PacketShader

Massively-Parallel Packet Processing with GPUs to Accelerate Software Routers

Sangjin Han¹, Keon Jang¹, KyoungSoo Park², and Sue Moon¹

¹Department of Computer Science, KAIST, {sangjin, keonjang}@an.kaist.ac.kr, sbmoon@kaist.edu
²Department of Electrical Engineering, KAIST, kyoungsoo@ee.kaist.ac.kr

PacketShader

- ► The fastest software router in the world » 4.5x faster than RouteBricks [SOSP '09]
- Eliminates the CPU bottleneck
 » with massively-parallel GPU computation
- ► Highly scalable Packet I/O
 - » 40 Gbps throughput even with 64B packets
- ▶ Flexible architecture
 - » Runs in user-mode on commodity x86 servers
- ▶ Implementations: IPv4, IPv6, OpenFlow, and IPsec

Motivation

PC-based Software Routers

- Easy to fix problems
- Ready for additional functionalities
- Cheap & Ubiquitous (\$1,000 ~ \$10,000)
- Low Performance: 1-10 Gbps today

General-Purpose Computation on GPUs

- ► GPUs are widely used for data-intensive workloads » E.g. Medical imaging, bioinformatics, finance, etc.
- ▶ High performance with massively-parallel processing

	Price	# of cores	# of HW threads	Peak performance
CPU (Intel Core i7 920)	\$260	4	8	43 GFLOPS
GPU (NVIDIA GTX280)	\$260	240	30,720	933 GFLOPS

Our key insight on GPU packet processing:

"The massive core array of GPUs matches the inherent parallelism in stateless packet processing."

Design

Data-path in a software router =

Packet I/O + Packet Processing

Our Packet I/O Engine

- Huge packet buffer
 - » instead of per-packet buffer
- Batch packet processing
 - » effectively amortizes per-peacket cost

I/O batch performance with a single CPU core

- ► Multi-core/NUMA scalable
 - » RSS and NUMA-aware data placement
- Efficient user-level interface
 - » supports multiple queues
 - » resistant to receive livelock

GPU Processing Framework

- General framework
 - » Provides a convenient way for parallel packet processing
 - » Applications (e.g. IPv4 routing) are implemented on it
- Highly scalable
 - » with multiple CPU cores, NUMA nodes, NICs, and GPUs
- Optimization supports
 - » Pipelining in CPU-GPU collaboration
 - » Gather/Scatter for more parallelism
- 3-stage workflow

Hardware Setup

Item	Specification	
CPU	Xeon X5550 (quad-core 2.66GHz)	2
RAM	DDR3 ECC FBDIMM 2GB 1,333Mhz	6
Motherboard	Super Micro X8DAH+	1
Graphics card	NVIDIA GTX285 (240 cores, 1GB DDR3)	2
NIC	Intel X520-DA2 (dual-port 10GbE)	4

The interior view of our prototype server (equipped with 2 quad-core CPUs, 2 GPUs, 8×10GbE ports)

Our prototype costs less than \$7,000, which is 10+ times cheaper than hardware-based commercial routers with similar performance.

Performance

Basic Packet I/O performance

» 40 Gbps forwarding for any packet sizes

▶ We implemented 4 applications on top of PacketShader and measured performance.

Application	What we offloaded	Type	CPU-only ¹	CPU+GPU1
IPv4 routing ²	IPv4 longest prefix matching	Simple	28.8 Gbps	38.1 Gbps ⁴
IPv6 routing ²	IPv6 longest prefix matching	Memory-intensive	8.1 Gbps	31.4 Gbps
OpenFlow switch ³	Wildcard matching	Configuration dependent	9.6 Gbps	24.6 Gbps
IPsec gateway	Encryption and HMAC	Compute-intensive	2.8 Gbps	5.3 Gbps

- 1) All throughputs are measured with min-sized (64B) packets.
- 2) Configured with 300K IPv4 prefixes and 200K IPv6 prefixes
- 3) Configured with 64K exact-match flows and 64 wildcard-match flows.
- 4) This performance is **4.5x higher than the fastest software router** previously reported (RouteBricks in SOSP '09)

This work was supported by NAP of Korea Research Council of Fundamental Science & Technology (KRCF).