps reduce both embedding/MLP latency 

Latency breakdown



58

TensorDIMM achieves overall 6-9x speedup against the baselines

Latency breakdown



59

TensorDIMM:
A Near-Memory Processing Architecture for Sparse Embedding Layers

The “first” architectural solution tackling 
sparse embedding layers

A “practical” near-memory processing solution 

for an important AI workload

Average “6~9x” performance improvement 
on state-of-the-art DNN-based recommendation models



60

Questions?



61

Backup Slides



62

TensorDIMM design overheads
It’s not free, but adding custom logics within DIMM has been done before

IBM centaur DIMM



63



64



65


