PacketShader: a GPU-Accelerated Software Router

Sangjin Han? Keon Jang?

KyoungSoo Park: Sue Moonf

"Department of Computer Science, KAIST, Korea
{sangjin, keonjang}@an.kaist.ac.kr, sbomoon@kaist.edu

*Department of Electrical Engineering, KAIST, Korea
kyoungsoo@ee.kaist.ac.kr

ABSTRACT

We present PacketShader, a high-performance software router frame-
work for general packet processing with Graphics Processing Unit
(GPU) acceleration. PacketShader exploits the massively-parallel
processing power of GPU to address the CPU bottleneck in current
software routers. Combined with our high-performance packet I/O
engine, PacketShader outperforms existing software routers by more
than a factor of four, forwarding 64B IPv4 packets at 39 Gbps on
a single commodity PC. We have implemented IPv4 and IPv6 for-
warding, OpenFlow switching, and IPsec tunneling to demonstrate
the flexibility and performance advantage of PacketShader. The eval-
uation results show that GPU brings significantly higher throughput
over the CPU-only implementation, confirming the effectiveness of
GPU for computation and memory-intensive operations in packet
processing.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Network communica-
tions; C.2.6 [Internetworking]: Routers

General Terms

Design, experimentation, performance

Keywords
Software router, CUDA, GPU

1. INTRODUCTION

PC-based software routers provide a cost-effective packet process-
ing platform with easy extensibility and programmability. Familiar
programming environments on general-purpose operating systems
allow flexible composition of router applications that meet today’s
complex traffic engineering demand. Adding to that, modern inno-
vation in commodity hardware continues to drive down the cost per
performance, realizing off-the-shelf programmable routers.

While programmability and low cost are the two primary strengths
of software routers, keeping them at high speed is still challenging.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCOMM’10, August 30-September 3, 2010, New Delhi, India.
Copyright 2010 ACM 978-1-4503-0201-2/10/08 ...$10.00.

Existing software routers report near 10 Gbps forwarding perfor-
mance even on a single machine, but the CPU quickly becomes
the bottleneck for more compute-intensive applications. For exam-
ple, the IPsec performance of RouteBricks degrades by a factor of
4.5 from its 8.7 Gbps' IPv4 forwarding throughput with 64B pack-
ets [19]. To scale up the computing cycles, one can put more CPUs
to a single server or distribute the load to a cluster of machines, but
per-dollar performance stays relatively low.

In this work we explore new opportunities in packet processing
with Graphics Processing Units (GPUs) to inexpensively shift the
computing needs from CPUs for high-throughput packet processing.
GPUs offer extreme thread-level parallelism with hundreds of slim
cores [20,42]. Their data-parallel execution model fits nicely with
inherent parallelism in most router applications. The memory ac-
cess latency hiding capability and ample memory bandwidth of GPU
can boost many memory-intensive router applications, which heavily
rely on lookup in large tables. For compute-intensive applications,
the massive array of GPU cores offer an order of magnitude higher
raw computation power than CPU. Moreover, the recent trend shows
that the GPU computing density improves faster than CPU [42]. Last
but not least, GPUs are cheap and readily available.

We present PacketShader, a GPU-accelerated software router frame-
work, that carries the benefit of low cost and high programmability
even at multi-10G speed. The main challenge of PacketShader lies
in maintaining the high forwarding rate while providing as much
processing power for arbitrary router applications. We address the
challenge in two parts. First, we implement highly optimized packet
I/O engine to eliminate per-packet memory management overhead
and to process packets in batch, enabling high-performance packet
I/0 in user mode. Second, we offload core packet processing oper-
ations (such as IP table lookup or IPsec encryption) to GPUs and
scale packet processing with massive parallelism. Coupled with
I/O path optimization, PacketShader maximizes the utilization of
GPUs by exposing as much parallelism as possible in a small time
frame. Our design choices allow unprecedented performance ad-
vantage. On a single box, PacketShader forwards IPv4 packets at
the rate of 40 Gbps for all packet sizes. GPUs bring significant
performance improvement for both memory and compute-intensive
applications; IPv6 forwarding reaches 38.2 Gbps for 64B packets
and the IPsec performance ranges from 10 to 20 Gbps.

PacketShader is the first to demonstrate the potentials of GPUs
in the context of multi-10G software routers. We believe GPUs’
massively-parallel processing power opens a great opportunity for
high-performance software routers with cost effectiveness and full

'We take 24-byte Ethernet overhead into account when we calculate through-
put in this paper. We apply the same metric and translate the numbers from
other papers.

| Host Memo
: GPU Streaming Multiprocessor 14 :
: s o |:
: | anan | . - 2 |: 32GB/s
Streaming Multiprocessor 1 N g'
Streaming Multiprocessor 0 — § = CPU
= A
- Register 2 ”é 3 1 QPI
(32K words) B) 3 32 @ @' ' 25.6
- Hr 1
® NiplreX GB/s
@ | Shared Mem SN R PR
(48KB) J = ; & | «=—>| IOH
< H
oo W= |:
e | L1 cache (16KB) - o Stream
(- processor

Figure 1: Architecture of NVIDIA GTX480

programmability, and our PacketShader will be a useful stepping
stone.

The road map of the paper is as follows. In Section 2 we present
an overview of the NVIDIA GPU architecture and explore its po-
tential for packet processing. In Section 3 we describe the hard-
ware and software system setup for our PacketShader. The two key
contributions of this work, namely, optimized packet I/O and GPU
acceleration, are in Sections 4 and 5, respectively. Section 6 delivers
the performance evaluation results. We list current limitations and
future directions in Section 7, review related work in Section 8, and
conclude in Section 9.

2. GPU AS A PACKET PROCESSOR

GPU has become a powerful computing engine behind scientific
computing and data-intensive applications, beyond its original role
for graphics rendering. This section explores the potential of GPU
for general packet processing.

2.1 GPU Architecture

We begin with a brief introduction on the internals of the NVIDIA
GPU that we use in this work. More details are available in [20, 37,
39,40]. Figure 1 illustrates the architecture of NVIDIA GTX480.
It has 15 Streaming Multiprocessors (SMs), each of which consists
of 32 Stream Processors (SPs), resulting in 480 cores in total. All
threads running on SPs share the same program called kernel?.

An SM works as an independent SIMT (Single Instruction, Multi-
ple Threads) processor. The basic execution unit of SM is a warp, a
group of 32 threads, sharing the same instruction pointer; all threads
in a warp take the same code path. While this lockstep execution
is not mandatory, any divergence of code path in a warp should
be minimized for optimal performance. For example, when not all
32 threads in a warp agree on the condition of an if statement, the
threads take both then and else parts with corresponding mask-
ing. Compared to the traditional SIMD (Single Instruction, Multiple
Data) architecture where all data elements must be processed in the
same way, the SIMT behavior of GPU gives more flexibility to pro-
grammers.

The scheduler in an SM holds up to 32 warps and chooses a
warp to execute for every instruction issue time; a readily available
warp, not having stalls due to register dependency or memory access,
is chosen first. Typically, having many GPU threads gives better
throughput since memory access latency of a warp can be effectively
hidden with execution of other warps [25]. Warp scheduling is done
by hardware, incurring zero context-switch overhead.

GTX480 provides high-bandwidth, off-chip GPU memory (device
memory of 1.5 GB in Figure 1). For low-latency in-die memory,
each SM has 48 KB shared memory (comparable with scratchpad

2The term “kernel” should not be confused with operating system kernels.

Buffer size (bytes) | 256 1K 4K 16K 64K | 256K M
Host-to-device 55 | 185 | 759 | 2,069 | 4,046 | 5,142 | 5,577
Device-to-host 63 | 211 | 786 | 1,743 | 2,848 | 3,242 | 3,394

Table 1: Data transfer rate between host and device (MB/s)

RAM in other architectures), 32K 32-bit registers, and 16KB L1
cache. L2 cache of 768 KB is shared by all SMs.

The GPU kernel execution takes four steps: (i) the DMA con-
troller transfers data from host (CPU) memory to device (GPU) mem-
ory, (ii) a host program instructs the GPU to launch the kernel, (iii)
the GPU executes threads in parallel, and (iv) the DMA controller
transfers resulting data from device memory to host memory.

CUDA (Compute Unified Device Architecture) is NVIDIA’s soft-
ware suite of libraries and a compiler, and it provides an API to
GPU functionalities [40]. Programmers write C-like (C with CUDA-
specific extensions) kernel code, and then CUDA compiles it and
exposes an interface to host programs to launch the kernel.

2.2 GPU Overheads

Typical GPGPU (General-Purpose computing on GPU) applica-
tions are data-intensive, handling relatively long-running kernel ex-
ecution (10-1,000s of ms) and large data units (1-100s of MB) [41].
In the context of software routers, GPU should work with much
shorter kernel execution time and smaller data. We check if GTX480
hardware and CUDA library give reasonably small overheads for
such fine-grained GPU use.

Kernel launch latency: Every step in a kernel launch contributes to
the latency: PCI Express (PCle) transactions, initial scheduling of
threads, synchronization, and notification for completion. We mea-
sure the latency to check if it is reasonably small; the GPU launching
latency for a single thread is 3.8 us, and 4.1 us for 4,096 threads
(only 10% increase). We conclude that amortized per-thread kernel
launch overhead decreases linearly with the increasing number of
threads and eventually becomes negligible.

Data transfer rate: While a PCle 2.0 x16 link connected to a graph-
ics card offers the theoretical bandwidth of 8 GB/s, the effective
bandwidth would be smaller due to PCle and DMA overheads, es-
pecially for small data transfer units. We measure the data transfer
rate between host and device memory over different buffer sizes and
summarize it in Table 1. The transfer rate is proportional to the
buffer size and peaks at 5.6 GB/s for host-to-device and 3.4 GB/s
for device-to-host. The table confirms that a PCle link provides
enough bandwidth even for small batch sizes. For example, we
can transfer 1 KB of 256 IPv4 addresses (4B each) at 185 MB/s or
185 <4 = 48.5 Mpps for each GPU, which translates to 34.1 Gbps
with 64B packets.

2.3 Motivating Example

The processing power of GPU comes from its hundreds of cores.
The key insight of this work is that the massive array of GPU cores
match the inherent parallelism in stateless packet processing. We
process multiple packets at a time and take full advantage of the
massive parallelism in GPU.

Figure 2 compares the performance of IPv6 forwarding table lookup
(longest prefix matching) with CPU and GPU (with the same algo-
rithm and the forwarding table in Section 6.2.2). The experiment is
done with randomly generated IPv6 addresses and does not involve
actual packet I/O via Network Interface Cards (NICs). The through-
put of GPU is proportional to the level of parallelism; given more
than 320 packets an NVIDIA GTX480 outperforms one Intel quad-
core Xeon X5550 2.66 GHz CPU and two CPUs with more than 640

70 62.40

2 60 e CPU (2x X5550; 8 cores): 11.51M

-E = —— CPU (X5550; 4 cores): 6.39M /]
2= 50 4] = = = CPU (X5550; 2 cores): 3.25M

4 ; 40 A e CPU (X5550; 1 core): 1.66M 32.80

E £, |[—o—GPUNVIDIA GTX480) iSDZ/d

°3 2 16.67

25 9.67

£% opaZoisToadZ1SIm 290 521 e

0

1 4 16 64 128 256 512 1024 2048 4096 16384
Number of packets in GPU parallel processing

Figure 2: IPv6 lookup throughput of X5550 and GTX480

packets. At the peak performance one GTX480 GPU is comparable
to about ten X5550 processors. In contrast, given a small number
of packets in a batch GPU shows considerably lower performance
compared with CPU. GTX480 processes up to 480 threads at a time
and needs more threads to hide memory access latency; having not
enough threads, most of GPU resources are underutilized during the
execution. The per-batch cost of GPU transaction is another reason
for the low performance, as described in Section 2.2.

While the preliminary result of GPU is promising, one natural
question arises here: does collecting hundreds or thousands of pack-
ets incur unreasonable latency? Our answer is “no”; a large number
of packets arrive in a fairly small time window on today’s high speed
links. For example, a thousand 64B packets arrive in only 70 us on
a full-speed 10 GbE link.

2.4 Comparison with CPU

The fundamental difference between CPU and GPU comes from
how transistors are composed in the processor. CPUs maximize
instruction-level parallelism to accelerate a small number of threads.
Most of CPU resources serve large caches and sophisticated control
planes for advanced features (e.g., superscalar, out-of-order execu-
tion, branch prediction, or speculative loads). In contrast, GPUs
maximize thread-level parallelism, devoting most of their die area to
a large array of Arithmetic Logic Units (ALUs). GPUs also provide
ample memory bandwidth to feed data to a large number of cores.
We briefly address the implication of those differences in the context
of packet processing.

Memory access latency: For most network applications, memory
working set is too big to fit in a CPU cache. While the memory
access latency can be potentially hidden with out-of-order execution
and overlapped memory references, the latency hiding is limited by
CPU resources such as the instruction window size, the number of
Miss Status Holding Registers (MSHRs), and memory bandwidth.
In our microbenchmark, an X5550 cores can handle about 6 out-
standing cache misses in the optimal case, and only 4 misses when
all four cores bursts memory references. Unlike CPU, GPU effec-
tively hides memory access latency with hundreds (or thousands) of
threads. By having an enough number of threads, memory stalls can
be minimized or even eliminated [43].

Memory bandwidth: Network applications tend to exhibit random
memory access, such as hash table lookup, quickly exhausting avail-
able memory bandwidth. For example, every 4B random memory
access consumes 64B of memory bandwidth, which is the size of a
cache line in x86 architecture. By offloading memory-intensive op-
erations to GPU, such as IPv6 longest prefix matching, we can bene-
fit from larger memory bandwidth of GPU (177.4 GB/s for GTX480
versus 32 GB/s for X5550). This additional memory bandwidth of
GPU is particularly helpful when a large portion of CPU’s memory
bandwidth is consumed by packet 1/O.

Item Specification | Qty | Unit price

CPU Intel Xeon X5550 (4 cores, 2.66 GHz) 2 $925
RAM | DDR3 ECC 2 GB (1,333 MHz) 6 $64
M/B Super Micro X8DAH+F 1 $483
GPU NVIDIA GTX480 (480 cores, 1.4 GHz, 1.5 GB) 2 $500
NIC Intel X520-DA2 (dual-port 10GbE) 4 $628

Table 2: Test system hardware specification (total $7,000)

CPUQ <:-+ CPU1

—0 10G port <P PCle x16 <+—>» PCle x8 <«-+ QPI

Figure 3: Block diagram of our server

Raw computation capacity: Applications running on software routers
are increasingly demanding for compute-intensive operations, such
as hashing, encryption, compression, and pattern matching, to name
a few. As the bottleneck of software routers lies in CPU, introducing
those operations would significantly degrade the performance. GPU
can be an attractive source of extra computation power; NVIDIA
GTX480 offers an order of magnitude higher peak performance than
X5550 in terms of MIPS (Million Instructions Per Second). More-
over, the recent trend shows that the GPU computing density is im-
proving faster than CPU [42].

3. SYSTEM SETUP

This section describes the hardware and software configuration
that we use in this paper. We also mention the dual-IOH problem
that bounds I/O bandwidth, limiting the performance of our current
system.

3.1 Hardware Configuration

We set up our hardware to perform high-speed packet process-
ing with GPUs while reflecting today’s commodity hardware trend.
Table 2 summarizes the specifications of our server. We use two
Intel Nehalem quad-core Xeon X5550 2.66 GHz processors with
1,333 MHz 12 GB DDR3 memory. For GPU acceleration, we use
two NVIDIA GTX480 cards, each of which has 480 stream proces-
sor cores and 1.5 GB GDDRS memory. Our choice of GTX480 is the
top-of-the-line graphics card at the moment. For network cards, we
use four dual-port Intel 82599 X520-DA2 10GbE NICs: eight ports
with aggregate capacity of 80 Gbps. The total system (including all
other components) costs about $7,000.3

Figure 3 shows the components and their interconnection in the
server. There are two NUMA (Non-Uniform Memory Access) nodes
in the server, and each node has a quad-core CPU socket and local
memory. The memory controller integrated in a CPU connects three
2 GB DDR3 DRAMs in the triple-channel mode. Each node has an
IOH (I/O Hub) that connects peripheral devices to the CPU socket.
Each IOH holds three PCle devices: two dual-port 10GbE NICs on
PClIe x8 links and one NVIDIA GTX480 graphics card on a PCle
x16 link.

3Al prices are from http://checkout.google.com on June 2010

Functional bins Cycles | Our solution

skb initialization 4.9% | Compact metadata (§4.2)
skb (de)allocation 8.0% Huge packet buffer (§4.2)
Memory subsystem 50.2%

NIC device driver 13.3% Batch processing (§4.3)
Others 9.8%

Compulsory cache misses 13.8% | Software prefetch (§4.3)
Total 100.0% | -

Table 3: CPU cycle breakdown in packet RX

3.2 Dual-IOH Problem

Our system uses four NICs and two GPUs which require 64 PCle
lanes in total. Since an Intel 5520 IOH chipset provides only 36 PCle
lanes, we adopt a motherboard with two IOH chipsets.

However, we have found that there is asymmetry of PCle data
transfer performance with the dual-IOH motherboard. We see much
lower empirical bandwidth of device-to-host transfer than that of
host-to-device transfer. Table 1 in the previous section shows that
data copy from a GPU to host memory is slower than the opposite
direction. Similarly for NICs, we see higher TX throughput than RX
as shown in Figure 6 in Section 4.6.

The throughput asymmetry is specific to motherboards with dual
5520 chipsets. Motherboards from other vendors with two IOHs
have the same problem [7], and we confirm that motherboards with
a single IOH do not show any throughput asymmetry [23]. We are
investigating the exact cause of the problem and planning to check if
motherboards based on AMD chipsets have the same problem.

The dual-IOH problem limits the packet I/O performance in our
system, and the limited I/O throughput bounds the maximum perfor-
mance of our applications in Section 6.

3.3 Software Configuration

We have installed 64-bit Ubuntu Linux 9.04 server distribution
with unmodified Linux kernel 2.6.28.10 in the server. Our packet
I/0O engine (Section 4) is based on ixgbe 2.0.38.2 device driver for
Intel 10 GbE PCle adapters. For GPU, we use the device driver
195.36.15 and CUDA SDK 3.0.

4. OPTIMIZING PACKET I/O ENGINE

High-speed software routers typically spend a large fraction of
CPU cycles on packet reception and transmission via NICs, the com-
mon part of all router applications. For example, RouteBricks re-
ports that 66% of total cycles are spent on packet 1/O for IPv4 for-
warding [19]. This means that even if we eliminate other packet
handling costs with the help of GPU, the expected improvement
would not exceed 50% according to Amdahl’s law.

In order to achieve multi-10G packet I/O performance in the soft-
ware router, we exploit pipelining and batching aggressively. In
this work we focus on the basic interfacing with NICs and leave
other advanced features, such as intermediate queueing and packet
scheduling, for future work.

4.1 Linux Network Stack Inefficiency

Network stacks in the OS kernel maintain packet buffers. A packet
buffer is a basic message unit passed across network layers. For
example, Linux allocates two buffers, an skb holding metadata and a
buffer for actual packet data, for each packet. This per-packet buffer
allocation applies to Click [30] as well since it relies on Linux data
structures. We observe two problems arising here:

e Frequent buffer allocation and deallocation stress the memory

RX queue

Packet data buffer

skb

(a) Linux packet buffer allocation

[] I I] Buffer for packet data
\ [~
NN

(b) Huge packet buffer allocation

Buffer for metadata

Figure 4: Comparison of packet buffer allocation schemes

subsystem in the kernel. In multi-10G networks, this implies
tens of millions of buffer allocations per second.

o The metadata size in skb is too large (208 bytes long in Linux
2.6.28), as it holds information required by all protocols in vari-
ous layers. It is overkill for 64B packets.

To quantify where most CPU cycles are spent, we measure the
CPU consumption of the packet reception process. We have the
unmodified ixgbe NIC driver receive 64B packets and silently drop
them. Table 3 shows the breakdown of the CPU cycles in the packet
RX process. We see that skb-related operations take up 63.1% of the
total CPU usage: 4.9% on initialization, 8.0% on allocation and deal-
location wrapper functions, and 50.2% on base memory subsystem
(the slab allocator [16] and the underlying page allocator) to handle
memory allocation and deallocation requests.

Cache invalidation with DMA causes compulsory cache misses
accounting for 13.8% in the table. Whenever a NIC receives or trans-
mits packets, it accesses the packet descriptors and data buffers with
DMA. Because DMA transactions invalidate corresponding CPU
cache lines for memory consistency, the first access to memory re-
gions mapped for DMA causes compulsory cache misses.

4.2 Huge Packet Buffer

As described above, per-packet buffer allocation (in Figure 4(a))
causes significant CPU overhead. To avoid the problem, we im-
plement a new buffer allocation scheme called huge packet buffer
(Figure 4(b)). In this scheme, the device driver does not allocate skb
and a packet data buffer for each packet. Instead, it allocates two
huge buffers, one for metadata and the other for packet data. The
buffers consist of fixed-size cells, and each cell corresponds to one
packet in the RX queue. The cells are reused whenever the circular
RX queues wrap up. This scheme effectively eliminates the cost
of per-packet buffer allocation. Huge packet buffers also reduce
per-packet DMA mapping cost (listed in Table 3 as part of NIC
device driver cost), which translates the host memory address into
I/0 device memory address so that NICs can access the packet data
buffer. Instead of mapping a small buffer for every packet arrival, we
have the device driver map the huge packet buffer itself for efficient
DMA operations.

To reduce the initialization cost of the metadata structure, we
keep the metadata as compact as possible. Most fields in skb are
unnecessary, for packets in software routers do not traverse the Linux
network stack. We have removed the unused fields and the resulting
metadata cell is only 8 bytes long rather than 208 bytes. Each cell
of the packet data buffer is 2,048-byte long, which fits for the 1,518-

_ 18 A -
£ 16 1 5 e S B e T C e i S S S
S 14 4 e e SPS TP
= 12 A T
-] ool
& 10 &
¥ 8 I
E 61 » = = RX
4 45177] eseses TX
&= 7
2 15 Forwarding
0 T T

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Number of packets in batch

Figure 5: Effect of batch processing with a single core and two
10 GbE ports. All packets are 64B.

byte maximum Ethernet frame size and works around the NIC re-
quirement of 1,024-byte data alignment.

4.3 Batch Processing

Batch processing of multiple packets reduces per-packet process-
ing overhead significantly. Batching can be applied at every step in
packet processing: (i) in hardware: NICs aggregate multiple packets
into a single PCle transaction for better I/O bandwidth utilization,
(if) in device driver: the amortized cost of per-packet bookkeeping
operations decreases, and (iii) in applications: processing multiple
packets achieves smaller instruction footprint with reduced function
call overheads and synchronization operations. We further improve
the batching approach of RouteBricks [19] as follows.

e We extend batch processing to the application (packet process-
ing) level. In contrast, Click [30] handles multiple packets at a
time only at NIC and device driver levels, but processes packets
one-by-one at the application level.

e To maximize benefit from huge packet buffers, our packet I/O
engine performs aggressive software prefetch. The device driver
prefetches the packet descriptor and packet data of the next packet
into CPU cache in parallel while processing the packet. This
prefetch of consecutive packets eliminates the compulsory cache
miss latency.

When we pass batched RX packets to user-level applications, we
copy the data in the huge packet buffer into a consecutive user-level
buffer along with an array of offset and length for each packet. The
rationale for copying instead of zero-copy techniques (e.g., shared
huge packet buffer between kernel and user) is for better abstraction.
Copying simplifies the recycling of huge packet buffer cells and
allows flexible usage of the user buffer, such as manipulation and
split transmission of batched packets to multiple NIC ports. We find
that the copy operation makes little impact on performance; it does
not consume additional memory bandwidth since the user buffer is
likely to reside in CPU cache and takes less than 20% of CPU cycles
out of total packet I/O processing.

Figure 5 shows the RX, TX, and minimal forwarding (RX + TX)
performance with 64B packets using a single CPU core. We see
that the throughput improves as the number of packets in a batch
increases, but the performance gain stalls after 32 packets. While
the packet-by-packet approach (with the batch size of 1) handles
only 0.78 Gbps, batch processing achieves 10.5 Gbps packet for-
warding performance with the batch size of 64 packets, resulting in
the speedup of 13.5.

4.4 Multi-core Scalability

Packet I/O on multi-core systems raises two performance issues:
(1) load balancing between CPU cores and (ii) linear performance
scalability with additional cores. To address these challenges, re-

cent NICs support core-aware RX and TX queues with Receive-Side
Scaling (RSS) [12]. RSS evenly distributes packets across multiple
RX queues by hashing the five-tuples (source and destination ad-
dresses, ports, and a protocol) of a packet header. Each RX and TX
queue in a NIC maps to a single CPU core, and the corresponding
CPU core accesses the queue exclusively, eliminating cache bounc-
ing and lock contention caused by shared data structures. Our packet
I/0 engine takes advantage of RSS and multiple queues in a NIC.

However, we find that core-aware multi-queue support alone is
not enough to guarantee the linear performance scalability with the
number of CPU cores. In our microbenchmark with eight cores,
per-packet CPU cycles increase by 20% compared to the single-core
case.

After careful profiling, we have identified two problems. First,
some per-queue data that are supposed to be private bounce between
multiple CPU caches. It happens when the data of different queues
accidently share the same cache line (64B per line in the x86 archi-
tecture). We eliminate this behavior, known as false sharing [50],
by aligning every starting address of per-queue data to the cache line
boundary. The second problem comes from accounting. Whenever
the device driver receives or transmits a packet, it updates per-NIC
statistics. These globally shared counters stress CPU caches as every
statistics update is likely to cause a coherent cache miss. We solve
the problem by maintaining per-queue counters rather than per-NIC
ones so that multiple CPU cores do not contend for the same data.
Upon a request for per-NIC statistics (from commands ifconfig
or ethtool), the device driver accumulates all per-queue counters.
This on-demand calculation for a rare reference to NIC statistics
keeps frequent statistics updates cheap.

4.5 NUMA Scalability

In a NUMA system, memory access time depends on the location
of physical memory (see Figure 3). Locally-connected memory al-
lows direct access while remote memory access requires an extra hop
via the hosting CPU node. Also, DMA transactions from a device to
a remote node traverse multiple IOHs and reduce I/O performance.
In our testing, we see that node-crossing memory access shows 40-
50% increased access time and 20-30% lower bandwidth compared
to in-node access.

To maximize packet I/O performance in the NUMA system, we
make the following two choices. First, we carefully place all data
structures in the same node where they are used. The packet de-
scriptor arrays, huge packet buffers, metadata buffers, and statistics
data of NICs are allocated in the same node as the receive NICs.
Second, we remove node-crossing I/O transactions caused by RSS.
By default RSS distributes packets to all CPU cores and some cross
the node boundary. For example, half of the packets received by
NICs in node 0 in Figure 3 would travel to the memory in node 1.
To eliminate these crossings, we configure RSS to distribute packets
only to those CPU cores in the same node as the NICs. We set the
number of RX queues as the number of corresponding CPU cores
and map the RX interrupts for the queues to those CPU cores in the
same node. With these modifications, interrupts, DMA transactions,
and PCle register I/O for packet RX do not cross the node boundary.

With NUMA-aware data placement and I/O, we see about 60%
performance improvement over NUMA-blind packet 1/0. NUMA-
blind packet I/O limits the forwarding performance below 25 Gbps
while NUMA-aware packet I/O achieves around 40 Gbps. Our result
contradicts the previous report: RouteBricks concludes that NUMA-
aware data placement is not essential in their work [19] with multi-
gigabit traffic. We suspect that additional memory access latency

. TX only C—IRX only

N RX+TX CIRX+TX (node-crossing)
={=RX+TX CPU usage
100 4 r 100
—~ 90 1 -
£ 80+ Fso X
¢ 5
= 60 A r 60 <
2 50 1 S5
Ed 40 A r 40 5
S 30 1 S
£ 201 r 20 &
= o] ©
0 0
64 128 256 512 1024 1514

Packet size (bytes)

Figure 6: Performance of our packet I/O engine

caused by NUMA-blind data placement is almost hidden with multi-
gigabit traffic, but not with multi-10G traffic.

4.6 Packet I/0 Performance

For the evaluation of our packet I/O engine, we implement a sim-
ple user-level program that repeatedly receives, transmits, and for-
wards packets without IP table lookup. Figure 6 summarizes the
performance of our packet I/O engine with all the techniques intro-
duced in this section. The results shown here are encouraging. The
TX performance comes close to the line rate, with 79.3 Gbps for
64B packets and 80.0 Gbps for 128B or larger packets. The RX
performance ranges from 53.1 Gbps to 59.9 Gbps depending on the
packet size. This performance asymmetry seems to stem from the
DMA inefficiency from a device to host memory, as described in
Section 3.2.

With RX and TX together, the minimal forwarding performance
(without IP table lookup) stays above 40 Gbps for all packet sizes.
By comparison, RouteBricks forwards 64B packets at 13.3 Gbps or
18.96 Mpps running in kernel mode on a slightly faster machine with
dual quad-core 2.83 GHz CPUs. Our server outperforms Route-
Bricks by a factor of 3 achieving 41.1 Gbps or 58.4 Mpps for the
same packet size even though our experiment is done in user mode.

Bars marked as “node-crossing” represent the case that all packets
received in one NUMA node are transmitted to ports in the other

node. Even for this worst case the throughput still stays above 40 Gbps,

implying our packet I/O engine is scalable with NUMA architecture.

We identify the bottleneck limiting the throughput around 40 Gbps,
which could reside in either CPU, memory bandwidth, or I[/O. Though
we see the full CPU usage for 64B and 128B packets, CPU is not
the bottleneck. We run the same test with only four CPU cores
(two for each node) and get the same forwarding performance. As
implied in Figure 5, the CPU usage is elastic with the number of
packets for each fetch; the average batch size was 13.6 with 8 cores
and 63.0 with 4 cores. To see whether the memory bandwidth is
the bottleneck, we run the same experiments by having background
processes consume additional memory bandwidth, but we see the
same performance.

We conclude that the bottleneck lies in I/O. Considering the through-

put asymmetry of RX and TX and the fact that individual links (QPI
and PCle) provide enough bandwidth, we suspect that the dual-IOH
problem described in Section 3.2 bounds the maximum packet I/O
performance around 40 Gbps in our system.

5. GPU ACCELERATION FRAMEWORK

Our GPU acceleration framework provide a convenient environ-
ment to write packet processing applications, maximizing synergy
with our highly optimized packet I/O engine. This section describes
the brief design of the framework.

Application Pre-shader H Post-shader ‘ Shader
(e.g., IPv6) 5
GPU
acceleration 3 workers master
framework
node 0 node 1
Y.

l Packet API | | cupaner |
---------------------------- Stow-pathr ------------i------

Fast-path | Linux TCP/IP stack | GPU
Kernel A device

l Packet I/O engine | driver
HW | NICs | | ocrus |

Figure 7: PacketShader software architecture

5.1 Overall Structure

PacketShader is a software router framework that combines the
GPU acceleration template and our highly optimized packet I/O en-
gine. Figure 7 depicts the simplified architecture of PacketShader
(gray blocks indicate our implementation). PacketShader is a multi-
threaded program running in user mode. For packet I/O, it invokes
the packet API consisting of wrapper functions to kernel-level packet
I/0 engine. A packet processing application runs on top of the frame-
work and is mainly driven by three callback functions (a pre-shader,
a shader, and a post-shader).

Currently, the performance of CUDA programs degrades severely
when multiple CPU threads access the same GPU, due to frequent
context switching overheads [29]. In order to avoid the pathological
case, PacketShader divides the CPU threads into worker and master
threads. A master thread communicates exclusively with a GPU in
the same node for acceleration, while a worker thread is responsible
for packet I/O and requests the master to act as a proxy for com-
munication with the GPU. Each thread has a one-to-one mapping
to a CPU core and is hard-affinitized to the core to avoid context
switching and process migration costs [21].

PacketShader partitions the system into NUMA nodes so that each
of them could process packets independently. In each node a quad-
core CPU runs three worker threads and one master thread. Those
workers communicate only with the local master to avoid expensive
node-crossing communication. Once a worker thread receives pack-
ets, all processing is done by the CPU and the GPU within the same
node. The only exception is to forward packets to ports in the other
node, but this process is done by DMA, not CPU.

5.2 User-level Interface to Packet I/O Engine

PacketShader runs in user mode, not in kernel, to take advantage
of user-level programming: friendly development environments, re-
liability with fault isolation, and seamless integration with third-
party libraries (e.g., CUDA or OpenSSL). User-level packet process-
ing, however, imposes a technical challenge: performance. For ex-
ample, a user-mode Click router is reported to be three times slower
than when it runs in kernel space [31]. We list three major issues and
our solutions for high-performance packet processing in user mode.

Minimizing per-packet overhead: The simplest packet I/O scheme,
one system call for each packet RX and TX, introduces significant
user-kernel mode switching overheads. PacketShader batches mul-
tiple packets over a single system call to amortize the cost of per-
packet system call overhead.

Better coupling of queues and cores: Existing user-level packet I/O
libraries, such as libpcap [26], exposes a per-NIC interface to user

User

|

i Core 0
Thread 1 | | Core 1
Per-NIC queues ‘
RX queues (shared by multiple cores)
(a) Existing per-NIC queue scheme
Kernel User
TTTT
TTT1T Thread 0 Core 0
pANNNE
NTIIT
Thread 1 Core 1
11T
RX queues

(b) Our multiqueue-aware packet I/O scheme

Figure 8: User-level packet I/O interfaces

applications. This scheme significantly degrades the performance
on systems equipped with multi-queue NICs and multi-core CPUs,
as shown in Figure 8(a). Kernel and user threads on multiple CPU
cores have to contend for the shared per-NIC queues. These mul-
tiplexing and de-multiplexing of received packets over the shared
queues cause expensive cache bouncing and lock contention.

PacketShader avoids this problem by using an explicit interface
to individual queues (Figure 8(b)). A virtual interface, identified
with a tuple of (NIC id, RX queue id), is dedicated to a user-level
thread so that the thread directly accesses the assigned queue. The
virtual interfaces are not shared by multiple cores, eliminating the
need of sharing and synchronization of a single queue. The user
thread fetches packets from multiple queues in a round-robin manner
for fairness.

Avoiding receive livelock: Click and other high-performance packet
processing implementations avoid the receive livelock problem [34]
by polling NICs to check packet reception rather than using inter-
rupts [17,18,30]. However, we note two problems with this busy-
wait polling: (i) Extended period of full CPU usage prevents the
chance to save electricity in an idle state, which can be up to a
few hundreds of watts for a modern commodity server. (ii) Polling
in kernel can starve user processes (e.g., a BGP daemon process)
running on the same CPU core.

Linux NAPI [44], a hybrid of interrupt and polling in Linux TCP/IP
stack, effectively prevents TCP/IP stack in kernel from starvation.
PacketShader can not directly benefit from NAPI, however, since
NAPI protects only kernel context*. User context, which has the
lowest scheduling priority in the system, may always be preempted
by the kernel (hardware RX interrupt or softirg, the bottom-half han-
dling of received packets).

To avoid receive livelock problem in user context, PacketShader
actively takes control over switching between interrupt and polling.
In the interrupt-disabled state, PacketShader repeatedly fetches pack-
ets. When it drains all the packets in the RX queue, the thread blocks
and enables the RX interrupt of the queue. Upon receiving packets,

4NAPI also indirectly saves user programs using TCP from starvation
because the packet arrival rate is suppressed by congestion control followed
by packet drop.

TTTT+ Post. -

TTTT | Post. -

chunk
""""""""""""""""""""""""""" X
TTTT— Post. —»
" Output 77777
queues

Figure 9: Basic workflow in PacketShader

the interrupt handler wakes up the thread, and then the interrupt is
disabled again. This scheme effectively eliminates receive livelock
as packet RX only happens with the progress of PacketShader.

5.3 Workflow

We define chunk as a group of packets fetched in a batch of packet
reception. The chunk size is not fixed but only capped; we do not
intentionally wait for the fixed number of packets. Chunk also works
as the minimum processing unit for GPU parallel processing in our
current implementation. By processing multiple packets pending in
RX queues, PacketShader adaptively balances between small par-
allelism for low latency and large parallelism for high throughput,
according to the level of offered load.

PacketShader divides packet processing into three steps: pre-shading,

shading®, and post-shading. Pre-shading and post-shading run on
worker threads and perform the actual packet I/O and other miscella-
neous tasks. Shading occurs on master threads and does GPU-related
tasks. Each step works as follows:

e Pre-shading: Each worker thread fetches a chunk of packets
from its own RX queues. It drops any malformed packets and
classifies normal packets that need to be processed with GPU.
It then builds data structures to feed input data to the GPU. For
example, for IPv4 forwarding, it collects destination IP addresses
from packet headers and makes an array of the collected ad-
dresses. Then it passes the input data to the input queue of a
master thread.

e Shading: The master thread transfers the input data from host
memory to GPU memory, launches the GPU kernel, and takes
back the results from GPU memory to host memory. Then it
places the results back to the output queue of the worker thread
for post-shading.

e Post-shading: A worker thread picks up the results in its out-
put queue, and modifies, drops, or duplicates the packets in the
chunk depending on the processing results. Finally, it splits the
packets in the chunk into destination ports for packet transmis-
sion.

Figure 9 shows how the worker and master threads collaborate on
GPU acceleration in PacketShader. Communication between threads
is done via the input queue of a master thread and output queues
of worker threads. Having per-worker output queues relaxes cache
bouncing and lock contention by avoiding 1-to-N sharing. However,
we do not apply the same technique to the input queue in order to
guarantee fairness between worker threads.

Another issue with communication between CPU cores is cache

SIn computer graphics, a shader is a small program running on GPUs for
rendering. A shader applies transformation to a large set of vertices or pixels
in parallel. We name PacketShader after this term since it enables GPUs to
process packets in parallel.

Worker Input queue

Data transfer

Shader

(a) Chunk pipelining

Pre. Pre.

Timeline
GPU
Master

(b) Gather/scatter

H>D | EEES) D>H || D>H | GE)

Timeline

Kernel execution

(c) Concurrent copy and execution

HHH

Output queues

Figure 10: Optimizations on GPU acceleration

migration of the input and output data. The pre-shading step builds
the input data that the CPU core loads onto the private cache. If
a master thread accesses the input data, corresponding cache lines
would migrate to the master thread’s CPU cache. Since cache mi-
gration is expensive on multi-core systems, we prevent the master
thread from accessing the input data itself. When the master thread
is notified of input data by a worker thread, it immediately transfers
it to GPU by initiating DMA without touching the data itself. We
apply the same policy to the output data as well.

PacketShader preserves the order of packets in a flow with RSS.
RSS distributes received packets into worker threads on a flow-basis;
packets in the same flow are processed by the same worker thread.
PacketShader retains the initial order of packets in a chunk, and all
queues enforce First-In-First-Out (FIFO) ordering.

5.4 Optimization Strategies

PacketShader exploits optimization opportunities in the basic work-
flow. First, we pipeline the processing steps to fully utilize each
worker thread. Second, we have the master thread process multiple
chunks fed from worker threads at a time to expose more parallelism
to GPU. Third, we run the PCle data transfer in parallel to the GPU
kernel execution.

Chunk Pipelining: After a worker thread performs the pre-shading
step and passes the input data to its master, it waits until the master
process finishes the shading step. This underutilization of worker
threads degrades the system performance when the volume of input
traffic is high.

To remedy this behavior, PacketShader pipelines chunk process-
ing in the worker threads as shown in Figure 10(a). Once a worker
thread passes input data to its master, it immediately performs the
pre-shading step for another chunk until the master returns the output
data of the first chunk.

Gather/Scatter: As PacketShader has multiple worker threads per
master, the input queue can fill with chunks if the GPU is overloaded.
Figure 10(b) shows how PacketShader processes multiple chunks in
the queue in the shading step; a master thread dequeues multiple
input data from its input queue and pipelines copies of input data
(gather), processes them with the GPU at a time, and splits the re-
sults into the output queues of workers from which the chunks came
(scatter).

This optimization technique is based on the observations from
Section 2: (i) having more GPU threads per GPU kernel launch
amortizes per-packet kernel launch overhead, (ii) the use of many
GPU threads can effectively hide memory access latency without
extra scheduling overhead. Additionally, pipelined copies yield bet-
ter PCle data transfer rate. Our gather/scatter mechanism gives the
GPU more parallelism and improves the overall performance of the
system.

Concurrent Copy and Execution: In the shading step, the data
transfers and the GPU kernel execution of a chunk have dependency
on each other and are serialized. In the meantime, NVIDIA GPUs
support copying data between host and device memory while exe-
cuting a GPU kernel function. This optimization is called “concur-

rent copy and execution” and is popular for many GPGPU applica-
tions [40]. This technique can improve the throughput of the GPU by
a factor of two, if data transfer and GPU kernel execution completely
overlap.

CUDA supports a stream to allow a CPU thread have multiple
device contexts. With multiple streams PacketShader can overlap
data transfers and kernel launches for consecutive chunks, as shown
in Figure 10(c). However, we find that using multiple streams sig-
nificantly degrades the performance of lightweight kernels, such as
IPv4 table lookup. Since having multiple streams adds non-trivial
overhead for each CUDA library function call, we selectively use
this technique for the IPsec application in Section 6.

5.5 GPU Programming Considerations

All GPU kernels used in Section 6 are the straightforward porting
of CPU code (one exception is IPsec; we have made an effort to
maximize the usage of in-die memory for optimal performance).
In general, turning a typical C program into a correct GPU kernel
requires only little modification. However, efficient implementation
of GPU programs requires the understanding of characteristics and
trade-offs of GPU architecture. We briefly address the general con-
siderations of GPU programming in the context of packet processing
acceleration.

What to offload: The offloaded portion to GPU should have non-
trivial costs to compensate the overheads of copy from/to GPU mem-
ory and kernel launch. Computation and memory-intensive algo-
rithms with high regularity suit well for GPU acceleration.

How to parallelize: Most applications of software routers operate
on packet headers. In this case, the most intuitive way to parallelize
packet processing is to map each packet into an independent GPU
thread; CPU code for per-packet processing can be easily ported to
GPU. If there exists exploitable parallelism within a packet (e.g.,
parallel pattern matching or block cipher operation), we can map
each packet into multiple threads for optimal performance with fine-
grained parallelism (see our IPsec implementation in Section 6.2.4).

Data structure usage: Simple data structures such as arrays and
hash tables are recommended in GPU. Data structures highly scat-
tered in memory (e.g., balanced trees) would make update the data
difficult and degrade the performance due to small caches in GPU
and uncoalesced memory access pattern [38].

Divergency in GPU code: For optimal performance, the SIMT ar-
chitecture of CUDA demands to have minimal code-path divergence
caused by data-dependent conditional branches within a warp (a group
of 32 threads; see Section 2.1). We believe that inherently diver-
gent operations in packet processing are rare or at least avoidable
with choices of appropriate algorithms and data structures; all GPU
kernels used in this work have no or little code-path divergence.
To avoid warp divergence for differentiated packet processing (e.g.,
packet encryption with different cipher suites), one may classify and
sort packets to be grouped into separate warps in GPU so that all
threads within a warp follows the same code path.

We expect that these requirements of GPU programming will be

much relaxed considering the current evolution trends of GPU ar-
chitectures. For example, Intel has recently introduced Larrabee,
the many-core x86 GPU architecture with full cache coherency [45].
Its MIMD architecture (multiple-instruction, multiple-data) will ease
the current divergency issue of PacketShader. AMD Fusion will
integrate CPU and GPU into a single package [1], with reduced GPU
communication overheads and a unified memory space shared by
CPU and GPU.

6. EVALUATION

In order to demonstrate the performance and flexibility of Pack-
etShader, we implement four applications on top of PacketShader:
IPv4 and IPv6 forwarding, OpenFlow switch, and IPsec tunneling.
We focus on the data-path performance in our evaluation and assume
IP lookup tables, flow tables, and cipher keys are static.

6.1 Test Methodology

We have implemented a packet generator that can produce up to
80 Gbps traffic with 64B packets. It is based on our optimized packet
I/0O engine, and generates packets with random destination IP ad-
dresses and UDP port numbers (so that IP forwarding and OpenFlow
look up a different entry for every packet). The generator is directly
connected to the PacketShader server via eight 10 GbE links, and it
works as both a packet source and a sink.

We implement each application in two modes, the CPU-only mode
and the CPU+GPU mode, to evaluate the effectiveness of GPU ac-
celeration. The experiments are performed on the server with eight
CPU cores and two GPUs, as described in Section 3.1. The CPU-
only mode runs eight worker threads rather than six workers and two
masters in the CPU+GPU mode since there is no shading step in the
CPU-only mode.

6.2 Applications
6.2.1 IPv4 Forwarding

The performance of forwarding table lookup is typically limited
by the number of memory access because the table is too big to fit
in the CPU cache. The required number of memory access depends
on the lookup algorithm and the table size. In our implementation
we use DIR-24-8-BASIC in [22]. It requires one memory access per
packet for most cases, by storing next-hop entries for every possible
24-bit prefix. If a matching prefix is longer than 24 bits, it requires
one more memory access. To measure the performance under a real-
istic condition, we populate the forwarding table with the BGP table
snapshot collected on September 1, 2009 from RouteViews [14].
The number of unique prefixes in the snapshot is 282,797, and only
3% percent of the prefixes are longer than 24 bits.

GPU-accelerated IPv4 table lookup runs in the following order.
In the pre-shading step, a worker thread fetches a chunk of packets.
It collects packets that require slow-path processing (e.g., destined
to local, malformed, TTL expired, or marked as wrong IP check-
sum by NICs) and passes them onto Linux TCP/IP stack. For the
remaining packets it updates TTL and checksum fields, gathers des-
tination IP addresses into a new buffer, and passes the pointer to the
master thread. In the shading step, the master thread transfers the
IP addresses into the GPU memory and launches the GPU kernel
to perform the table lookup. The GPU kernel returns a pointer of
the buffer holding the next-hop information for each packet. The
master thread copies the result from device memory to host memory,
and then passes it to the worker thread. In the post-shading step,
the worker thread distributes packets into NIC ports based on the
forwarding decision.

6.2.2 IPv6 Forwarding

IPv6 forwarding requires more memory access than IPv4 for-
warding due to the 128-bit width of IPv6 addresses. For IPv6 table
lookup we adopt the algorithm in [55], which performs binary search
on the prefix length to find the longest matching prefix. It requires
seven memory accesses, thus memory bandwidth and access latency
limit the IPv6 forwarding performance.

IPv6 is not popular in practice yet and the number of routing pre-
fixes is much smaller than that of IPv4. Although forwarding table
lookup requires a constant number of memory access, a small lookup
table would give the CPU-only approach unfair advantage because
the small memory footprint would fit in the CPU cache. Instead,
we randomly generate 200,000 prefixes for our experiments. IPv6
forwarding works similarly to IPv4, except that a wide IPv6 address
causes four times more data to be copied into the GPU memory.

6.2.3 OpenFlow Switch

OpenFlow is a framework that runs experimental protocols over
existing networks [13,33]. Packets are processed on a flow basis and
do not interfere with other packets of existing protocols. OpenFlow
consists of two components, the OpenFlow controller and the Open-
Flow switch, running on separate machines in general. The Open-
Flow controller, connected via secure channels to switches, updates
the flow tables and takes the responsibility of handling unmatched
packets from the switches. The OpenFlow switch is responsible for
packet forwarding driven by flow tables.

We focus on the OpenFlow switch, based on the OpenFlow 0.8.9r2
specification [10]. The OpenFlow switch maintains the exact-match
and the wildcard-match tables. Exact-match entries specify all ten
fields in a tuple, which is used as the flow key. In contrast, wildcard
match entries specify only some fields (bitmask is also available for
IP addresses). An exact-match entry always takes precedence over a
wildcard entry. All wildcard entries are assigned a priority.

When a packet arrives, our OpenFlow switch extracts the ten-field
flow key from the packet header. For an exact table lookup, the
switch matches the flow key against the exact-match entries in the
hash table. For a wildcard-table lookup, our switch performs linear
search through the table, as the reference implementation does [9],
while hardware implementation typically uses TCAM. Our CPU-
only OpenFlow switch implements all operations (flow key extrac-
tion, hash value calculation and lookup for exact entries, linear search
for wildcard matching, and follow-up actions) in CPU. In the GPU-
accelerated implementation, we offload hash value calculation and
the wildcard matching to GPU, while leaving others in CPU for load
distribution.

6.2.4 IPsec Gateway

IPsec is widely used to secure VPN tunnels or for secure com-
munication between two end hosts. Since cryptographic operations
used in [Psec are highly compute-intensive, IPsec routers often use
hardware accelerator modules. The computational requirement of
IPsec makes GPU attractive as it is well-suited for cryptographic
operation [24].

For IPsec evaluation, we choose AES-128-CTR for block cipher
and SHA1 for Hash-based Message Authentication Code (HMAC).
For the CPU+GPU mode, we offload AES and SHA1 to GPU, while
leaving other IPsec operations in CPU. The CPU-only approach uses
highly optimized AES and SHA1 implementations using SSE in-
structions for fair comparison. Our implementation runs Encapsula-
tion Security Payload (ESP) IPsec tunneling mode. While this mode
increases the packet size with the extra IP header, the ESP header,

Throughput (Gbps)
(5]
(=]

11

B CPU-only
ECPU+GPU

40
35
30
25
15
10
5
0 + . .
64 128

256 512 1024 1514
Packet size (bytes)
(a) IPv4 forwarding
40 C==CPU-only BEENCPU+GPU ={J=Speedup 13

Throughput (Gbps)
Speedup

16K+ 32K+ 64K+ 128K+ 256K + 512K+ 1M+
256 512 1K

Flow table size (# of exact entries + # of wildcard entries)

(c) OpenFlow switch (with 64B packets)

8K +
8 16 32 64 128

Throughput (Gbps)
[3%3
(=]

I

B CPU-only
B CPU+GPU

40
35
30
25
15
10
5
0 + . . ’
64 128 256

512 1024 1514
Packet size (bytes)
(b) IPv6 forwarding

24 C=ICPU-only BEECPU+GPU ={}=Speedup r4
2 20 3.5
=3
=
e 16 4 3 e
- =
2 12 25 3
e &
= 8 2
2
£ 4 1.5

0 A 1

64 128 256 512 1024 1514

Packet size (bytes)
(d) IPsec gateway

Figure 11: Performance measurement of PacketShader on CPU-only and CPU+GPU modes

and the padding, we take input throughput as a metric rather than
output throughput.

Our GPU implementation exploits two different levels of paral-
lelism. For AES we maximize parallelism for high performance at
the finest level; we chop packets into AES blocks (16B) and map
each block to one GPU thread. However, SHA1 cannot be par-
allelized at the SHA1 block level (64B) due to data dependency
between blocks; we parallelize SHA1 at the packet level.

6.3 Throughput

Figure 11 depicts the performance of PacketShader for four ap-
plications. We measure the throughput over different packet sizes,
except for the OpenFlow switch.

IPv4 and IPv6 Forwarding: Figures 11(a) and 11(b) show IP packet
forwarding performance. For all packet sizes, the CPU+GPU mode
reaches close to the maximum throughput of 40 Gbps, bounded by
packet I/O performance in Figure 6. PacketShader runs at 39 Gbps
for IPv4 and 38 Gbps for IPv6 with 64B packets, which are slightly
lower than 41 Gbps of minimal forwarding performance. This is
because IOH gets more overloaded due to copying IP addresses and
lookup results between host memory and GPU memory. We expect
to see better throughput, once the hardware problem (in Section 3.2)
is fixed.

We find that GPU-acceleration significantly boosts the performance
of memory-intensive workloads. The improvement is especially no-
ticeable with IPv6 since it requires more memory access (seven for
each packet) than IPv4 (one or two). A large number of threads
running on GPU effectively hide memory access latency, and the
large GPU memory bandwidth works around the limited host mem-
ory bandwidth.

OpenFlow Switch: For OpenFlow switch, we measure the perfor-
mance variation with different table sizes (Figure 11(c)). CPU+GPU
mode outperforms CPU-only mode for all configurations. The per-
formance improvement comes from offloading the hash value com-
putation for small table sizes. Wildcard-match offload becomes dom-
inant as the table size grows.

We compare our PacketShader with the OpenFlow implementa-
tion on a NetFPGA card [36]. The NetFPGA implementation is

capable of 32K + 32 table entries at maximum, showing 4 Gbps
line-rate performance. For the same configuration, PacketShader
runs at 32 Gbps, which is comparable with the throughput of eight
NetFPGA cards.

IPsec Gateway: Figure 11(d) shows the results of the IPsec ex-
periment. The GPU acceleration improves the performance of the
CPU-only mode by a factor of 3.5, regardless of packet sizes. The
CPU+GPU throughput for 64B packets is around 10.2 Gbps, and
20.0 Gbps for 1514B packets. PacketShader outperforms Route-
Bricks by a factor of 5 for 64B packets. RouteBricks achieves IPsec
performance 1.9 Gbps for 64B traffic and 6.1 Gbps for larger pack-
ets [19]. We note that the IPsec performance of PacketShader is
comparable or even better than that of commercial hardware-based
IPsec VPN appliances [3].

We suspect that our current performance bottleneck lies in the
dual-IOH problem (Section 3.2) again for the CPU+GPU case, as
CPUs have not been 100% utilized. In IPsec encryption, entire packet
payloads and other metadata (such as keys and IVs) are transmitted
from/to GPU, weighing on the burden of IOHs. Experiments done
without packet I/O, thus with less traffic through IOHs, show that the
performance of two GPUs scales up to 33 Gbps, which implies GPU
is not a bottleneck as well.

OpenFlow and IPsec represent compute-intensive workloads of
software routers in our work. We have confirmed that compute-
intensive applications can benefit from GPU as well as memory-
intensive applications.

6.4 Latency

Some techniques used in our work, namely batched packet I/O in
Section 4.3 and parallel packet processing with GPU in Section 5,
may affect the latency of PacketShader. To quantify it, we measure
the average round-trip latency for IPv6 forwarding. The measure-
ment is done at the generator with timestamped 64B packets, over a
range of input traffic levels.

Figure 12 shows the measured roundtrip latency of three cases:
(7) the CPU-only mode without batch processing, (ii) the CPU-only
mode with batch, and (iii) the CPU+GPU mode with both batch and
parallelization. Comparing the former two cases, batched packet I/O

1000 1

- : +++4=++ CPU-only w/o batch I/0
£ 500 H = «0== CPU-only
E, Il == CPU+GPU
3 600 1
=]
]
£ 400 A]
£)
£ 200 1
o
-7
0

0 5 10 15 20 25 30
Offered load (Gbps)

Figure 12: Average roundtrip latency for IPv6 forwarding

shows even lower latency; better forwarding rate with batched 1/0
effectively reduces the queueing delay of packets. We suspect that
higher latency numbers at low input traffic rate are caused by the
effect of interrupt moderation in NICs [28]. Comparing the latter
two cases, GPU acceleration causes higher latency due to GPU trans-
action overheads and additional queueing (input and output queues
in Figure 9), yet still showing a reasonable range (200—400us in the
figure, 140-260us for [IPv4 forwarding).

Since our packet generator is not a hardware-based measuring
instrument, the measurement result has two limitations: (i) measured
latency numbers include delays incurred by the generator itself, and
(if) the generator only supports up to 28 Gbps due to overheads of
measurement and rate limiting.

7. DISCUSSION

So far we have demonstrated that GPUs effectively bring extra
processing capacity to software routers. We discuss related issues,
the current limitations, and future directions here.

Integration with a control plane: Our immediate next step is to
integrate control plane. We believe it is relatively straightforward
to integrate Zebra [6] or Quagga [11] into PacketShader as other
software routers. One issue arising here is how to update forwarding
table in GPU memory without disturbing the data-path performance.
This problem is not specific only to PacketShader, but also relevant
to FIB update in traditional hardware-based routers. Incremental
update or double buffering could be possible solutions.

Multi-functional, modular programming environment: Packet-
Shader currently limits one GPU kernel function execution at a time
per device. The multi-functionality support (e.g., IPv4 and IPsec
at the same time) in PacketShader enforces to implement all the
functions in a single GPU kernel. NVIDIA has recently added na-
tive support for concurrent execution of heterogeneous kernels into
GTX480 [8], and we plan to modify the PacketShader framework
to benefit from this feature. GTX480 also supports C++ and func-
tion pointers in kernel. We believe it will expedite our effort to
implement a Click-like modular programming environment [30] in
PacketShader.

Vertical scaling: As an alternative to using GPUs, it is possible to
have more CPUs to scale up the single-box performance. However,
having more CPUs in a single machine is not cost-effective due to
upgrade of the motherboard, additional memory installation, and
diminishing price/performance ratio. The CPU price per gigahertz
in a single-socket machine® is $23 at present. The price goes up
with more CPU sockets: $87 in a dual-socket machine’ and $183 in
a quad-socket machine®.

In contrast, installing a cheap GPU (the price ranges from $50 to

6240 per Core 17 920 processor (2.66 GHz, 4 cores)
7$925 per Xeon X5550 processor (2.66 GHz, 4 cores)
852190 per Xeon E7540 processor (2.00 GHz, 6 cores)

$500) into a free PCle slot does not require extra cost. In case of
limited PCle slot space, one may add multiple GPUs into a slot with
a PCle switch. Although this approach would make the GPUs share
the PCle bandwidth, it can be useful for less bandwidth-hungry ap-
plications (e.g., header-only packet processing like IP forwarding).

Horizontal scaling: We have mostly focused on a single-machine
router in this work. Our prototype router supports 8 X 10 GbE ports
near 40 Gbps packet forwarding capacity for 64B IPv4 and IPv6
packets. In case more capacity or a larger number of ports are needed,
we can take a similar approach as suggested by RouteBricks and use
Valiant Load Balancing (VLB) [52] or direct VLB [19].

Power efficiency: In general, modern graphics cards (especially for
high-end models) require more power than x86 CPU counterparts.
The PacketShader server consumes 594W with two GTX480 cards
and 353W without graphics cards under full load, showing 68%
increase. The gap gets closer in an idle state: 327W and 260W,
respectively. We believe that the increased power consumption is
tolerable, considering the performance improvement from GPUs.

Opportunistic offloading: Our latency measurement results in Sec-
tion 6.4 show that GPU acceleration incurs higher delay than CPU at
low traffic. To address this issue, we have implemented the concept
of opportunistic offloading, using CPU for low latency under light
load and exploiting GPU for high throughput when heavily loaded,
in our SSL acceleration project [27]. We plan to adopt this idea also
in PacketShader for future work.

8. RELATED WORK

Today’s multi-core network processors (NPs), combined with hard-
ware multi-threading support, effectively hide memory access la-
tency to handle large volume of traffic. For example, Cisco’s Quan-
tumFlow processors have 40 packet process engines, capable of han-
dling up to 160 threads in parallel [4]. Similarly, Cavium Networks
OCTEON I processors have 32 cores [2], and Intel IXP2850 pro-
cessors have 16 microengines supporting 128 threads in total [46,
51]. We have realized the latency-hiding idea on commodity hard-
ware, by exploiting massively-parallel capability of GPUs. GPUs
also bring high computation power with full programmability, while
NPs typically rely on hard-wired blocks to handle compute-intensive
tasks, such as encryption and pattern matching.

Until recently, shared memory bus was the performance bottle-
neck of software routers. Bolla et al. report that the forwarding
performance does not scale to the number of CPU cores due to FSB
clogging [15]. FSB clogging happens due to cache coherency snoops
in the multi-core architecture [54]. More recently, RouteBricks re-
ports 2-3x performance improvement by eliminating FSB. It shows
that a PC-based router can forward packets near 10 Gbps per ma-
chine. Moreover, RouteBricks breaks away from a single-box ap-
proach and scales the aggregate performance by clustering multiple
machines [19]. In contrast, PacketShader utilizes GPU as a cheap
source of computation capability and shows more than a factor of
four performance improvement over RouteBricks on similar hard-
ware. PacketShader could replace RB4, a cluster of four Route-
Bricks machines, with a single machine with better performance.

As aubiquitous and cost-effective solution, GPUs have been widely
used not only for graphics rendering but also for scientific and data-
intensive workloads [5, 41]. Recently, GPUs have shown a sub-
stantial performance boost to many network-related workloads, in-
cluding pattern matching [35,48, 53], network coding [47], IP table
lookup [35], and cryptography [24,32,49]. In our work, we have ex-
plored a general GPU acceleration framework as a complete system.

9. CONCLUSIONS

We have presented PacketShader, a novel framework for high-
performance network packet processing on commodity hardware.
We minimize per-packet processing overhead in network stack and
perform packet processing in the user space without serious perfor-
mance penalty. On top of our optimized packet I/O engine, Packet-
Shader brings GPUs to offload computation and memory-intensive
workloads, exploiting the massively-parallel processing capability
of GPU for high-performance packet processing. Careful design
choices make PacketShader to be highly scalable with multi-core
CPUs, high-speed NICs, and GPUs in NUMA systems. We have
demonstrated the effectiveness of our approach with IPv4 and IPv6
forwarding, OpenFlow switching, and IPsec tunneling.

In this work we have shown that a well-designed PC-based router
can achieve 40 Gbps forwarding performance with full programma-
bility even on today’s commodity hardware. We believe Packet-
Shader will serve as a useful platform for scalable software routers
on commodity hardware.

10. ACKNOWLEDGEMENT

We thank Katerina Arguraki, Vivek Pai, Seungyeop Han, anony-
mous reviewers, and our shepherd Robert Morris for their help and
invaluable comments. This research was funded by KAIST High
Risk High Return Project (HRHRP), NAP of Korea Research Coun-
cil of Fundamental Science & Technology, and MKE (Ministry of
Knowledge Economy of Repbulic of Korea, project no. N02100053).

11. REFERENCES

[1] AMD Fusion. http://fusion.amd.com.

[2] Cavium Networks OCTEON II processors.
http://www.caviumnetworks.com/OCTEON_II_MIPS64.html.

[3] Check Point IP Security Appliances.
http://www.checkpoint.com/products/ip-appliances/index.html.

[4] Cisco QuantumFlow Processors. http://www.cisco.com/en/US/prod/
collateral/routers/ps9343/solution_overview_c22-448936.html.

[5] General Purpose computation on GPUs. http://www.gpgpu.org.

[6] GNU Zebra project. http://www.zebra.org.

[7] NVIDIA CUDA GPU Computing Discussion Forum.

http://forums.nvidia.com/index.php?showtopic=104243.

NVIDIA Fermi Architecture.

http://www.nvidia.com/object/fermi_architecture.html.

OpenFlow Reference System.

http://www.openflowswitch.org/wp/downloads/.

OpenFlow Switch Specification, Version 0.8.9. http:

//www.openflowswitch.org/documents/openflow-spec-v0.8.9.pdf.

[8

[9

[10]

(1]
[12]

Quagga project. http://www.quagga.net.

Receive-Side Scaling Enhancements in Windows Server 2008.
http://www.microsoft.com/whdc/device/network/ndis_rss.mspx.
The OpenFlow Switch Consortium. http://www.openflowswitch.org.
University of Oregon RouteViews project. http://www.routeviews.org/.
R. Bolla and R. Bruschi. PC-based software routers: High performance and
application service support. In ACM PRESTO, 2008.

J. Bonwick. The slab allocator: an object-caching kernel memory allocator. In
USENIX Summer Technical Conference, 1994.

S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris,

A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang. Corey: An
operating system for many cores. In OSDI, 2008.

T. Brecht, G. J. Janakiraman, B. Lynn, V. Saletore, and Y. Turner. Evaluating
network processing efficiency with processor partitioning and asynchronous i/o.
SIGOPS Oper. Syst. Rev., 40(4):265-278, 2006.

M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. lannaccone, A. Knies,
M. Manesh, and S. Ratnasamy. RouteBricks: exploiting parallelism to scale
software routers. In SOSP, 2009.

K. Fatahalian and M. Houston. A closer look at GPUs. Communications of the
ACM, 51:50-57, 2008.

A. Foong, J. Fung, and D. Newell. An in-depth analysis of the impact of
processor affinity on network performance. In IEEE ICON, 2004.

P. Gupta, S. Lin, and N. McKeown. Routing lookups in hardware at memory
access speeds. In IEEE INFOCOM, 1998.

[13]
[14]
[15]
[16]

[17]

(18]

[19]

[20]
[21]

[22]

[23]
[24]
[25]
[26]
[27]
[28]

[29]

[30]
[31]
(32]

[33]

[34]

[35]

[36]
[37]

[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

S. Han, K. Jang, K. Park, and S. Moon. Building a single-box 100 gbps software
router. In IEEE Workshop on Local and Metropolitan Area Networks, 2010.

O. Harrison and J. Waldron. Practical Symmetric Key Cryptography on Modern
Graphics Hardware. In USENIX Security, 2008.

S. Hong and H. Kim. An analytical model for a GPU architecture with
memory-level and thread-level parallelism awareness. In ISCA, 2009.

V. Jacobson, C. Leres, and S. McCanne. libpcap, Lawrence Berkeley Laboratory,
Berkeley, CA. http://www.tcpdump.org.

K. Jang, S. Han, S. Moon, and K. Park. Converting your graphics card into
high-performance SSL accelerator. submitted for publication.

G. Jin and B. L. Tierney. System capability effects on algorithms for network
bandwidth measurement. In /MC, 2003.

D. Kim, J. Heo, J. Huh, J. Kim, and S. Yoon. HPCCD: Hybrid Parallel
Continuous Collision Detection using CPUs and GPUs. In Computer Graphics
Forum, volume 28, pages 1791-1800. John Wiley & Sons, 2009.

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click
modular router. ACM TOCS, 18(3):263-297, 2000.

Y. Liao, D. Yin, and L. Gao. PdP: parallelizing data plane in virtual network
substrate. In ACM VISA, 2009.

S. Manavski. CUDA compatible GPU as an efficient hardware accelerator for
AES cryptography. In IEEE Signal Processing and Communications, 2007.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner. OpenFlow: enabling innovation in campus
networks. SIGCOMM CCR, 38(2):69-74, 2008.

J. Mogul and K. Ramarkishnan. Eliminating Receive Livelock in an
Interrupt-Driven Kernel. ACM TOCS, 15(3):217-252, 1997.

S. Mu, X. Zhang, N. Zhang, J. Lu, Y. S. Deng, and S. Zhang. Ip routing
processing with graphic processors. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2010.

J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, and N. McKeown.
Implementing an OpenFlow switch on the NetFPGA platform. In ANCS, 2008.
J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel programming
with CUDA. Queue, 6(2):40-53, 2008.

NVIDIA Corporation. NVIDIA CUDA Best Practices Guide, Version 3.0.
NVIDIA Corporation. NVIDIA CUDA Architecture Introduction and Overview,
2009.

NVIDIA Corporation. NVIDIA CUDA Programming Guide, Version 3.0, 2009.
J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kriiger, A. E. Lefohn, and
T. J. Purcell. A Survey of General-Purpose Computation on Graphics Hardware.
In Eurographics 2005, State of the Art Reports, pages 21-51, Aug. 2005.

K. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. KrAijger, A. E. Lefohn,
and T. J. Purcell. A survey of general-purpose computation on graphics hardware.
Computer Graphics Forum, 26:80-113, 2007.

S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.-m. W.
Hwu. Optimization principles and application performance evaluation of a
multithreaded GPU using CUDA. In ACM PPoPP, 2008.

J. H. Salim, R. Olsson, and A. Kuznetsov. Beyond softnet. In Annual Linux
Showcase & Conference, 2001.

L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins,
A. Lake, J. Sugerman, R. Cavin, et al. Larrabee: a many-core x86 architecture for
visual computing. In ACM SIGGRAPH, 2008.

N. Shah, W. Plishker, K. Ravindran, and K. Keutzer. Np-click: A productive
software development approach for network processors. IEEE Micro,
24(5):45-54, 2004.

H. Shojania, B. Li, and X. Wang. Nuclei: GPU-accelerated many-core network
coding. In IEEE INFOCOM, 2009.

R. Smith, N. Goyal, J. Ormont, C. Estan, and K. Sankaralingam. Evaluating
GPUs for network packet signature matching. In JEEE ISPASS, 2009.

R. Szerwinski and T. Giineysu. Exploiting the power of GPUs for asymmetric
cryptography. Cryptographic Hardware and Embedded Systems, pages 79-99,
2008.

J. Torrellas, H. S. Lam, and J. L. Hennessy. False Sharing and Spatial Locality in
Multiprocessor Caches. IEEE Trans. on Computers, 43(6):651-663, 1994.

J. S. Turner, P. Crowley, J. DeHart, A. Freestone, B. Heller, F. Kuhns, S. Kumar,
J. Lockwood, J. Lu, M. Wilson, C. Wiseman, and D. Zar. Supercharging
planetlab: a high performance, multi-application, overlay network platform.
SIGCOMM CCR, 37(4):85-96, 2007.

L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication.
In Proceedings of the ACM symposium on Theory of computing, 1981.

G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, and S. Ioannidis.
Gnort: High performance network intrusion detection using graphics processors.
In Proc. of Recent Advances in Intrusion Detection (RAID), 2008.

B. Veal and A. Foong. Performance Scalability of a Multi-Core Web Server. In
ANCS, 2007.

M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable high speed IP
routing lookups. In SIGCOMM, 1997.

