
Meeting the Real-time Constraints with Standard Ethernet in an
In-Vehicle Network

Youngwoo Lee1 and KyoungSoo Park1

Abstract— Vehicular networks have traditionally focused on
the real-time delivery of critical control messages for safe
car operation. Unfortunately, the real-time requirements often
cripple the development of flexible car applications by tying
the application network stack to underlying physical networks.
While popular real-time vehicular networks guarantee the
timely delivery of prioritized messages, they often lack in
bandwidth and flexibility, which limits the range of car network
applications.

In this work, we explore the idea of replacing the current
vehicular network with standard switched Ethernet, the most
popular LAN technology in computer networks. Ethernet is at-
tractive in providing high bandwidth at a low cost with easy and
flexible configuration. The most challenging part is to guarantee
the real-time delivery of mission-critical messages. We first show
that the soft message delivery latency of 10s to 100s milliseconds
can be easily met in 100 Mbps switched Ethernet despite co-
existence of high-bandwidth network applications. For meeting
the hard delivery latency on the order of 100 microseconds for
critical control messages, we propose limiting the path MTU to
the destination node with priority queuing from IEEE 802.1Q.
Our simulation shows that we can satisfy 100 microseconds of
latency even in a rich set of vehicular applications without any
modification of the application network stack.

I. INTRODUCTION

Modern vehicles typically have several tens of Electronic
Control Units (ECUs) that are connected by in-vehicle net-
works. These ECUs execute various automotive functional-
ities such as controlling engines, brakes, and transmissions,
as well as checking the status of the doors and seats. Recent
trend shows that a modern vehicle has about several tens of
million lines of source code for running the ECUs [1], and
the amount of code is likely to increase as the user demand
for convenience and safety grows. Such user demands would
include feeding various sensing data to help driver’s memory
and vision, and to increase the user reaction speed, and car
infortainment functionalities that can also interact with the
world outside the vehicle.

Most popular in-vehicle networks, however, are mainly
designed to support real-time communication, and they are
not well-suited for high-bandwidth applications that transmit
various sensing data. Moreover, these networks are too rigid
in terms of adopting a new set of automotive applications or
for changing the configuration of existing ECUs. It is very
challenging to support new software installation and upgrade
on existing in-vehicle networks [2].

*This work was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MEST) (No. 2010-0028680)

1Y. Lee and K. Park are with the Department of Electrical Engi-
neering, KAIST, Daejeon, South Korea ywlee@ndsl.kaist.edu,
kyoungsoo@ee.kaist.ac.kr

To remedy the problem, many researchers have recently
considered IEEE 802.3 Ethernet as the replacement of cur-
rent in-vehicle networks. Several automotive OEMs have
already designed a Ethernet-based network as the standard
medium for automotive applications [3]. Ethernet provides
a number of benefits compared with existing in-vehicle
networks. First, Ethernet supports high-bandwidth data com-
munication. Ethernet considered in vehicle networks typi-
cally supports 100 Mbps, which shows a significantly higher
bandwidth than 1 Mbps Controller Area Network (CAN) or
10 Mbps Flexray. Second, Ethernet is flexible and easy to
configure. It allows adding or removing a node on Ethernet
without any re-configuration. Third, it simplifies the devel-
opment of the networking stack of vehicular applications.
Car applications that need to communicate with ones on
a different network or using a different protocol would
need an application-layer gateway to translate the protocols.
This not only increases the development complexity but it
also makes it difficult to debug and test new applications.
Finally, many existing Internet applications already run well
on Ethernet. If Ethernet is adopted as the in-vehicle network,
many existing applications that use TCP/IP on Ethernet can
be easily ported to car environments. This would make the
user experience as close as possible to that of the Internet
computing environments.

One challenge in using Ethernet as the universal in-vehicle
network lies in meeting the real-time requirements of various
time-critical car applications. Since standard Ethernet does
not provide any quality-of-service (QoS) guarantee on the
minimum delay or bandwidth, one should be careful not to
miss any hard deadlines of certain message delivery. For
example, some critical control message in a car needs to
be delivered within a very small delay such as 100 µs [4].
Since a 1518-byte Ethernet message would take 122.08 µs
to be forwarded in a 100 Mbps Ethernet switch, if a control
message contends for the same destination switch port with a
large Ethernet frame, it would miss the deadline if the control
message happens to be scheduled after the large frame. While
several research works have studied using Ethernet as an
in-vehicle network [5], [6], [7], they conclude that it is
challenging to meet the most stringent real-time constraint of
a certain car message. Even the Ethernet protocols modified
for real-time applications such as IEEE 802.1 Audio/Video
Bridging (AVB) standard [7] and TTEthernet [8] are not
suitable for delivery guarantee within 100 µs.

In this paper, we tackle the problem of meeting the
end-to-end delay requirement in standard Ethernet for car
applications. We first show that standard switched Ethernet



with the IEEE 802.1Q support can satisfy most of soft end-
to-end delay requirements (e.g., within 10-100 ms of delay
requirement) in a practical car network topology. For time-
critical messages that need a 100 µs or lower delay bound,
we suggest limiting the maximum transmission unit (MTU)
of the paths that lead to the destination ECU for the critical
message. We show the overall network bootstrapping process
that satisfies all deadline requirements in car applications,
and show the evaluation results in a simulation setting.

II. BACKGROUND

A. Existing In-vehicle Networks

1) Controller Area Network: Controller Area Network
(CAN) [9] uses a broadcast bus to send and receive real-time
control messages at the speed of up to 1 Mbps. Each message
ranges from 1 to 8 bytes and has its own 11-bit message ID
that is uniquely assigned within the bus. The main benefit of
CAN is that it fully supports the real-time communication.
When a collision happens on the bus, the message with a
higher priority dominates the bus immediately.

Despite the popularity in an in-vehicle network, CAN
has a few serious limitations. First, CAN is limited in
bandwidth, which disallows any applications that require
high bandwidth. Second, CAN configuration is complex and
inflexible. Each CAN message should be registered first
with the sending and receiving ECUs. This process could
be complex and error-prone since an automobile may have
hundreds of distinct messages in the bus [10].

2) FlexRay: FlexRay has been developed to address
CAN’s limited bandwidth capacity. It supports high data
rates up to 10 Mbps and supports both time-triggered and
even-triggered communication. The maximum payload size
of FlexRay is 254 bytes, much larger than that of CAN (8
bytes).

FlexRay uses the time division multiple access (TDMA)
scheme for shared bus access. In time-triggered communi-
cation, only one ECU node can transmit the data at any
time. That is, each ECU is allocated its own time slot for
dedicated bus access. FlexRay also provides event-triggered
communication. Real-time messages are sent in the time-
triggered manner, and the remaining non-critical messages
are sent based on an event. This effectively helps improve
the bus utilization while meeting the real-time requirements.

Like in CAN, FlexRay also uses a message ID for data
communication, which requires each message ID to be
registered before sending a new message type. While event-
triggered messages make FlexRay more flexible than CAN,
the message ID registration process increases the application
development complexity.

B. Ethernet

Ethernet is the most popular LAN technology in com-
puter networking. Besides the benefit of easy configuration
and flexibility, its data rate has constantly increased from
10 Mbps to even 100 Gbps. Ethernet uses the carrier sense
multiple access with collision detect (CDMA/CD) method to
access a shared bus. An Ethernet node that wants to transmit

a message waits until the shared bus is ready for use. If
a message from one node collides with a message from
another node, both nodes will stop transmitting and wait
for a random amount of time with the exponential backoff
algorithm before retransmission. Due to this, a message
transfer could be delayed for a long time in case of many
consecutive collisions.

However, the collision problem in a shared bus disappears
in switched Ethernet since an Ethernet switch allows parallel
transfers of messages as long as their paths are different. If
a switch cannot forward the packets to a destination node
as fast as it receives, the internal queue could be filled up.
In this case, the switch takes two steps. First, it drops the
incoming packets that enter after the queue is full. Second,
the switch could send a pause frame to the sender, which
halts the transmission from the sender temporarily [11]. With
a pause frame, the switch could avoid packet drops, but it
could inject a long delay.

To use Ethernet in the in-vehicle network, there are two
things that need to be considered. The first thing is to ensure
real-time communication. As mentioned above, switched
Ethernet may drop or induce a long delay to a critical control
packet when some other nodes send contend for the same
destination. In addition, standard Ethernet does not enforce
any QoS mechanisms. This implies that an important packet
could have to wait until other packets in the queue are
drained. IEEE 802.1Q helps the situation by provisioning
a QoS prioritization scheme [12]. It requires slight modifica-
tion of the original Ethernet frame by adding an additional
32-bit field in the Ethernet header. The prioritization has 8
levels from 0 (the lowest priority) to 7 (the highest priority).
A packet with a priority level is handled differently by a
switch with its priority queuing algorithm. One could exploit
this feature to handle safety-critical packets to meet their
hard deadline requirements. The second thing is to curb
the electromagnetic emission. Ethernet has a high symbol
rate of 125 MBaud and such a rate creates a high level of
electromagnetic emissions in the critical FM radio band [6].
For this reason, OPENsig [3] selects a different 100 Mbps
Ethernet PHY since it is difficult to apply the standard
Ethernet PHY in an automobile.

III. SWITCHED ETHERNET IN A REAL-TIME
ENVIRONMENT

We first test whether standard Ethernet can be used to
deliver real-time messages in a realistic in-vehicle network.
We also gauge the benefit of IEEE 802.1Q to see if it helps
meet the deadlines of critical messages. For realistic simu-
lations, we extract the topology and traffic information from
the BMW research group [5]. The in-vehicle traffic includes
various data types such as control data, driver assistance
camera streaming, video and audio streaming, and bulk traffic
data. The control data includes virtually all time-critical
CAN and FlexRay messages, which has the highest real-
time priority. The camera data is used to deliver the outside
vision, which requires a large bandwidth with a medium
real-time constraint. The audio and video streaming data are



Node Name Frame Type Length [byte] Service Rate [ms] Throughput Destination Deadline[ms]
CTRL1 - CTRL4 UDP 20 uniform(10, 100) 1.6 Kbps 16 Kbps Head Unit 10 (CTRL1 - 100µs)
CAM1 - CAM3 UDP 786 0.25 25.1 Mbps Head Hnit 45
FCAM UDP 786 0.25 25.1 Mbps PUCAM 45
Audio UDP 1472 8.4 1.4 Mbps AVSink 150
Video UDP 1472 1 11.8 Mbps AVSink 150
Bulk Traffic TCP 1400 uniform(1,10) 1.12 Mbps - 11.2 Mbps Head Unit None

TABLE I. Traffic characteristics in our simulation.

CTRL1 

(100 𝜇𝑠) 

Control 

data 

CTRL2 

(10 𝑚𝑠) 

Control 

data 

CTRL3 

(10 𝑚𝑠) 

Control 

data 

CTRL4 

(10 𝑚𝑠) 

Control 

data 

CAM1 

(45 𝑚𝑠) 

CAM2 

(45 𝑚𝑠) 

FCAM 

(45 𝑚𝑠) 

CAM3 

(45 𝑚𝑠) 

HeadUnit 

AV_Audio 

(150 𝑚𝑠) 

PU_FCAM 

AV_Video 

(150 𝑚𝑠) 

Multiple flows Single flow 

Switch1 

AVSink 
BulkTraffic 

(None) 

Switch2 

Fig. 1: Simulated car network topology with OPNET.

mainly for entertainment, and they have the lowest priority
in delivery. The bulk traffic models several background TCP
connections between source nodes and Head Unit. Head
Unit is in charge of interpreting the delivered data. Figure 1
shows our simulation network topology and Table I presents
the detailed traffic characteristics. Service rate of uniform(x,
y) means that the next traffic period is chosen in uniform
between x and y. We draw the deadline for each traffic type
from previous literature [13].

We use OPNET [14] as a simulation tool, and use 3µs
as the switch packet processing delay, which is reasonable
for 100 Mbps Ethernet switches [15]. Each switch port is
assumed to have 4 priority queues that can hold up to
100 packets, which reflects a real implementation of IEEE
802.1Q in currently-available switches. CTRL1 is in charge
of the safety-critical traffic that has a 100 µs delay bound
with the highest priority (3). We give the next highest
priority (2) to other control traffic. Since the CAM data is
used for a driver assistant application, we give a normal
priority (1) to the CAM and FCAM traffic. All the other
traffic has the lowest priority level (0). In our simulation,
we use two priority queuing mechanisms. Packets with the
highest priority queue are scheduled by strict priority queuing
(SPQ) because they should be forwarded before any packets.
Other priority queues are scheduled by weighted fair queuing
(WFQ).

Table II shows our simulation results. Interestingly,
switched Ethernet satisfies all soft end-to-end delay require-
ments even without the IEEE 802.1Q mechanism. However,
this result is not too surprising since 100 Mbps switched
Ethernet is sufficient to prevent any packet queuing, which
leads to a small delay in packet forwarding. The link that
shows the highest throughput (up to 86.6 Mbps) is between
Switch1 and Head Unit that serves as the consumer of
the most traffic. Other links mostly show low bandwidth
consumption related with periodic control packets.

IEEE 802.1Q brings the benefit of limiting the maximum

delay of the high priority traffic. The control traffic with
prioritization has 30.4 to 83.1% smaller maximum end-to-
end delays than the ones without it. Under prioritization,
the CAM data packets get penalized since they compete for
the same destination port with the higher-priority control
traffic. However, since the bandwidth consumption by control
packets is low, the increased latency of the CAM data does
not affect its normal operation. The delays of FCAM and
PU FCAM (front camera streaming data and its consumer)
do not get affected by prioritization since their traffic paths
do not collide with other traffic.

The only problem with the table is that CTRL1 does
not meet the deadline with or without prioritization. While
prioritization greatly reduces the maximum delay to 130.02
µs from 214.89 µs, it is not enough to fall below the
hard deadline of 100 µs. This is because standard Ethernet
does not enforce preemptive scheduling. That is, even a
single regular Ethernet frame is being forwarded when a
CTRL1 packet just arrives, the CTRL1 packet could miss the
deadline since it takes more than 100 µs to finish forwarding
the previous packet. We consider the solution to this problem
in the next section.

IV. MEETING THE STRINGENT REAL-TIME DEADLINE
WITH PATH MTU

In this section, we find a solution that satisfies the hard
delay requirement of critical control messages with standard
Ethernet. The basic idea is to limit the payload size of lower
priority messages that compete for the same destination
port with the safety-critical messages while still enforcing
802.1Q. We find that this combination promises a timely de-
livery of the messages even with the 100 µs delay bound. We
note that this could reduce the effective bandwidth of lower
priority packets, but since safety-critical messages typically
require low bandwidth, it will not affect the bandwidth of
other applications too much.

Before advancing the scheme, we assume that all nodes
that exchange safety-critical messages are directly connected
to the same Ethernet switch. While we could develop a
method for a stacking switch scenario where a critical mes-
sage traverses multiple switches, the analysis becomes much
more complex with a small flexibility benefit. Given that
the number of nodes that exchange safety-critical messages
is typically small, we would rather choose to reduce the
complexity than to allow an arbitrary topology of such nodes.

To satisfy the hard delay requirement, we limit the maxi-
mum transmission unit (MTU) of the packets that share the
same destination. MTU is the maximum IP datagram size



Traffic Without prioritization With prioritization
Max. Min. Mean Max. Min. Mean

CTRL1 214.89 14.84 64.80 130.02 14.84 45.07
CTRL2 242.42 14.84 66.55 132.80 14.84 45.47
CTRL3 339.39 23.76 91.37 256.87 23.76 76.31
CTRL4 329.18 23.76 118.71 252.78 23.76 76.02
CAM1 155.59 137.40 143.45 169.93 137.40 149.98
CAM2 216.75 137.40 207.42 231.08 137.40 213.77
CAM3 234.97 209.68 215.78 251.74 214.43 224.15
FCAM 137.40 137.40 137.40 137.40 137.40 137.40
Audio 248.70 247.16 247.16 250.14 247.16 247.16
Video 252.89 247.16 248.71 253.08 247.16 248.76
BulkTraffic 443.62 357.84 390.11 439.83 357.84 391.07

TABLE II. Simulation results (end-to-end delays, unit: µs).

In-Vehicle Network 

Switch 

A1 ECU 

… 

D ECU … 
AN ECU 

… 

packet packet 

N ECUs 

ECU 

ECU 

… 

Fig. 2: Path MTU calculation.

that can be carried in a frame. The path MTU represents the
smallest MTU of the path between a source and a destination.
In computer networks, the path MTU can be obtained by
a couple of MTU discovery packets and ICMP responses.
However, we slightly modify the process to an end-to-end
query and response, and the detail will be discussed in
section VI.

Figure 2 shows one example. We assume that N ECUs,
(A1 to AN ), have safety-critical applications with the same
destination ECU, D. Since safety-critical applications are
typically control applications [4], these have control data
whose size is small (e.g., less than 20B) according to BWM’s
control data analysis [5]. We start with the case with one
ECU (N = 1) that sends a control packet to D with the
hard delay requirement. The total end-to-end delay can be
obtained by adding the packet transmission time (node to
switch and switch to node) and the waiting time in the switch.
The total delay from A1 to D is

{(8 ∗ s/(108[bits/sec]))} ∗ 2 + f (1)
seconds (if there is no packet in the switch queue) where s is
the maximum control packet size and f is the processing time
in the switch. Next, we calculate the maximum waiting time
of the packet in the switch. In the worst case, the control
packet has to wait for one full packet to be forwarded, and
we can calculate the worst-case waiting time as

{8 ∗ (i+MTU + 28 + i)}
(108[bits/sec])

(2)

seconds. Note that i is the 12-byte inter-frame gap (IFG), and
28 bytes are the Ethernet overhead (8 bytes of preamble, 14
bytes of the Ethernet header, 2 bytes of additional 802.1Q
header, and 4 bytes for a CRC field). Ethernet dictates to have
an IFG between Ethernet frames, and the expression above
reflects the case when a control packet arrives when the
previous packet waits for the IFG for its own transmission.
For the worst case, we need to add the transmission time of
the previous packet and the time for two IFGs.

If N ECUs simultaneously send their control packets with
hard delay deadlines, expression (2) should be modified to
wait for processing (N-1) previous packets with the same
priority in the queue. We calculate the worst-case waiting
time for a packet from A1 as

{8 ∗ (2i+MTU + 28) + 8 ∗ (s+ i) ∗ (N − 1)}
(108[bits/sec])

(3)

seconds. With expressions (1) and (3), we get the maximum
transmission time of the packet from A1. It must be smaller
than its own deadline, represented by D1. Finally, we can
get the MTU of the path.

MTU ≤ (108[bits/sec]) ∗ (D1 − f)
8

− (s+ i)(N + 1)− 28

This MTU guarantees that the packet from A1 arrives
within its own requirement delay regardless of other packets.
We further discuss the effect of the path MTU in section V.

V. EVALUATION AND DISCUSSION

In this section, we evaluate the effect of the path MTU by
simulation and discuss our assumptions in the simulation.

A. The Effect of Path MTU

We simulate the in-vehicle network traffic again with the
proposed path MTU. The CTRL1 traffic has the 100 µs delay
requirement, and its destination is Head Unit. We set the
MTU of the messages destined to Head Unit to 1012 bytes
according to our algorithm, which affects only BulkTraffic
packets in our case. The BulkTraffic packet payload size is
set to 972 bytes excluding 40 bytes of the TCP/IP headers.
Since the traffic throughput should be stable, we change the
service rate of BulkTraffic to uniform (0.694, 6.94) [ms],
instead of default service rate, uniform(1, 10) [ms].

Table III shows the end-to-end delays of all traffic. In
comparison with Table II, we see that all traffic has smaller
end-to-end delays with a smaller average delay. These results
are understandable since the smaller MTU would reduce
the message latency in the in-vehicle network. However, the
effective link utilization is worse due to the increased frame
overhead. This is because BulkTraffic now consumes more
packet headers to send the same amount of data with the
smaller MTU. Its maximum utilization of the link increases
to 97.32% with the new MTU from 96.78% with the default
MTU for the same amount of the traffic.

Figure 3 shows the impact of the controlling the path
MTU. We find that all CTRL1 packets now satisfy the hard
delay requirement, with the maximum end-to-end delay as
99.70 µs. This result validates that limiting the path MTU is
effective in satisfying the real-time delay requirement.



Source node Max. Min. Mean
CTRL1 99.70 14.84 43.54
CTRL2 100.41 14.84 43.77
CTRL3 189.43 23.76 73.21
CTRL4 185.27 23.76 73.46
CAM1 150.48 137.4 141.79
CAM2 215.75 137.4 206.87
CAM3 228.88 208.43 213.24
FCAM 137.40 137.40 137.40
Audio 250.15 247.16 247.17
Video 253.05 247.16 248.76
BulkTraffic 375.96 258.72 300.3

TABLE III. End-to-end delays in the limited MTU (unit:
µs).

B. Discussion

In section IV, we assume that source and destination of
automotive application traffic that has 100 µs delay require-
ment are connected by the same physical switch. While this
assumption reduces the design flexibility of an in-vehicle
network, we argue that our assumption is unavoidable to
some degree for efficient communication.

We show our point by one example. Let’s assume that the
CTRL3 and CTRL1 traffic in Figure 1 have 100 µs and 10
ms of deadlines respectively instead of the values in Table I.
Then, we need to set the MTU in the path from CTRL3 to
Head Unit that crosses the switches. We calculate the path
MTU of the links as in Section IV. In this topology, any
message that comes from Switch2 to Head Unit should have
the MTU as small as 424 bytes. It means that all traffic
that travels between the two switches must limit their packet
size. As we see in this example, even if there are only
two switches between the source and the destination, the
MTU could decrease rapidly, and it severely throttles the
effective bandwidth of other applications. The applications
that travel the links have only 28.3% of the default MTU
and 41.9% of the MTU in a single-switch case. This result
suggests that safety-critical applications that have hard end-
to-end delay requirements are recommended to be clustered
in one physical switch not to affect other applications.

C. Network topology for the soft requirement

We calculate the maximum number of Ethernet switch
hops for the network topology of an application that has the
soft end-to-end delay requirement in the range of 10 to 100
ms. As mentioned earlier, we assume that there is no MTU
limitation at links between the switches, since the application
with the hard delay requirement does not travel across the
switches. Thus, the application with the soft requirement now
has the highest priority in the paths that cross the switches.
Using this fact, we calculate the maximum end-to-end delay
of a control packet while it travels M consecutive switches.
We assume that an application sends the control data that has
the 10 ms deadline. We ignore the effects of other packets
that have the same priority as the control data because the
transmission delay of the control packet (e.g. 5.92 µs) is
much smaller than 10 ms.

99.70㎲ (Max) 

0

20

40

60

80

100

120

0 100 200 300 400 500 600

E
n

d
-t

o
-e

n
d

 D
el

a
y

 (
㎲

) 

Time (sec) 

CTRL1 Traffic

Fig. 3: End-to-end delays of the CTRL1 traffic.

(8∗s/108[bits/sec]) ∗ (M + 1) + f ∗M < 10 ∗ 10−3[sec]

+ {8 ∗ (2i+ S) ∗M/108[bits/sec]}

If we solve the inequality above, we can find the maximum
number of switches that can be connected for the control
packet without violating the soft delay. Note that S is the
maximum Ethernet frame size, 1518 bytes, plus 8 bytes of
preamble. We find that an application that has the 10 ms soft
delay can have as many as 76 switches between the sender
and the receiver. Since an in-vehicle network has only several
tens of ECUs, soft requirements could be easily met virtually
in any topology. In other words, except for the hard end-to-
end delay requirement, we rarely need to worry about other
real-time requirements in any reasonable 100 Mbps switched
Ethernet-based in-vehicle networks.

VI. STANDARD ETHERNET IN AN IN-VEHICLE NETWORK

In this section, we discuss the bootstrapping process and
its related issues as Ethernet replaces conventional in-vehicle
networks. During the bootstrapping, the IP addresses of
ECUs are assigned automatically and the path MTU of each
application is set to satisfy the real-time constraints of the
system.

Figure 4 shows the bootstrapping process. We assume each
in-vehicle network supports DHCP and DNS servers for the
ECUs, and the applications use TCP/IP-based networking.
Bootstrapping consists of following procedures.

1) Applications at each ECU register their delay require-
ments and DNS names.

2) Each ECU obtains its own IP address by DHCP in the
in-vehicle network

3) Each application requests the IP address of its des-
tination by DNS lookup from a DNS server for the
in-vehicle network. The DNS server information is
downloaded by DHCP.

4) Each ECU requests a destination MAC address by the
IP address of the destination. (ARP)

5) Each application sender sends a path MTU query to
its destination.

6) The destination ECU responds with the MTU, and the
sender ECU maintains a table of (MTU, destination)
pairs.



 

 

Application 
(Deadline : 100 𝜇𝑠) 

 

ECU 

App. App. 

App. App. 

App. App. 

… 
Head Unit 

(DNS name) 

Switch Head unit 

In-Vehicle Network 
Master 

ECU 

Small MTU 

Implemented application 

with DNS name 
1) 

Claim addresses with 

networking protocols 

(its own and destination) 

2) - 4) 

App. with critical deadline 

App. Normal Application 

Send MTU query 

Response the MTU 

5) 

6) 

Fig. 4: Bootstrapping process.

7) Bootstrapping is done.
What we suggest here is to migrate the in-vehicle network

to a networking environment similar to a typical Ethernet-
based LAN. We view each ECU as a separate node with its
own domain name, and applications communicate with each
other by IP addresses and port numbers. Like in a typical
LAN environment, each ECU has IP and MAC addresses to
communicate with other ECUs unlike conventional message
ID-based communication in existing in-vehicle networks. We
also encourage to write the networking code for car appli-
cations using domain names to ensure flexible management
of the code. For this, we need a default DNS and DHCP
server for each car network, and we believe we can run a
lightweight version on a dedicated ECU which we call master
ECU.

We note a few issues related to bootstrapping. First, an
automobile does not need to repeat the entire bootstrapping
process at every bootup. Most information can be cached
across bootups and a full bootstrapping is needed only when
the ECU/application configuration is updated. That is, the
master ECU can check whether there is configuration update
and skip IP address assignment and MTU setting if the
configuration has not changed. Second, the bootstrapping
process should finish in a short time. If a user starts her
own automobile even after ECU or automotive application
updates, she expects her car to move in a few 100 mil-
liseconds. We are currently building a prototype car network
using Ethernet, and plan to measure and optimize the delay of
each step. Last, the bootstrapping process should be flexible
enough to automatically allow a new configuration in the
car network at the event of adding and removing ECUs
or applications. This would help provide plug-and-play of
various car components while guaranteeing real-time and
safety requirements.

VII. CONCLUSION

In this paper, we have presented the possibility of replac-
ing conventional in-vehicle networks with standard Ethernet.
We have proposed a simple yet effective scheme that satisfies
even the hard real-time delay constraint of a few 100 µs for

time-critical car applications. The key idea is to limit the
MTU of the messages that have the same destination port as
the time-critical control message while benefiting from IEEE
802.1Q. Unlike previous approaches, our scheme does not
require any modification of the Ethernet protocol itself, and
we expect it would greatly accommodate easy and flexible
car application development without typing the application
logic to any specifics of underlying physical networks. We
have also shown how we bootstrap the Ethernet-based car
network that allows flexible communication based on the
IP address. We believe the new car network would present
a rich development environment that could produce many
interesting new car applications that sometimes require high
bandwidth without worrying about the real-time deadline
requirements in a car.

REFERENCES

[1] “This Car Runs on Code,” 2009. [Online]. Available: http:
//spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code/

[2] R. Anthony, A. Rettberg, D. Chen, I. Jahnich, G. de Boer, and C. Eke-
lin, “Towards a Dynamically Reconfigurable Automotive Control
System Architecture,” in Embedded System Design: Topics, Techniques
and Trends, ser. IFIP Advances in Information and Communication
Technology, A. Rettberg, M. Zanella, R. Dmer, A. Gerstlauer, and
F. Rammig, Eds. Springer Boston, 2007, vol. 231, pp. 71–84.

[3] OPEN Alliance SIG, http://opensig.org/about.php, OPEN Alliance Std.
[4] Y. Kim and M. Nakamura, “Automotive ethernet network require-

ments.”
[5] H.-T. Lim, K. Weckemann, and D. Herrscher, “performance study

of an in-car switched ethernet network without prioritization,” in
Proceedings of the Third international conference on Communication
technologies for vehicles, ser. Nets4Cars/Nets4Trains’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 165–175. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1987310.1987328

[6] P. Hank, T. Suermann, and S. Mller, “Automotive ethernet, a holistic
approach for a next generation in-vehicle networking standard,” in
Advanced Microsystems for Automotive Applications 2012, G. Meyer,
Ed. Springer Berlin Heidelberg, 2012, pp. 79–89. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-29673-4 8

[7] M. Rahmani, R. Steffen, K. Tappayuthpijarn, E. Steinbach, and
G. Giordano, “Performance analysis of different network topologies
for in-vehicle audio and video communication,” in Telecommunication
Networking Workshop on QoS in Multiservice IP Networks, 2008. IT-
NEWS 2008. 4th International, feb. 2008, pp. 179 –184.

[8] E. MATZOL, “Ethernet in automotive networks.”
[9] O. I. de Normalización, ISO 11898 : Road Vehicles : Interchange

of Digital Information : Controller Area Network (CAN) for
High-speed Communication. ISO, 1993. [Online]. Available: http:
//books.google.co.kr/books?id=b506cgAACAAJ

[10] R. Davis, A. Burns, R. Bril, and J. Lukkien, “Controller area
network (can) schedulability analysis: Refuted, revisited and revised,”
Real-Time Systems, vol. 35, pp. 239–272, 2007. [Online]. Available:
http://dx.doi.org/10.1007/s11241-007-9012-7

[11] L. Martini, E. Rosen, N. El-Aawar, and G. Heron, “Encapsulation
methods for transport of ethernet over mpls networks,” RFC4448,
April, 2006.

[12] N. Ek, “Ieee 802.1 p, q-qos on the mac level,” Apr, vol. 24, pp. 0003–
0006, 1999.

[13] H.-T. Lim, D. Herrscher, and F. Chaari, “Performance comparison
of ieee 802.1q and ieee 802.1 avb in an ethernet-based in-vehicle
network,” in Computing Technology and Information Management
(ICCM), 2012 8th International Conference on, vol. 1, april 2012,
pp. 1 –6.

[14] OPNET, http://www.opnet.com.
[15] M. Rahmani, K. Tappayuthpijarn, B. Krebs, E. Steinbach, and R. Bo-

genberger, “Traffic shaping for resource-efficient in-vehicle communi-
cation,” Industrial Informatics, IEEE Transactions on, vol. 5, no. 4,
pp. 414 –428, nov. 2009.


