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Abstract
HTTP adaptive streaming is increasingly popular in video
delivery. This is mainly because HTTP allows easy deploy-
ment while it simplifies content delivery, and chunk-based
delivery enables dynamic adaptation of video quality to
varying network bandwidth. However, we find that the very
nature of chunk delivery on HTTP causes some fundamental
problems in efficient bandwidth utilization.

In this work, we investigate why it is so hard to adapt
to varying bandwidth with HTTP adaptive streaming. First,
we find that the choice of chunk duration greatly affects the
bandwidth adaptation logic. Second, we observe that the dis-
parity between the advertised quality of a chunk and real en-
coding rate confuses the client-side adaptation logic. Third,
the dependence on TCP/HTTP leads to suboptimal band-
width utilization while it makes it challenging to adapt to
rapidly-changing bandwidth. We show the evidence of the
problems in our controlled experiments with popular HTTP
adaptive streaming schemes, and lay out the future require-
ments for robust bandwidth adaptation in video streaming.

General Terms Algorithm, Design, Performance

Keywords HTTP adaptive streaming, DASH, MPEG Me-
dia Transport

1. Introduction
HTTP adaptive streaming (HAS) is increasingly popular in
online video delivery. While there are many variations of
HAS implementations [5, 9, 29], they all share the simi-
lar operational model. In HAS, a large video content is di-
vided into smaller fragments called chunks, and a video
client plays it by fetching the chunks in the chronological
order from a Web server that serves the video. Typically,
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each video chunk is encoded into multiple different quali-
ties, which allows the client to choose the proper video rate
to adapt to varying network bandwidth in real time. The sim-
plicity and ubiquity of HTTP make it extremely easy to pro-
vision, deploy, and operate the service.

Despite many advantages, previous works have reported
undesirable behaviors that affect user’s quality-of-experience
(QoE) [11, 18, 20]. When multiple HAS clients compete on
a bottlenecked link, it is reported that the video quality of-
ten changes too frequently or some clients would get an
unfair bandwidth share while the bandwidth utilization be-
comes suboptimal. Most of these problems happen because
the clients repeatedly go between downloading and pause
phases (called ON and OFF periods), which confuses other
competing clients about their fair network bandwidth share.
To address these problems, some researchers try removing
the ON/OFF periods with the help of the server [12, 17],
while others develop more accurate bandwidth estimation
algorithms [20, 30].

In this work, we report a different class of problems that
affect the client-side bandwidth adaptation logic. First, we
observe that the choice of chunk duration (e.g., how much
time each chunk content should carry) has a great impact
on the accuracy of bandwidth adaptation. We find that a
short duration could lead to suboptimal bandwidth estima-
tion while a long duration often makes it difficult to adapt
to fast-changing bandwidth. Second, we note that the adver-
tised encoding rate of a chunk and its real rate are often dras-
tically different in practice. A lack of such information on
the client side produces a completely undesirable behavior
in rate selection. Third, the dependence on TCP/HTTP cre-
ates a problem in bandwidth utilization and adaptation. We
observe that the oscillation of ON/OFF periods makes TCP
severely underutilize the full network bandwidth. Also, the
rigidity of TCP reliable data transmission prevents fast rate
adaptation for varying network bandwidth.

Unlike existing works, we note that these are fundamen-
tal problems, directly related to the HAS operational model.
The root cause of these problems lies in that (a) the client
cannot adapt to abrupt bandwidth change during a chunk
download, (b) constant bit rate (CBR) encoding is hard to be
accurately enforced on a chunk granularity, (c) HTTP/TCP
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HAS solution Player Version

Smooth streaming Sliverlight 5.1.30514.0
OSMF Stobe media player 10.1.102.64
DASH bitdash 1.2.9

Table 1. Players used in our experiments

are not the ideal transport protocols for efficient bandwidth
utilization and fine-grain rate adaptation for video stream-
ing. In this paper, we quantify the problems with three pop-
ular HAS implementations such as Smooth Streaming [9],
OSMF [8], and bitdash [2], and gauge the gap between HAS
and ideal video streaming.

To address these problems, we also consider the future
requirements for ideal video streaming. We argue that future
video streaming should reflect the difference in the adver-
tised and real encoding rates in bandwidth adaptation. Also,
it should allow agility in video rate change to timely re-
spond to abrupt bandwidth change. Finally, it should avoid
the OFF period for fair and consistent bandwidth consump-
tion. To realize these requirements, we experiment with an
alternative streaming approach called MPEG Media Trans-
port (MMT) [7], and show preliminary results.

2. Why Is HTTP Adaptive Streaming
Difficult?

In this section, we present our findings about the difficulty in
HTTP adaptive video streaming. First, we discuss the impact
of a chunk duration on bandwidth estimation and video
quality adaptation, and then describe the problems arising
from the disparity of advertised and real video encoding
rates. Finally, we reason about why TCP/HTTP leads to
suboptimal bandwidth utilization and poor rate adaptation
in dynamic network environments. For all experiments, we
use a machine with a quad core Intel CPU (i7-2600) with
hyper-threading on with 12 GB of physical memory as a
server and a client. We use Windows 7 for serving OSMF
and Smooth Streaming contents while we run nginx 1.7.8 on
Linux (Ubuntu 12.04) for DASH streaming. For limiting the
bandwidth, we employ DummyNet [27] on Linux (Ubuntu
12.04) on a machine with the same specification.

2.1 Impact of Chunk Duration
A chunk duration in HAS is typically fixed over the entire
streaming period. Publicly recommended chunk durations
range from 2 to 10 seconds [6, 10]. Regardless of the ac-
tual value, however, we find that the chunk duration often
adversely affects the quality of bandwidth estimation and
agility in video rate adaptation.

To investigate the impact of a chunk duration on user
QoE, we run a few experiments in a controlled environment.
We prepare multiple video streams of BigBuckBunny [1] 1,
encoded to different bitrates as shown in Table 2. We com-

1 In case of DASH streaming, we use the dataset used in [23].
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Figure 2. Chunk request behavior with short chunk duration

pare the behavior with three HAS implementations as shown
in Table 1. To simulate a highly-dynamic network environ-
ment, we configure the available bandwidth to oscillate be-
tween 700 Kbps and 4.5 Mbps in every 3 seconds via Dum-
myNet. We measure two popular QoE metrics from [31], in-
stability and average quality of received chunks, and use 2,
4, and 10 seconds as chunk durations. Instability is the sum
of the ratios of video quality change between consecutive
chunks, and a larger value indicates worse QoE. In contrast,
a larger average quality implies better QoE.

Instability:
K−1

∑
i=1

|Bi−Bi+1|
Max(Bi,Bi+1)

(1)

AverageQuality:
1
K

K

∑
i=1

Bi (2)

K is the total # of received chunks,

Bi is the bitrate of the i-th chunk.

Figure 1 compares instability and normalized average
quality over different chunk durations. For comparing with
ideal case, we normalize the average quality by the ideal
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Codec fps Bitrate (Mbps) @(Resoultion)) Length
OSMF H.264

24

0.2@(480x360), 0.3@(480x360), 0.4@(480x360), 0.5@(480x360),
0.6@(854x480), 0.7@(854x480), 0.9@(1280x720), 1.2@(1280x720),
1.5@(1280x720), 2.0@(1280x720), 2.5@(1920x1080),
3.0@(1920x1080), 4.0@(1920x1080)

9:57
Smooth

VC-1
Streaming
DASH H.264

Table 2. Media statistics for evaluating three HAS method

Chunk Rebuffering event Time to converge (sec)

OSMF DASH SS OSMF DASH SS

2 sec No No No 9 21 55
4 sec No No Yes 25 23 110

10 sec Yes Yes Yes 63 52 304

SS: Smooth Streaming

Table 3. Effect of long chunk duration to three HAS protocol

rate selection. In general, both instability and average qual-
ity improve as the chunk duration increases. Especially, bit-
dash and OSMF clients show 2.7 and 8.7 times improve-
ment in instability respectively when the chunk duration is
switched from 2 to 10 seconds. This is mainly because a long
chunk duration enables more accurate bandwidth estimation.
A short chunk duration produces a smaller chunk, and the
chunk download finishes more quickly than a longer chunk.
This would miss the opportunity to accurately probe the
dynamically-changing network bandwidth, which leads to
suboptimal bandwidth estimation. Smooth streaming shows
a reasonably stable rate selection behavior regardless of
chunk duration since its bandwidth estimation logic is more
conservative. However, compared with the ideal rate selec-
tion (e.g., 2.5 Mbps), its bandwidth utilization is lower by
30 to 42%.

Figure 2 shows the client-side rate selection behavior
with OSMF in more detail when the chunk duration is fixed
to 2 seconds. We observe that the client mostly chooses
low-quality chunks even after the start-up phase because the
downloading higher-quality chunk starts when the available
bandwidth is low. At around the 11-th chunk, the client at-
tempts to download a higher-quality chunk, but its download
period overlaps with a low bandwidth period. So, the client
moves to the lowest quality in the next round to offset the
deficit from the previous download. A short chunk duration
hinders accurate bandwidth estimation, and increases the os-
cillation in bitrate choice, which degrades the stability and
average quality.

The next question is whether a long chunk duration is
always desirable in HAS. While a long duration allows
more accurate bandwidth estimation, it greatly reduces the
agility in rate adaptation. Even when the available band-
width abruptly changes, a long chunk duration makes it dif-
ficult to react to it until the chunk download finishes. Note
that timely response to fast-changing bandwidth is the key to
minimizing rebuffering events that significantly undermine
user QoE. To see the impact of a long chunk duration, we

simulate a dynamic network environment by starting with
3 Mbps as available bandwidth and dropping it to 0.7 Mbps
in the middle of streaming. Table 3 shows the results with
three different chunk durations. We observe that the largest
chunk duration produces a rebuffering event in all clients.
Moreover, the time to adapt to the new bandwidth becomes
much larger in a longer chunk duration. This is because they
need to reduce the video quality to refill the drained buffer
and to probe the accurate bandwidth.

In summary, neither short nor long chunk duration always
produces good user QoE. A proper choice would highly de-
pend on the characteristics of network environments, which
is often hard to predict. A short duration could incorrectly
estimate the network bandwidth and incur more overhead
from frequent HTTP requests. A long duration could be too
slow to adapt to sudden bandwidth drop, and could increase
the rebuffering events.

We think this is a fundamental problem in HAS since the
core difficulty is attributed to chunk-based downloading and
the adoption of inflexible transport protocols. The fact that
the HAS client cannot switch to a different video quality dur-
ing a chunk download is the source of the problem. An ideal
approach would be to have a long chunk duration for accu-
rate estimation of available bandwidth while providing the
flexibility that a client can switch to a different video quality
at any time when it senses abrupt bandwidth change. One
can abort the current chunk download and switch to a dif-
ferent quality via HTTP range queries. However, this would
make the rate adaptation highly complex since the client now
needs to know which byte offset would seamlessly link to the
last frame of the previously-interrupted chunk.

2.2 Impact of Bitrate Disparity
It is commonly known that a lager encoding set size pro-
duces better QoE in HAS. An encoding set size is referred to
the number of different encoding qualities to serve a given
video content. A larger encoding set size allows a client
to choose the video quality from a bigger pool of bitrates,
which enables more fine-grain rate adaptation that effec-
tively utilizes the available bandwidth. Also, it would pre-
vent sudden bitrate oscillation, improving the QoE for the
end users.

To verify this claim, we run an experiment with the same
video content (e.g., Big Buck Bunny) with different encod-
ing set sizes. We prepare a coarse-grain encoding set with
7 distinct bitrates (0.2, 0.4, 0.6, 0.9, 1.5, 2.5, 4 Mbps) and a
fine-grain set that adds 6 more bitrates (0.3, 0.5, 0.7, 1.2, 2.0,
3.0 Mbps) to the coarse-grain set. We download the video
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Figure 3. Counterexample of common sense about granularity of
encoding set

with an OSMF client and record the stream of chunk bitrates
requested by the client. The available bandwidth is fixed to
1.6 Mbps throughout the experiment.

Figure 3(a) shows the results. Surprisingly, we find that
the coarse-grain encoding set provides better bandwidth
adaptation than that of the fine-grain set. Chunk bitrates
for the fine-grain encoding set oscillate more widely, of-
ten picking the chunks in much lower quality than desired.
Also, the average video quality of the fine-grain set is lower
(1.28 Mbps) than that of the coarse-grain set (1.37 Mbps).
Figure 3(b) shows the similar behavior of the fine-grain set
when the bandwidth is set to 1.3 Mbps. We expected that the
client would choose the chunks encoded in 1.2 Mbps, but the
actual selection varies widely between 0.3 and 1.5 Mbps.

After close investigation, we find out that the advertised
bitrates by the manifest file and the actual bitrates of the
chosen chunks are often drastically different. We find that
the actual bitrate varies greatly, from 92% to 193% of the
advertised bitrate as shown in Table 4. To see whether this is
a corner case, we also check with four other contents from
the public DASH video dataset [23], but we observe the
similar trend. We see that the actual encoding rate goes as
small as 11% or as large as 321% of the advertised rate. We
go on to check with the commercial video contents of 13
hours of HLS traffic by Btv [3], a popular online streaming

2 Encoded by Adobe Media Encoder 8.2.0
3 Encoded by Microsoft Expression 4 (version 4.0.1460.0)

Big Buck Bunny used for OSMF 2

Advertised Bitrate (Kbps) 400 1200 2500 4000
Real to adv. ratio (%) 93 - 172 95 - 152 92 - 181 117 - 193

Big Buck Bunny used for Smooth Streaming3

Advertised Bitrate (Kbps) 400 1200 2500 4000
Real to adv. ratio (%) 59 - 192 80 - 173 67 - 192 64 - 195

Big Buck Bunny in DASH dataset
Advertised Bitrate (Kbps) 378 1207 2410 3936
Real to adv. ratio (%) 11 - 119 39 - 321 11 - 114 25 -210

Elephants Dream in DASH dataset
Advertised Bitrate (Kbps) 379 1197 2394 4066
Real to adv. ratio (%) 14 - 139 13 -131 20 - 130 8 - 207

Tears of Steel in DASH dataset
Advertised Bitrate (Kbps) 504 1506 2416 4011
Real to adv. ratio (%) 13 - 230 13 - 231 17 - 231 16 - 228

HLS traffic from Btv Mobile
Advertised Bitrate (Kbps) - 1000 - -
Real to adv. ratio (%) - 57 - 158 - -

Table 4. Real to advertised encoding bitrate ratios

service in South Korea. We confirm that the actual bitrates
do not match the advertised rates in many cases, taking up
57% to 157% of the advertised rates.

This bitrate disparity has crucial impact on client-side
rate selection since the client has to resort to the bitrate
information exposed by the manifest file. If the actual bitrate
is larger than the advertised bitrate, the client must choose a
lower quality than the available bandwidth in the next round
to offset the buffer drain. The situation could be worse for
buffer-aware rate adaptation algorithms [13,30] that consider
buffer occupancy for rate selection. If the actual rate is lower
than the advertised rate, such an algorithm would choose a
higher rate in the next round only to find that the available
bandwidth is lower than the requested bitrate. Then, it would
choose a lower quality to compensate the buffer loss, which
aggravates the oscillation.

Why is there disparity between the advertised and real
encoding rates even if the video chunks are encoded in con-
stant bit rate (CBR)? The short answer is that CBR encoding
is hard to be enforced on a small chunk granularity. Uni-
form CBR encoding is challenging without significant qual-
ity degradation or redundant video frames since some video
frames could be much busier than others. However, most
manifest files in HAS advertise only the nominal encoding
rate averaged over the entire content while the real rate could
vary on a chunk basis. The lack of the information on the
client side confuses the rate adaptation logic.

We note that [19] considers the bitrate disparity problem,
but our focus here is that the client-side adaptation is the
source of the complexity to address the problem. For correct
operation, the client would require chunk size information
for all video qualities. However, fetching such metadata for
all video chunks would be an overhead since the number
of different video qualities could be large, and most of the
per-chunk metadata downloading would be wasted. Also,
when it comes to live streaming, such additional metadata
download would incur extra latency. These overheads imply
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that handling the bitrate disparity problem at client side is
complex and inefficient.

2.3 Impact of Transport Protocols
In contrast to traditional streaming approaches that use UDP
(RTP on top of UDP or DCCP [21]) as the transport layer
protocol, HAS adopts TCP and HTTP for adaptive media
streaming. It is well-known that the choice of TCP/HTTP
trades fast bandwidth adaptation for operational simplicity
and easy deployment. That is, TCP is known to be inflexible
to quickly adapt to varying network bandwidth due to its
reliable data transfer requirement. So, we will not focus on
the lack of agility from TCP retransmission. Our question
here is if TCP/HTTP is still a good choice if the available
bandwidth is stable over time. How much overhead does
chunk-based downloading incur in typical video streaming?

To answer this question, we run an experiment in a con-
trolled environment. A client downloads a 400-second video
whose chunk size is set to 4 seconds. So, there are 100
video chunks, and we make sure that each chunk encoded
to the same bitrate has the exactly same size to avoid the
adverse effect from variable bitrate encoding. We also make
the available bandwidth stable over time so that there is no
need to adapt to changing bandwidth. We fill the client-side

buffer before each experiment so that the client can skip the
start phase that fills up the buffer with lower-quality chunks
than desired for the bandwidth. Our expectation is that the
client downloads the video chunks of the same quality from
start to end. We test three scenarios. First, the client down-
loads the video chunks after two seconds of delay between
each download. This simulates the well-known OFF period
in HAS. Second, the client downloads the chunks back to
back without any idle period between the downloads. This
scenario measures the HTTP transaction overhead. Third,
the client downloads the entire file with one HTTP request.
This is similar to traditional streaming, but it uses TCP as
the transport layer protocol. This serves as the base case for
performance comparison. For all experiments, we use a per-
sistent connection to download all chunks in a single TCP
connection.

Figure 4 shows the relative throughputs normalized by the
base case performance over various available network band-
widths. We mark the throughput of the base case as 100%.
Overall, we see a significant overhead in using HTTP/TCP
along with chunk-based downloading. Having the two-
second OFF period between chunk downloads degrades 10%
to 74% of the base case throughputs, and even without the
OFF period, the HTTP transaction alone reduces the perfor-
mance by 4% to 8%. Having an OFF period is detrimental
to the throughput since it initiates TCP slow start for every
chunk download. As the bandwidth-delay product (BDP)
gets larger, the throughput degradation is more noticeable
since the TCP connection severely underutilizes the pipe
due to repeated TCP slow start. Moreover, the problem may
get worse in the near future. Given that the higher-quality
video encoding such as 4K requires 30 to 40 Mbps [4] of
bandwidth for streaming, the TCP overhead in HAS will re-
main a significant problem. While [15] also discusses the
TCP behavior on video streaming, we quantify the impact of
the OFF period in various network environments.

Figure 5 shows the normalized throughputs of an HAS
client with an OFF period over various delays between a
client and a server. We choose 10 and 30 Mbps as available
bandwidths required for HD and UHD videos. As the delay
grows, the performance significantly degrades from the base
case since BDP increases, but even at 50 ms, the UHD video
shows as much as 10% performance reduction from the base
case throughput.

3. Requirements for Future Media Streaming
We summarize three key capabilities for future adaptive
streaming; (a) fast and fine-grain rate adaptation, (b) me-
dia transmission without the OFF period, and (c) reflecting
the real encoding information into rate selection. Unfortu-
nately, as the experiments in Section 2 imply, we find that
these requirements are often in conflict with the current HAS
operational model. Table 5 shows the requirements for desir-
able rate adaptation and the current limitations on the client
side. Client-driven rate adaptation could lead to suboptimal
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Requirements Limitations on client-driven streaming Possible solutions in server-driven streaming
Agile and fine-grain
rate adaptation

• Chunk-nature operating model
• Inflexible transport protocol

• Easy to implement with characteristics of MMT
• DCCP-based transmission

Transmission without
the OFF period

• Chunk-nature operating model
• Client cannot control the sending rate • Server controls the sending rate

Reflecting the
encoding information

• Extra delay for metadata requests
• Waste of network resource • Server has media encoding information

Avoid overheads
from transport protocol

• Possible slow start at every request
• Transaction overhead at every request

• No additional slow-start
• No additional transactions

Table 5. Comparison of two streaming systems

rate selection due to a lack of real encoding information, and
the reliable chunk delivery model limits efficient network re-
source utilization. Moreover, the chunk-based rate selection
often prevents agile adaptation and can generate ON-OFF
periods and HTTP transaction overheads for chunk requests.

In this section, we open our mind to address these defi-
ciencies in alternative streaming approaches and discuss the
trade-offs. Table 5 lays out the advantages of server-driven
streaming in achieving the requirements.

Revisiting server-driven streaming with MMT Is server-
driven rate adaptation really a bad idea? One argument for
client-driven video delivery is that it is more scalable since
it would significantly reduce the load on the server side.
But the proliferation of multicore CPUs and high memory
capacity on the server side and the rapid development of
cloud-based streaming service technology could alleviate the
issue. On the other hand, UDP-based server-driven video
delivery could face a serious deployment issue especially
due to wide adoption of network middleboxes. However,
we argue that at least the streaming services in controlled
environments like Telco-driven IPTV or video-on-demand
services could benefit more from the server-driven approach
for better resource utilization.

We briefly discuss a new video streaming standard called
MPEG Media Transport (MMT) [7], which addresses some
of the challenges in existing server-driven streaming pro-
tocols (e,g. RTP/RTSP) such as identifying the multiple
sources, and overhead from mismatch between the stor-
age and delivery media formats [24, 25]. An MMT me-
dia also consists of multiple video fragments called media
processing units (MPUs), and the MPUs are composed of
smaller media fragmented units (MFUs) that are decoded
independently (e.g., Network Abstraction Layer (NAL) unit
in H.264). The key difference from HAS is that the MMT
server mainly delivers the media on UDP with a standardized
packet structure defined by the MMT Protocol (MMTP).
The MMTP packet structure allows efficient packetizing
and fine-grain adaptation because it is agnostic to the me-
dia codec and it encodes only one MFU in each packet.

Utilizing media bitrate information In Section 2.2, we
have shown that reflecting the real encoding rate to rate se-
lection is critical for improving the user QoE. One solution
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Figure 6. Impact of managing bitrate disparity in fine-grain en-
coding set which is used in Section 2.2

is to provide the real video encoding rate to the client. The
challenge here is that if the encoding set size is large, deliv-
ering such metadata not only wastes network bandwidth but
complicates the client side logic. In addition, in live stream-
ing, downloading such metadata could produce extra latency,
which might interfere with real-time streaming. In contrast, a
server-driven approach could utilize the video encoding in-
formation more efficiently since the server already has the
information.

To show the benefit of utilizing the media encoding infor-
mation, we run experiments with two HAS clients (OSMF
and DASH) at a fixed bandwidth of 1.3 Mbps. To simulate
an ideal environment, we enforce the same bitrates for adver-
tised and real encoding rates over all chunks. Figure 6 shows
the results, which confirms that removing the bitrate dispar-
ity substantially improves the QoE by avoiding undesirable
oscillation. Figure 6(a) shows that the OSMF client chooses
the proper rate all the time, in contrast to the behavior in Fig-
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ure 3(b). Figure 6(b) shows that the bitrate mismatch leads to
higher instability (12.3) even in DASH, 3.3 times larger than
that of having the correct knowledge of real bitrate (3.7).

Agile adaptation & streaming w/o the OFF period As
shown earlier, the chunk-based downloading in HTTP makes
it difficult to adapt to sudden bandwidth change, and remov-
ing the OFF period is often hard without the help of the
server or a middlebox. Prior works try mitigating the ef-
fect of the OFF period in chunk rate selection by scheduling
chunk requests [20], or using a feedback control [14, 30, 32]
rather than removing the OFF periods.

In contrast, a server-driven approach with MMT would
make it easy for agile adaptation of video quality. Because
MFUs in an MMT medium can be easily dropped by the
server to fast respond to sudden network congestion without
interrupting video playback, the server can adjust the video
quality closely to varying bandwidth. On the other hand,
certain information such as the level of buffer occupancy and
real-time download throughput is known only to the client.
Therefore, we can maximize the QoE by having the client
notify such status information to the server, and by having
the server dynamically change the sending rate and video
quality by dropping the MFUs (or frames).

The server-driven approach also provides the benefit of
controlling the sending rate, and the server can remove the
OFF period easily by limiting the rate to the highest bitrate
of the media. Moreover, the server could use a UDP-based
congestion control algorithm such as TCP-friendly rate con-
trol (TFRC) [16]. TFRC provides the fairness among other
flows while it allows smooth switch in the sending rates even
when the available bandwidth abruptly changes.

To show the potential benefit of a server-driven approach
with MMT for agile adaptation, we implement a basic MMT
server and a client that periodically reports the measured
throughput to the server. The MMT server continuously
sends the media without the OFF period and adapts its send-
ing rate to the available bandwidth. It also reflects the real
encoding rate to its sending rate. Figure 7 shows the be-
havior of our preliminary system when the available band-
width drops from 3 Mbps to 2 Mbps. We observe that the
server adapts the rate fast to sudden bandwidth drop. Ac-
tually, even if some MFU could are lost due to congestion,

it will not affect the playback much because they could be
decoded separately. We do see the saw-tooth behavior in
bandwidth utilization because each GoP (Group of Pictures)
has a different size even with CBR encoding, but the level of
oscillation is much smaller than those in Figure 3 because of
server-side adaptation.

Fine-grain adaptation For fine-grain rate adaptation, one
might consider scalable video coding (SVC) [22, 26, 28].
SVC encodes a video into a new bitstream that has several
layers of subset bitstreams. By removing each layer, the
server can generate multiple bitstreams of a lower spatial or
temporal resolution from one bitstream. In addition, more
fine-grain encoding rates can be presented to the client by
selectively dropping the B-or P-frames that do not affect the
media playback. While SVC is promising, it could be more
easily integrated into the server side rather than the client-
based HAS model.

4. Conclusion and Future work
HAS is widely used for online video delivery due to its
easy deployment and simplicity. However, we have identi-
fied some of the fundamental problems that are directly re-
lated to the HAS operational model. These include subopti-
mal bandwidth estimation tied to the choice of chunk dura-
tion, poor bitrate selection due to lack of the real encoding
rate, and inefficient network bandwidth utilization due to de-
pendence of rigid transport protocols. To address these prob-
lems, we lay out requirements for future streaming, and re-
visit the idea of server-driven media streaming with MPEG
Media Transport. Barring the deployment barrier, we find
that the server-driven architecture is attractive in solving the
problems. In the future, we plan to fully implement our sys-
tem and compare it with HAS-based approaches in various
situations.
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