
S2E: A Platform for
In-Vivo Multi-Path Analysis of Software Systems

Vitaly Chipounov, Volodymyr Kuznetsov, George Candea

School of Computer and Communication Sciences

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
{vitaly.chipounov,vova.kuznetsov,george.candea}@epfl.ch

Abstract

This paper presents S2E, a platform for analyzing the properties and
behavior of software systems. We demonstrate S2E’s use in devel-
oping practical tools for comprehensive performance profiling, re-
verse engineering of proprietary software, and bug finding for both
kernel-mode and user-mode binaries. Building these tools on top of
S2E took less than 770 LOC and 40 person-hours each.

S2E’s novelty consists of its ability to scale to large real sys-
tems, such as a full Windows stack. S2E is based on two new ideas:
selective symbolic execution, a way to automatically minimize the
amount of code that has to be executed symbolically given a target
analysis, and relaxed execution consistency models, a way to make
principled performance/precision trade-offs in complex analyses.
These techniques give S2E three key abilities: to simultaneously
analyze entire families of execution paths, instead of just one exe-
cution at a time; to perform the analyses in-vivo within a real soft-
ware stack—user programs, libraries, kernel, drivers, etc.—instead
of using abstract models of these layers; and to operate directly on
binaries, thus being able to analyze even proprietary software.

Conceptually, S2E is an automated path explorer with modular
path analyzers: the explorer drives the target system down all ex-
ecution paths of interest, while analyzers check properties of each
such path (e.g., to look for bugs) or simply collect information (e.g.,
count page faults). Desired paths can be specified in multiple ways,
and one can either combine existing analyzers to build a custom
analysis tool, or write new analyzers using the S2E API.

Categories and Subject Descriptors D.2.4 [Software/Program

Verification]

General Terms Reliability, Verification, Performance, Security

1. Introduction

System developers routinely need to analyze the behavior of what
they build. One basic analysis is to understand observed behavior,
such as why a given web server is slow on a SPECweb benchmark.
More sophisticated analyses aim to characterize future behavior in
previously unseen circumstances, such as what will a web server’s
maximum latency and minimum throughput be, once deployed at

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’11, March 5–11, 2011, Newport Beach, California, USA.
Copyright © 2011 ACM 978-1-4503-0266-1/11/03. . . $10.00

a customer site. Ideally, system designers would also like to be
able to do quick what-if analyses, such as determining whether
aligning a certain data structure on a page boundary will avoid all
cache misses and thus increase performance. For small programs,
experienced developers can often reason through some of these
questions based on code alone. The goal of our work is to make it
feasible to answer such questions for large, complex, real systems.

We introduce in this paper a platform that enables easy con-
struction of analysis tools (like oprofile, valgrind, bug finders, re-
verse engineering tools) while simultaneously offering the follow-
ing three properties: (1) efficiently analyze entire families of exe-
cution paths; (2) maximize realism by running the analyses within
a real software stack; and (3) ability to handle binaries. We explain
these properties below.

First, predictive analyses often must reason about entire fami-
lies of paths through the target system, not just one path. For exam-
ple, security analyses must check that there exist no corner cases
that could violate a desired security policy; recent work has em-
ployed model checking [28] and symbolic execution [11] to find
bugs in real systems—these are all multi-path analyses. One of
our case studies demonstrates multi-path analysis of performance
properties: instead of profiling solely one execution path, we derive
performance envelopes that characterize the performance of entire
families of paths. Such analyses can check real-time requirements
(e.g., that an interrupt handler will never exceed a given bound on
execution time), or can help with capacity planning (e.g., deter-
mine how many web servers to provision for a web farm). In the
end, properties shown to hold for all paths constitute proofs, which
are in essence the ultimate prediction of a system’s behavior.

Second, an accurate estimate of program behavior often requires
taking into account the whole environment surrounding the ana-
lyzed program: libraries, kernel, drivers, even CPU architecture—
in other words, it requires in-vivo1 analysis. Even small programs
interact with their environment (e.g., to read/write files or send/re-
ceive network packets), so understanding program behavior re-
quires understanding the nature of these interactions. Some tool
execute the real environment, but allow calls from different execu-
tion paths to interfere inconsistently with each other [12, 18]. Most
approaches abstract away the environment behind a model [2, 11],
but writing abstract models is labor-intensive (taking in some cases
multiple person-years [2]), they are rarely 100% accurate, and they

1 In vivo is Latin for “within the living” and refers to experimenting using
a whole live system; in vitro uses a synthetic or partial system. In life sci-
ences, in vivo testing—animal testing or clinical trials—is often preferred,
because, when organisms or tissues are disrupted (as in the case of in vitro
settings), results can be substantially less representative. Analogously, in-
vivo program analysis captures all interactions of the analyzed code with its
surrounding system, not just with a simplified abstraction of that system.

265

tend to lose accuracy as the modeled system evolves. It is therefore
preferable that analyzed programs interact directly with their real
environment in a way that is consistent with multi-path analysis.

Third, real systems are made up of many components from
various vendors; access to all corresponding source code is rarely
feasible and, even when source code is available, building the code
exactly as in the shipped software product is difficult [5]. Thus, in
order to be practical, analyses ought to operate directly on binaries.

Scalability is the key challenge of performing analyses that are
in-vivo, multi-path, and operate on binaries. Going from single-
path analysis to multi-path analysis turns a linear problem into an
exponential one, because the number of paths through a program
increases exponentially in the number of branches—the “path ex-
plosion” problem [7]. It is therefore not feasible today to execute
fully symbolically an entire software stack (programs, libraries, OS

kernel, drivers, etc.) as would be necessary if we wanted consistent
in-vivo multi-path analysis.

We describe in this paper S2E, a general platform for developing
multi-path in-vivo analysis tools that are practical even for large,
complex systems, such as an entire Windows software stack. First,
S2E simultaneously exercises entire families of execution paths in a
scalable manner by using selective symbolic execution and relaxed
execution consistency models. Second, S2E employs virtualization
to perform the desired analyses in vivo; this removes the need
for the stubs or abstract models required by most state-of-the-art
symbolic execution engines and model checkers [3, 11, 18, 28, 35].
Third, S2E uses dynamic binary translation to directly interpret x86
machine code, so it can analyze a wide range of software, including
proprietary systems, even if self-modifying or JITed, as well as
obfuscated and packed binaries.

The S2E platform offers an automated path exploration mech-
anism and modular path analyzers. The explorer drives in parallel
the target system down all execution paths of interest, while ana-
lyzers check properties of each such path (e.g., to look for bugs)
or simply collect information (e.g., count page faults). An analysis
tool built on top of S2E glues together path selectors with path ana-
lyzers. Selectors guide S2E’s path explorer by specifying the paths
of interest: all paths that touch a specific memory object, paths in-
fluenced by a specific parameter, paths inside a target code module,
etc. Analyzers can be pieced together from S2E-provided analyzers,
or can be written from scratch using the S2E API.

S2E comes with ready-made selectors and analyzers that pro-
vide a wide range of analyses out-of-the-box. The typical S2E user
only needs to define in a configuration file the desired selector(s)
and analyzer(s) along with the corresponding parameters, start up
the desired software stack inside the S2E virtual machine, and run
the S2E launcher in the guest OS, which starts the desired applica-
tion and communicates with the S2E VM underneath. For example,
one may want to verify the code that handles license keys in a
proprietary program, such as Adobe Photoshop. The user installs
the program in the S2E Windows VM and launches the program
using s2e.exe C:\Program Files\Adobe\Photoshop. From inside
the guest OS, the s2e.exe launcher communicates with S2E via
custom opcodes (described in §4). In the S2E configuration file,
the tester may choose a memory checker analyzer along with a
path selector that returns a symbolic string whenever Photoshop
reads HKEY LOCAL MACHINE\Software\Photoshop\LicenseKey
from the Windows registry. S2E then automatically explores the
code paths in Photoshop that are influenced by the value of the
license key and looks for memory safety errors along those paths.

Developing a new analysis tool with S2E takes on the order of
20-40 person-hours and a few hundred LOC. To illustrate S2E’s gen-
erality, we present here three very different tools built using S2E: a
multi-path in-vivo performance profiler, a reverse engineering tool,
and a tool for automatically testing proprietary software.

This paper makes the following four contributions:

• Selective symbolic execution, a new technique for automatic
bidirectional symbolic–concrete state conversion that enables
execution to seamlessly and correctly weave back and forth
between symbolic and concrete mode;

• Execution consistency models, a systematic way to reason
about the trade-offs involved in the approximation of paths in
analyses that employ mixed concrete/symbolic execution;

• A general platform for performing diverse in-vivo multi-path
analyses in a way that scales to large real systems;

• The first use of symbolic execution in performance analysis.

In the rest of the paper, we describe selective symbolic execu-
tion (§2), present the execution consistency models (§3), the use
of S2E for developing analysis tools (§4), the S2E prototype (§5),
evaluation (§6), related work (§7), and conclusions (§8).

2. Selective Symbolic Execution

In devising a way to efficiently exercise entire families of paths, we
were inspired by the successful use of symbolic execution [21] in
automated software testing [11, 18]. The idea is to treat a program
as a superposition of possible execution paths. For example, a
program that is all linear code except for one conditional statement
if (x > 0) then ... else ... can be viewed as a superposition of two
possible paths: one for x > 0 and another one for x ≤ 0. To
exercise all paths, it is not necessary to try all possible values of x,
but rather just one value greater than 0 and one value less than 0.

We unfurl this superposition of paths into a symbolic execution
tree, in which each possible execution corresponds to a path from
the root of the tree to a leaf corresponding to a terminal state. The
mechanics of doing so consist of marking variables as symbolic at
the beginning of the program, i.e., instead of allowing a variable x

to take on a concrete value 5, it is viewed as a superposition λ of all
possible values x could take. Then, any time a branch instruction
conditioned on predicate p depends (directly or indirectly) on x,
execution is split into two executions Ei and Ek, two copies of
the program’s state are created, and Ei’s path remembers that the
variables involved in p must be constrained to make p true, while
Ej’s path remembers that p must be false.

The process repeats recursively: Ei may further split into Eii

and Eik , and so on. Every execution of a branch statement creates
a new set of children, and thus what would normally be a linear
execution (if concrete values were used) now turns into a tree
of executions (since symbolic values are used). A node s in the
tree represents a program state (a set of variables with formulae
constraining the variables’ values), and an edge si → sj indicates
that sj is si’s successor on any path satisfying the constraints in
sj . Paths in the tree can be pursued simultaneously, as the tree
unfurls; since program state is copied, the paths can be explored
independently. Copy-on-write is used to make this process efficient.

S2E is based on the key observation that often only some fami-
lies of paths are of interest. For example, one may want to exhaus-
tively explore all paths through a small program, but not care about
all paths through the libraries it uses or the OS kernel. This means
that, when entering that program, S2E should split executions to ex-
plore the various paths, but whenever it calls into some other part
of the system, such as a library, multi-path execution can cease and
execution can revert to single-path. Then, when execution returns
to the program, multi-path execution must be resumed.

Multi-path execution corresponds to expanding a family of
paths by exploring the various side branches as they appear; switch-
ing to single-path mode is like corseting the family of paths. When
multi-path exploration is on, the tree grows in width and depth;

266

when off, the tree only grows in depth. It is for this reason that we
think of S2E’s multi-path exploration as being elastic. S2E turns
multi-path off whenever possible, to trim the execution tree so as
to only include paths that are of interest for the target analysis.

S2E’s elasticity of multi-path exploration is key in being able
to perform in-vivo multi-path exploration of programs inside com-
plex systems, like Windows. By combining elasticity with virtu-
alization, S2E offers the illusion of symbolically executing a full
software stack, while actually executing symbolically only select
components. In particular, by concretely (i.e., non-symbolically)
executing libraries and the OS kernel, S2E allows a program’s paths
to be explored efficiently without having to model its surrounding
environment. We refer to this as selective symbolic execution.

Interleaving of symbolic execution phases with concrete phases
must be done carefully, to preserve the meaningfulness of the
explored execution. For example, say we wish to analyze a program
P in multi-path (symbolic) mode, but none of its libraries Li

are to be explored symbolically. If P has a symbolic variable n

and calls strncpy(dst,src,n) in Lk , S2E must convert n to
some concrete value and invoke strncpy with that value. This is
straightforward: solve the current path constraints with a constraint
solver and get some legal value for n (say n=5) and call strncpy.
But what happens to n after strncpy returns? Variable dst will
contain n=5 bytes, whereas n prior to the call was symbolic—can
n still be treated symbolically? The answer is yes, if done carefully.

In S2E, when a symbolic value is converted to concrete (n : λ→
5), the family of executions is corseted. When a concrete value is
converted to symbolic (n : 5 → λ), the execution family is allowed
to expand. The process of doing this back and forth is governed by
the rules of an execution consistency model (§3). For the above
example, one might require that n be constrained to value 5 in all
executions following the return from strncpy. However, doing so
may exclude a large number of paths from the analysis. In §3, we
describe systematic and safe relaxations of execution consistency.

We now describe the mechanics of switching back and forth be-
tween multi-path (symbolic) and single-path (concrete) execution
in a way that execution stays consistent. We know of no symbolic
execution engine that has the machinery for efficiently and flexibly
crossing the symbolic/concrete boundary both back and forth.

Fig. 1 provides a simplified example of using S2E: an applica-
tion app uses a library lib on top of an OS kernel. The target analysis
requires to symbolically execute lib, but not app or kernel. Func-
tion appFn in the application calls a library function libFn, which
eventually invokes a system call sysFn. Once sysFn returns, libFn
does some further processing and returns to appFn. When execu-
tion crosses into the symbolic domain (shaded) from the concrete
domain (white), the execution tree (right side of Fig. 1) expands.
When execution returns to the concrete domain, the execution tree
is corseted and does not add any new paths, until execution returns
to the symbolic domain. Some paths may terminate earlier than oth-
ers (e.g., due to a crash or a successful return) and not split further.

We now describe the two directions in which execution can
cross the concrete/symbolic boundary.

2.1 Concrete → Symbolic Transition

When appFn calls libFn, it does so by using concrete arguments;
the simplest conversion is to use an S2E selector to change the
concrete arguments into symbolic ones, e.g., instead of libFn(10)

call libFn(λ). One can additionally opt to constrain λ, e.g., λ ≤ 15.
Once this transition occurs, S2E executes libFn symbolically

using the (potentially constrained) argument(s) and simultaneously
executes libFn with the original concrete argument(s) as well. Once
exploration of libFn completes, S2E returns to appFn the concrete
return value resulting from the concrete execution, but libFn will
have been explored symbolically as well. In this way, the execution

app

app

lib

lib

kernel

app

lib

kernel

libFn

sysFn

appFn

concrete domain

sy

m
bolic domain

Figure 1: Multi-path/single-path execution: three different modules (left)
and the resulting execution tree (right). Shaded areas represent the multi-
path (symbolic) execution domain, while the white areas are single-path.

of app is consistent, while at the same time S2E exposes to the
analyzer plugins those paths in lib that are rooted at libFn. The
concrete domain is unaware of libFn being executed in multi-path
mode. All paths execute independently, and it is up to the S2E

analyzer plugins to decide whether, besides observing the concrete
path, to also look at the symbolic paths.

2.2 Symbolic → Concrete Transition

Dealing with the libFn→sysFn call is more complicated. Say libFn
has the code shown in Fig. 2, and was called with an unconstrained
symbolic value x ∈ (−∞,+∞). At the first if branch instruction,
execution forks into one path along which x ∈ (−∞, 5) and
another path where x ∈ [5,+∞). These are referred to as path
constraints, as they constrain the values that x can take on that
path. Along the then-branch, a call to sysFn(x) must be made. This
requires x to be concretized, since sysFn is in the concrete domain.
Thus, S2E chooses a value, say x = 4, that is consistent with the
x ∈ (−∞, 5) constraint and performs the sysFn(4) call.

int M=...;

void libFn(int x) {

 if (x<5) {

 buf=sysFn(x);

 if (x<0)

 M=M/2;

 }

}

x<5

x ∈ (−∞, +∞)

x ∈ (−∞, 5) x ∈ [5, +∞)

Path constraints

Figure 2: The libFn function makes a system call sysFn.

Note that S2E actually employs lazy concretization: it converts
the value of x from symbolic to concrete on-demand, only when the
concretely running code branches on x. This is an important opti-
mization when doing in-vivo symbolic execution, because much
data can be carried through the layers of the software stack with-
out conversion. For example, when a program writes a buffer of
symbolic data to the filesystem, there are usually no branches in
the kernel or the disk device driver that depend on this data, so the
buffer can pass through unconcretized and be written in symbolic
form to the virtual disk, from where it will eventually be read back
in its symbolic form. For the sake of clarity, we will assume in the
remainder of this section eager (non-lazy) concretization.

Once sysFn completes, execution returns to libFn in the sym-
bolic domain, and the path constraints must be updated to reflect
that now x = 4. This is not only because x has been concretized,
but also because sysFn’s return value is correct only under this con-
straint (i.e., all computation in sysFn was done assuming x = 4).
Furthermore, sysFn may also have had side effects that are equally
intimately tied to the x = 4 constraint. With this constraint, execu-
tion of libFn can continue, and correctness is fully preserved.

267

The problem, however, is that this constraint corsets the family
of future paths that can be explored from this point on: x can no
longer take all values in (−∞, 5) so, if subsequently there is a
branch of the form if (x < 0) ..., the then-branch will no longer
be feasible due to the added x = 4 constraint. This is referred to
as “overconstraining”: the constraint is not introduced by features
of libFn’s code, but rather as a result of concretizing x to call
into the concrete domain. We think of x = 4 as a soft constraint
imposed by the symbolic/concrete boundary, while x ∈ (−∞, 5)
is a hard constraint imposed by libFn’s code. Whenever a branch
in the symbolic domain is disabled because of a soft constraint,
it is possible to go back in the execution tree and pick another
value for the soft constraint that would enable that branch. As
will be explained later, S2E can track branch conditions in the
concrete domain, which helps redo the call in a way that re-enables
subsequent branches.

The “overconstraining” problem has two components: (a) the
loss of paths that results directly from the concretization of x, and
(b) the loss of paths that results indirectly via the constrained return
value and side effects. Due to the fact that S2E implements VM state
in a way that is shared between the concrete and symbolic domain
(more details in §5), return values and side effects can be treated
using identical mechanisms. We now discuss how the constraints
are handled under different consistency models.

3. Execution Consistency Models

The traditional assumption about system execution is that the state
at any point in time is consistent, i.e., there exists a feasible path
from the start state to the current state. However, there are many
analyses for which this assumption is unnecessarily strong, and the
cost of providing such consistency during multi-path exploration
is often prohibitively high. E.g., when doing unit testing, one typ-
ically exercises the unit in ways that are consistent with the unit’s
interface, without regard to whether all those paths are indeed fea-
sible in the integrated system. This is both because testing the entire
system in a way that exercises all paths through the unit is too ex-
pensive, and because exercising the unit as described above offers
higher confidence in its correctness in the face of future use.

S2E aims to be a general platform for system analyses, so it
provides several levels of execution consistency, to enable users to
make the right trade-offs. In this section, we take a first step to-
ward systematically defining alternate execution consistency mod-
els (§3.1), after which we explain how these different models dic-
tate the conversions applied upon transition between the analyzed
unit and environment (§3.2). In §3.3 we survey some of the ways in
which consistency models are implemented in other analysis tools.

3.1 Model Definitions

The key distinction between execution consistency models is which
execution paths are admissible under that model. Choosing an ap-
propriate consistency model is a trade-off between how “realistic”
the admitted paths are vs. the cost of enforcing the required model.
The appropriateness of the trade-off is determined by the nature of
the analysis, i.e., by how the feasibility of different paths affects
completeness and soundness of the analysis.

In this section we use the term system to denote the com-
plete software system under analysis, including the application pro-
grams, libraries, and the operating system. We use the term unit to
denote the part of the system that is to be analyzed. A unit could
encompass different parts of multiple programs, libraries, or even
parts the operating system itself. We use the term environment to
denote everything in the system except the unit. Informally, the sys-
tem is the union of the environment and the target unit of interest.

gl
oballylo

ca
lly feasible

sta
tically feasible

f e a s i b l e

When defining a model, we think in
terms of which paths it included vs. ex-
cludes. Following the circle diagram on
the right, an execution path can be stat-

ically feasible, in the sense that there
exists a path in the control flow graph
(CFG) corresponding to the execution in
question. A subset of the statically feasi-
ble paths are locally feasible in the unit,
in the sense that the execution is consistent with both the CFG and
with the restrictions on control flow imposed by the data-related
constraints within the unit. Finally, a subset of locally feasible paths
is globally feasible, in the sense that their execution is additionally
consistent with control flow restrictions imposed by data-related
constraints in the environment. Observing only the code executing
in the unit, with no knowledge of code in the environment, it is im-
possible to tell apart locally feasible from globally feasible paths.

We say that a model is complete if every path through the unit,
that corresponds to some globally feasible path through the system,
will eventually be discovered by exploration done under that model.
A model is consistent if, for every path through the unit admissible
by the model, there exists a corresponding globally-feasible path
through the system (i.e., the system can run concretely that way).

We now define several points that we consider of particular in-
terest in the space of possible consistency models, progressing from
strongest to weakest consistency. They are summarized in Fig. 3
using a “feasibility circles” representation. Their completeness and
consistency are summarized in Table 1. We invite the reader to fol-
low Fig. 3 while reading this section.

Model Consistency Completeness Use Case
SC-CE consistent incomplete Single-path profiling/testing of units

having a limited number of paths
SC-UE consistent incomplete Analysis of units that generate hard-

to-solve constraints (e.g., cryptogra-
phy)

SC-SE consistent complete Sound and complete verification
without false positives/negatives,
testing of tightly-coupled systems
with fuzzy unit boundaries.

LC locally con-
sistent

incomplete Testing and profiling while avoiding
false positives in the unit

RC-OC inconsistent complete Reverse engineering: extract consis-
tent path segments

RC-CC inconsistent complete Quick traversal of the CFG for dy-
namic disassembly of a binary

Table 1: S2E consistency models: completeness, consistency and use cases.
Each use case is assigned to the weakest model it can be accomplished with.

3.1.1 Strict Consistency (SC)

The strongest form of consistency is one that admits only the
globally consistent paths. For example, the concrete execution of a
program always obeys the strict consistency (SC) model. Moreover,
every path admitted under the SC model can be mapped to a certain
concrete execution of the system starting with certain concrete
inputs. Sound analyses produce no false positives under SC.

We define three subcategories of SC based on what information
is taken into account when exploring new paths.

Strictly-Consistent Concrete Execution (SC-CE) Under the SC-

CE model, the entire system is treated as a black box: no internal
information is used to explore new paths. The only explored paths
are the paths that the system follows when executed with the sample
input provided by the analysis. New paths can only be explored by
blindly guessing new inputs. Classic fuzzing (random input testing)
falls under this model.

268

+ relax constraints

at unit boundary according

to environment interface

specification

+ arbitrarily relax

constraints at

unit boundary

+ arbitrarily relax

constraints

anywhere

+ apply

constraints

collected within

the unit

+ apply

constraints

collected within

the environment

SC-CE
Strictly consistent

concrete execu�on

SC-UE
Strictly consistent

unit-level execu�on

SC-SE
Strictly consistent

system-level execu�on

LC
Local Consistency

RC-OC
Overapproximate Consistency

RC-CC
CFG Consistency

Figure 3: Different execution consistency models cover different sets of
feasible paths. The SC-CE model corresponds to the concrete execution.
The SC-UE and SC-SE models are obtained from the previous ones by
using increasingly more information about the system execution to explore
new states. The LC, RC-OC and RC-CC models are obtained through
progressive relaxation of constraints.

Strictly-Consistent Unit-level Execution (SC-UE) Under the SC-

UE model, an exploration engine is allowed to gather and use
information internal to the unit (e.g., by collecting path constraints
while executing the unit). The environment is still treated as a black
box, i.e., path constraints generated by environment code are not
tracked. Not every globally feasible path can be found with such
partial information (e.g., paths that are enabled by branches in the
environment can be missed). However, the exploration engine saves
time by not having to analyze the environment, which is typically
orders of magnitude larger than the unit.

This model is widely used by symbolic and concolic execution
tools [11, 12, 18]. Such tools usually instrument only the program
but not the operating system code (sometimes such tools replace
parts of the OS by models, effectively adding a simplified version
of it as a part of the program). Whenever such tools see a call to the
OS, they execute the call uninstrumented, selecting some concrete
arguments for the call. Such “blind” selection of concrete argu-
ments might cause some paths through the unit to be missed (e.g.,
paths that are enabled only be specific values of the arguments).

Strictly-Consistent System-level Execution (SC-SE) Under the
SC-SE model, an exploration engine gathers and uses information
about all parts of the system, to explore new paths through the unit.
Such exploration is not only sound but also complete, provided that
the engine can solve all constraints it encounters. In other words,
every path through the unit that is possible under a concrete execu-
tion of the system will be eventually found by SC-SE exploration,
making SC-SE the only model that is both strict and complete.

However, the implementation of SC-SE is limited by the path
explosion problem: the number of globally feasible paths is roughly
exponential in the size of the whole system. As the environment
is typically orders of magnitude larger than the unit, including its
code in the analysis offers an unfavorable trade-off given today’s
technology.

3.1.2 Local Consistency (LC)

The local consistency (LC) model aims to combine the performance
advantages of the SC-UE model with the completeness advantages
of the SC-SE model. The idea behind LC is to replace the results of
executing selected parts of the environment with symbolic values
that represent any possible valid result of the execution.

For example, when a program calls the write(fd, buf,

count) function of a POSIX OS, the function can return any in-
teger value between -1 and count, depending on the state of the
system. The exploration engine can discard the actual value re-
turned by the system and treat it as a symbolic integer between -1
and count. This allows exploring all paths through the program,
enabled by different return values of the write function, without
having to find concrete inputs to the overall system that would
enable those paths. This however introduces global inconsistency
into the system, because in no concrete execution is it possible,
for instance, that count bytes be written to the file yet the write

function return 0. However, unless the program explicitly checks
the file (e.g., by reading its content), this inconsistency can never
lead to any locally infeasible paths.

More precisely, the LC model allows the exploration engine to
introduce inconsistencies into the environment, while keeping the
state of the unit internally consistent. However, the exploration
engine must track the propagation of the inconsistencies inside
the environment and abort a path as soon as these inconsistencies
influence the internal state of the unit on that path.

This keeps the internal state of the unit internally consistent on
all explored paths: for each explored path, there exists some con-
crete execution of the system that would lead to exactly the same
internal state of the unit along that path—except the engine does not
need to incur the cost of actually finding that path. Consequently,
any sound analysis that takes into account only the internal state of
the unit produces no false positives under the LC model. For this
reason, we call the LC model “locally consistent”.

The set of paths explored by such a strategy corresponds to the
set of locally feasible paths, as defined earlier. However, some paths
could be aborted before completion, or even be missed completely,
due to the propagation of inconsistency. This means that the LC

model is not complete. In practice, the less coupled the unit is to
the environment, the fewer paths are aborted or missed.

Technically speaking, the LC model is inconsistent, thus it ought
to be a sub-model of the RC model, described next. However, since
the LC model is equivalent to a SC model for a large class of
analyses, we devoted to it an independent category.

3.1.3 Relaxed Consistency (RC)

Admitting locally infeasible paths in the analysis (or, equivalently,
allowing the internal state of the unit to be inconsistent) makes most
analyses prone to false positives because some of the paths they
operate on are globally infeasible. This might be acceptable if the
analysis is itself unsound anyway, or if the analysis only relies on
a subset of the state that could be kept consistent (similar to the
LC model, but here the subset of the state can be different from the
state of the unit).

We loosely define relaxed consistency (RC) to admit every path
through the program, even those that are not allowed by the SC and
LC models. The RC model is therefore inconsistent by definition.

In theory, as the RC model enables more paths, it should slow
down the exploration. This can be mitigated, however, by decreas-
ing the precision of the analysis. Another possibility is to limit the
impact of this problem by enabling only certain infeasible paths
and aborting these paths early on. These infeasible paths allow the
engine to effectively bypass large parts of the system that would
otherwise be difficult to analyze, letting the engine to reach spe-
cific code of interest much faster.

We distinguish two subcategories of the RC model that we found
useful in practice.

Overapproximate Consistency (RC-OC) In the RC-OC model, the
exploration engine is allowed to ignore both the values produced
by selected parts of the environment and the constraints that are
always imposed on these values by the environment. Whenever the

269

unit invokes these parts, the engine discards the actual return values
and treats them as being completely arbitrary, even if this breaks the
API contracts between the environment and the unit. Being strictly
weaker than the SC-SE model, though using the same information
to explore new paths, the RC-OC model is complete, but obviously
not consistent.

The RC-OC model is useful, for example, for reverse engineer-
ing. It explores and allows to reverse engineer all the behaviors of
the unit that are possible under a valid environment, plus some ex-
tra behaviors that are possible only when the environment behaves
unexpectedly. For instance, if reverse engineering a device driver,
the RC-OC model allows the hardware to return symbolic values;
in this way, the resulting reverse engineered paths include some of
those that correspond to allegedly impossible hardware behaviors.
This makes the reverse engineering only more precise as it also re-
verse engineers the reactions of the original code to the unexpected
behavior of the environment [13].

CFG Consistency (RC-CC) In the RC-CC model, the exploration
engine is allowed to change any part of the system state as long
as the explored paths remain feasible in the control flow graph of
the unit. This roughly corresponds to the consistency provided by
static program analyzers that are dataflow-insensitive and analyze
completely unconstrained paths. Being strictly weaker than the SC-

SE model, though using the same information to explore new paths,
the RC-CC model is complete.

The RC-CC model is useful for disassembly of obfuscated and/or
encrypted code: the engine can let the code decrypt itself while run-
ning in LC mode, in order to ensure the correctness of decryption.
Then, the engine switches to the RC-CC model to reach high cover-
age of the decrypted code and disassemble as much of it as possible.

3.2 Implementing Consistency Models

We now explain how the consistency models can be implemented
by a selective symbolic execution engine (SSE), namely the specifics
of symbolic ↔ concrete conversion as execution goes from the unit
to the environment and then back again.

We illustrate the different implementations with the case of a
kernel-mode device driver (Fig. 4). The driver reads and writes
from/to hardware I/O ports and calls the write usb function,
which is implemented in a kernel-mode USB library, as well as
alloc, implemented by the kernel itself.

 int send_packet(buffer, size) {

1. packet *pkt;

2. status = alloc(&pkt, size);

3. if (status == FAIL) {

4. assert(pkt == NULL);

5. return;

6. }

 ...

7. if(read_port(STATUS) == READY)

8. if (!write_usb(pkt))

9. return FAIL;

}

int write_usb(pkt) {

 if (usb_ready())

 return do_send(pkt);

 return 0;

}

Unit

Environment
DRIVER

USBLIB

KERNEL

int alloc (*ptr, size);

...

Figure 4: Example of a “unit” (device driver) interacting with the “environ-
ment” (kernel-mode library and OS kernel itself).

3.2.1 Implementing Strict Consistency (SC)

Strictly-Consistent Concrete Execution (SC-CE) For this model,
an SSE allows only concrete input to enter the system. This leads to
executing a single path through the unit and the environment. The
SSE can execute the whole system natively without having to track
or solve any constraints, because there is no symbolic data.

Strictly-Consistent Unit-level Execution (SC-UE) To implement
this model, the SSE converts all symbolic data to concrete values
when the unit calls the environment. The conversion is consistent
with the current set of path constraints. No other conversion is
performed. The environment is treated as a black box, and no
symbolic data can flow into it.

In the example of Fig. 4, the SSE concretizes the content of
packet pkt when calling write usb and, from there on, this soft
constraint (see §2.2) is treated as a hard constraint on the content
of pkt. The resulting paths trough the driver are globally feasible
paths, but exploration is not complete, because treating the con-
straint as hard can curtail globally feasible paths during the explo-
ration of the driver (e.g., paths that depend on the packet type).

Strictly-Consistent System-level Execution (SC-SE) Under SC-

SE, the SSE lets symbolic data cross the unit/environment bound-
ary. As a result, the entire system is executed symbolically, while
preserving global execution consistency.

Consider the write usb function: This function gets its input
from the USB host controller. Under strict consistency, the USB

host controller (being “outside the system”) can return a symbolic
value, which in turn propagates through the USB library, eventually
causing usb ready to return a symbolic value as well.

State explosion caused by large environments can make SC-SE

hard to use in practice. The paths that go through the environment
can outnumber those that go through the unit of interest, possibly
delaying useful exploration. An SSE can heuristically prioritize the
paths to explore, or employ incremental symbolic execution, which
executes parts of the environment as much as necessary to discover
interesting paths in the unit quicker. We describe this next.

The execution of write usb proceeds as if it was executed
symbolically, but only one globally feasible path is pursued in a
depth-first manner, while all other the forked paths are stored in a
wait list. This simulates a concrete, single-path execution through
a symbolically executing environment. After returning to send

packet, the path being executed carries the constraints that were
accumulated in the environment, and symbolic execution continues
in send packet as if write usb had executed symbolically. The
return value x of write usb is constrained according to the depth-
first path pursued in the USB library, and so are the side effects.
If, while executing send packet, a branch that depends on x

becomes infeasible due to the constraints imposed by the call to
write usb, the SSE returns to the wait list and resumes execution
of a wait-listed path that, e.g., is likely to eventually execute line 9.

3.2.2 Implementing Local Consistency (LC)

In this model, an SSE converts concrete values generated at in-
terface boundaries inside the environment to properly-constrained
symbolic data that conforms to the interface specifications. To sat-
isfy the definition of LC, the SSE tracks the propagation of the con-
verted data through the system, to detect violations of LC. For this,
the SSE monitors the execution of each path and signals a violation
whenever any converted data is read again by the system.

For the driver in Fig. 4, SSE turns the concrete alloc’s return
value v into a symbolic value s constrained to equal v or to equal
FAIL. The SSE also constrains pkt to be null in case v is FAIL, to
respect the OS API contract.

For the driver, the global state can be inconsistent, since the
driver explores a failure path when no failure occurred. However,
this inconsistency has no effect on the execution, as long as the OS

does not make assumptions about whether or not buffers are still
allocated after the driver’s failure. LC would have been violated
had the OS read the symbolic value of pkt, e.g., if the driver stored
it in an OS-specific structure.

270

3.2.3 Implementing Relaxed Consistency (RC)

Overapproximate Consistency (RC-OC) In this model, the SSE

converts concrete values at interface boundaries to unconstrained
symbolic values, regardless of the interface contract. E.g., when
returning from alloc, both pkt and status are marked symbolic.

This model brings completeness at the expense of substantial
overapproximation. No feasible paths are ever excluded from the
symbolic execution of send packet, but since pkt and status

are completely unconstrained, there could be many locally infeasi-
ble paths when exploring send packet after the call to alloc.

For example, the assert on line 4 would fail, which is normally
impossible, because alloc is guaranteed to set pkt to null when-
ever it returns FAIL. The assertion failure occurs because status

is unconstrained on line 3, enabling the execution of line 4. On
line 4, pkt is also unconstrained, which triggers the exploration
of both outcomes of the assert statement. Under stronger consis-
tency models, pkt must be null if status==FAIL holds.

CFG Consistency (RC-CC) Finally, SSE can implement RC-CC

by further allowing the unconstraining of branch conditions. This
enables an SSE to follow all the edges of the unit’s control flow
graph. This is useful in the case of a dynamic disassembler: run-
ning with stronger consistency models may leave uncovered (i.e.,
non-disassembled) code. Instead, RC-CC forces the disassembly of
the missing code. Implementing RC-CC requires program-specific
knowledge to avoid exploring non-existing edges, as in the case of
an indirect jump pointing to an unconstrained memory location.

3.3 Consistency Models in Existing Tools

We illustrate now the consistency models by surveying some exist-
ing tools that implement similar levels of consistency.

Most dynamic analysis tools use the SC-CE model. Examples
include Valgrind [37], PIN [26], and Eraser [32]. These tools ex-
ecute and analyze programs along a single path, generated by
user-specified concrete input values. Being significantly faster than
multi-path exploration, analyses performed by such tools are, for
instance, useful to characterize or explain program behavior on a
small set of developer-specified paths (i.e., test cases). However,
such tools cannot provide any confidence that results of the analy-
ses extend beyond the concretely explored paths.

Dynamic test case generation tools usually employ either the
SC-UE or the SC-SE models. For example, DART [18] uses the SC-

UE model. It executes the program concretely (starting with random
inputs) but instruments the code to collect path constraints on each
execution. DART uses these constraints to produce new concrete
inputs that would drive the program along a different path on the
next run. However, DART does not instrument the environment
and hence cannot use information from it when generating new
concrete inputs, thus missing feasible paths as indicated by SC-UE.

As another example, KLEE [11] uses either the SC-SE or a form
of the SC-UE model, depending on whether the environment is
modeled or not. In the former case, both the unit and the model of
the environment are executed symbolically. In the latter case, when-
ever the unit calls the environment, KLEE executes the environment
with concrete arguments. However, KLEE does not track the side ef-
fects of the environment, allowing them to propagate across other-
wise independent execution paths, thus making the corresponding
program states inconsistent. Because of this limitation, the imple-
mentation of the SC-UE model in KLEE is not exact.

Static analysis tools usually implement some forms of the RC

model. For example, SDV [2] converts a program into a boolean
form, which is an over-approximation of the original program.
Consequently, every path that is feasible in the original program
would be found by SDV, but it also finds additional infeasible paths.

4. System Analysis with S2E

S2E is a platform for rapid prototyping of custom system analy-
ses. It offers two key interfaces: the selection interface, used to
guide the exploration of execution paths (and thus implement ar-
bitrary consistency models), and the analysis interface, used to col-
lect events or check properties of execution paths. Both interfaces
accept modular selection and analysis plugins. Underneath the cov-
ers, S2E consists of a customized virtual machine, a dynamic binary
translator (DBT), and an embedded symbolic execution engine, as
shown in Fig. 5. The DBT decides which guest machine instructions
to execute natively on the physical CPU vs. which ones to execute
symbolically using the embedded symbolic execution engine.

S2E provides many plugins out of the box for building custom
analysis tools—we describe these plugins in §4.1. One can also
extend S2E with new plugins, using S2E’s developer API (§4.2).

4.1 User Interface

Path Selection: The first step in using S2E is deciding on a policy
for which part of a program to execute in multi-path (symbolic)
mode vs. single-path (concrete) mode; this policy is encoded in
a selector. S2E provides a default set of selectors for the most
common types of selection. They fall into three categories:

Data-based selection provides a way to expand an execution
path into a multi-path execution by introducing symbolic values
into the system—any time S2E encounters a branch predicate in-
volving a symbolic value, it will fork the execution. Symbolic data
can enter the program from various sources, and S2E provides a
selector for each: CommandLine for symbolic command-line argu-
ments, Environment for environment variables, MSWinRegistry for
Microsoft Windows-specific registry entries, etc.

Often it is useful to introduce a symbolic value at an internal in-
terface. For example, say a server program calls a library function
libFn(x) almost always with x=10, but may call it with x < 10
in strange corner cases that are hard to induce via external work-
loads. The developer might therefore be interested in exploring the
behavior of libFn for all values 0 ≤ x ≤ 10. For such analyses,
we provide an Annotation plugin, which allows direct injection of
custom-constrained symbolic values anywhere they are needed.

Code-based selection enables/disables multi-path execution de-
pending on whether the program counter is or not within a target
code area; e.g., one might focus cache profiling on a web browser’s
SSL code, to see if it is vulnerable to side channel attacks. The
CodeSelector plugin takes the name of the target program, library,
driver, etc. and a list of program counter ranges. Each such range
can be an inclusion or an exclusion range, indicating that code
within that range should be explored in multi-path mode or single-
path mode, respectively. CodeSelector is typically used in conjunc-
tion with data-based selectors to constrain the data-selected multi-
path execution to within only code of interest.

Priority-based selection is used to define the order in which
paths are explored within the family of paths defined with data-
based and code-based selectors. S2E includes some obvious choices,
such as Random, DepthFirst, and BreadthFirst. The MaxCoverage
selector works in conjunction with coverage analyzers to heuristi-
cally select paths that maximize coverage. The PathKiller selector
monitors the executed program and deletes paths that are deter-
mined to no longer be of interest to the analysis. For example,
paths can be killed if a fixed sequence of program counters repeats
more than n times; this avoids getting stuck in polling loops.

Path Analysis: Once the selectors define a family of paths,
S2E executes these paths and exposes each one of them to the
analyzer plugins. One class of analyzers are bug finders, such as
DataRaceDetector and MemoryChecker, which look for the corre-
sponding bug conditions and output an executable execution trace

271

onInstrTranslation DBT is about to translate a machine instruction
onInstrExecution VM is about to execute an instruction

onExecutionFork S2E is about to fork execution
onException The VM interrupt pin has been asserted
onMemoryAccess VM is about to execute a memory access

Table 2: Core events exported by the S2E platform.

multiPathOn/Off() turn on/off multi-path execution
readMem(addr) read contents of memory at address addr
writeReg(reg, val) write val (symbolic or concrete) to reg
getCurTransBlock() currently executing code block from DBT
raiseInterrupt(irq) assert the interrupt line for irq

Table 3: Subset of the ExecState object’s interface.

every time they encounter a bug. Another type of analyzer is Ex-
ecutionTracer, which selectively records the instructions executed
along a path, along with the memory accesses, register values, and
hardware I/O. It can be used to measure coverage with offline tools.
Finally, the PerformanceProfile analyzer counts cache misses, TLB
misses, and page faults incurred along each path—this can be used
to obtain a performance envelope of an application, and we describe
it in more detail in the evaluation section (§6).

While most plugins are OS-agnostic, S2E comes with a set
of analyzers that expose Windows-specific events using undocu-
mented interfaces or other hacks. For example, the WinDriverMon
analyzer parses OS-private data structures and notifies other plu-
gins when the Windows kernel loads a driver. The WinBugCheck
plugin catches “blue screen of death” events and kernel hangs.

4.2 Developer Interface

We now describe the interface that can be used to write new plugins
or to extend the default plugins described above. Both selectors
and analyzers use the same interface; the only distinction between
selectors and analyzers is that selectors influence the execution of
the program, whereas analyzers are passive observers. S2E also
allows writing of plugins that arbitrarily modify the execution state.

S2E has a modular plugin architecture, in which plugins com-
municate via events in a publish/subscribe fashion. S2E events are
generated either by the S2E platform or by other plugins. To reg-
ister for a class of events, a plugin invokes onEventX(callbackPtr).
An event callback is invoked every time EventX occurs. Callbacks
have different parameters, depending on the type of event.

Table 2 shows the core events exported by S2E that arise from
regular code translation and execution. We chose these core events
because they correspond to the lowest possible level of abstraction
of execution: instruction translation, execution, memory accesses,
and state forking. It is possible to build any state manipulation and
analysis on top of them, as we will show in the evaluation.

The ExecState object captures the current state of the entire
virtual machine along a specific path. It is the first parameter of ev-
ery event callback. ExecState gives plugins read/write access to the
entire VM state, including the processor, VM physical memory, and
virtual devices. Plugins can also toggle multi-path execution and
read/write VM memory and registers (see Table 3 for a short list of
API functions). A plugin can obtain the PID of the running process
from the page directory base register, can read/write page tables
and physical memory, can change the control flow by modifying
the program counter, and so on.

For each path being explored, there exists a distinct ExecState
object instance; when execution forks, each child execution re-
ceives its own private copy of the parent ExecState. Aggressive use
of copy-on-write reduces the memory overhead substantially (§5).

Plugins partition their own state into per-path state (e.g., number
of cache misses along a path) and global state (e.g., total number of
basic blocks touched). The per-path state is stored in a PluginState

object, which hangs off of the ExecState object. PluginState must
implement a clone method, so that it can be cloned together with
ExecState whenever S2E forks execution. Global plugin state can
live in the plugin’s own heap.

The dynamic binary translator (DBT) turns blocks of guest code
into corresponding host code; for each block of code this is typi-
cally done only once. During the translation process, a plugin may
be interested in marking certain instructions (e.g., function calls)
for subsequent notification. It registers for onInstrTranslation and,
when notified, it inspects the ExecState to see which instruction
is about to be translated; if it is of interest (e.g., a CALL instruc-
tion), the plugin marks it. Whenever the VM executes a marked
instruction, it raises the onInstrExecution event, which notifies the
registered plugin. For example, the CodeSelector plugin is imple-
mented as a subscriber to onInstrTranslation events; upon receiv-
ing an event, it marks the instruction depending on whether it is
or not an entry/exit point for a code range of interest. Having the
onInstrTranslation and onInstrExecution events separate leverages
the fact that each instruction gets translated once, but may get exe-
cuted millions of times, as in the body of a loop. For most analyses,
onInstrTranslation ends up being raised so rarely that using it intro-
duces no runtime overhead (e.g., catching the kernel panic handler
requires instrumenting only the first instruction of that handler).

S2E opcodes are custom guest machine instructions that are
directly interpreted by S2E, and they provide a communication
channel that circumvents all plugins. S2E has an extensible set of
opcodes for creating symbolic values (S2SYM), enabling/disabling
multi-path execution (S2ENA and S2DIS) and logging debug in-
formation (S2OUT). These give developers even finer grain control
over multi-path execution and analysis; they can be injected into
the target programs using tools like PIN [26]. In practice, opcodes
are the easiest way to mark data symbolic and get started with S2E.

The interface presented here was sufficient for all the multi-path
analyses we attempted with S2E. Selectors can enable or disable
multi-path execution based on arbitrary criteria and can manipulate
machine state. Analyzers can collect information about low-level
hardware events all the way up to program-level events, they can
probe memory to extract any information they need, and so on.

5. S2E Prototype

The S2E platform prototype (Fig. 5) reuses parts of the QEMU

virtual machine [4], the KLEE symbolic execution engine [11], and
the LLVM tool chain [24]. To these, we added 23 KLOC of C++
code written from scratch, not including third party libraries2. We
added 1 KLOC of new code to KLEE and modified 1.5 KLOC; in
QEMU, we added 1.5 KLOC of new code and modified 3.5 KLOC

of existing code. S2E currently runs on MacOS X, Windows, and
Linux, it can execute any guest OS that runs on x86, and can be
easily extended to other CPU architectures, like ARM or PowerPC.
S2E can be downloaded from http://s2e.epfl.ch.

S2E explores paths by running the target system in a virtual ma-
chine and selectively executing small parts of it symbolically. De-
pending on which paths are desired, some of the system’s machine
instructions are dynamically translated within the VM into an inter-
mediate representation suitable for symbolic execution, while the
rest are translated to the host instruction set. Underneath the cov-
ers, S2E transparently converts data back and forth as execution
weaves between the symbolic and concrete domains, so as to offer
the illusion that the full system (OS, libraries, applications, etc.) is
executing in multi-path mode.

S2E mixes concrete with symbolic execution in the same path by
using a representation of machine state that is shared between the
VM and the embedded symbolic execution engine. S2E shares the

2 All reported LOC measurements were obtained with SLOCCount [38].

272

real
CPU

real phys
memory

real
devices

virtual
CPU

VM phys
memory

virtual
devices

symbolic
execu on

user-defined
analyzers

S2E stock
analyzers

user-defined
selectors

S2E stock
selectors

drivers

libraries

opera ng system
kernel

applica onsselec�on
interface

analysis
interface

S2E custom
virtual machine

QEMU KLEE

LLVM
binary

transla on

dynamic

Figure 5: S2E architecture.

state by redirecting reads and writes from QEMU and KLEE to the
common machine state—VM physical memory, virtual CPU state,
and virtual device state. In this way, S2E provides distinct copies of
the entire machine state to distinct paths and can transparently con-
vert data between concrete and symbolic. S2E reduces the memory
footprint of all these states using copy-on-write optimizations.

In order to achieve transparent interleaving of symbolic and
concrete execution, we modified QEMU’s DBT to translate the in-
structions that depend on symbolic data to LLVM and dispatch them
to KLEE. Most instructions, however, run natively; this is the case
even in the symbolic domain, because most instructions do not op-
erate on symbolic state. We wrote an x86-to-LLVM back-end for
QEMU, so neither the guest OS nor KLEE are aware of the x86
to LLVM translation. S2E redirects all guest physical memory ac-
cesses, including MMIO devices, to the KLEE memory state object.

Besides VM physical memory, S2E must also manage the in-
ternal state of the virtual devices when switching between execu-
tion paths. We use QEMU’s snapshot mechanism to automatically
save and restore virtual devices and CPU states when switching ex-
ecution states. The shared representation of memory and device
state between the concrete and symbolic domains enables S2E to
do on-demand concretization of data that is stored as symbolic. A
snapshot can range from hundreds of MBs to GBs; we use aggres-
sive copy-on-write to transparently share common state between
snapshots of physical memory and disks. Some state need not be
saved—for example, we do not snapshot video memory, so all paths
share the same framebuffer. As an aside, this makes for intriguing
visual effects on screen: multiple erratic mouse cursors and BSODs
blend chaotically, providing free entertainment to the S2E user.

Interleaved concrete/symbolic execution and copy-on-write are
transparent to the guest OS, so all guest OSes can run out of the box.
Sharing state between QEMU and KLEE allows the guest to have
a view of the system that is consistent with the chosen execution
consistency model. It also makes it easy to replay execution paths
of interest, e.g., to replay a bug found by a bug-detection analyzer.

Conversion from x86 to LLVM gives rise to complex symbolic
expressions. S2E sees a much lower level representation of the
programs than what would be obtained by compiling source code to
LLVM (as done in KLEE): it actually sees the code that simulates the
execution of the original program on the target CPU architecture.
Such code typically contains many bitfield operations (e.g., and,
or, shift, masking to extract or set bits in the eflags register).

We therefore implemented a bitfield-theory expression simpli-
fier to optimize these expressions. The simplifier relies on the ob-
servation that, if parts of symbolic variables are masked away by
bit operations, there is an opportunity to simplify the correspond-
ing expressions. First, the simplifier starts from the bottom of the
expression (represented as a tree) and propagates information about
individual bits whose value is known. If an expression has all bits
known, we replace it with the constant result. Second, the simplifier

propagates top-down information about bits that are ignored by the
upper part of the expression—when an operator modifies only bits
that are ignored later, the simplifier removes that entire operation.

Symbolic expressions can also appear in pointers (e.g., as ar-
ray indices or jump tables generated by compilers for switch state-
ments). When a memory access with a symbolic pointer occurs,
S2E determines the pages referenced by the pointer, before pass-
ing their contents to the constraint solver. Alas, large page sizes
can lead to exponential complexity that bottlenecks the solver, so
S2E splits the memory into small pages of configurable size (e.g.,
128 bytes), so that the constraint solver need not reason about large
areas. In §6.2 we show how much this helps in practice.

Finally, S2E must carefully handle time. Each system state has
its own virtual time, which freezes when that state is not being run
(i.e., is not in an actively explored path). Since running code sym-
bolically is slower than native, S2E slows down the virtual clock
when symbolically executing a state. If it didn’t do this, the (rel-
atively) frequent VM timer interrupts would overwhelm execution
and prevent progress. S2E also offers an opcode to completely dis-
able interrupts for a section of code to further reduce the overhead.

6. Evaluation

We now answer three key questions: Is S2E truly a general platform
for running diverse analysis tools (§6.1)? Does S2E perform these
analyses with reasonable performance (§6.2)? What are the mea-
sured trade-offs involved in choosing different execution consis-
tency models on both kernel-mode and user-mode binaries (§6.3)?
Unless otherwise specified, the reported results were obtained on a
2× 4-core Intel Xeon E5405 2GHz machine with 20 GB of RAM.

6.1 Three Use Cases

First, we used S2E to build three vastly different tools: an automated
tester for proprietary drivers (§6.1.1), a reverse engineering tool
for binary drivers (§6.1.2), and a multi-path in-vivo performance
profiler (§6.1.3). The first two use cases are complete rewrites
of two systems that were built previously in an ad-hoc manner:
RevNIC [13] and DDT [22]. The third use case is brand new.

One of S2E’s main goals is to enable rapid prototyping of useful
analysis tools. Before looking at the individual use cases, we show
in Table 4 the substantial productivity advantage of using S2E

compared to writing these tools from scratch. For the tools we
built, S2E engendered two orders of magnitude improvement in
both development time and resulting code volume. This justifies
our efforts to create general abstractions for multi-path in-vivo
analyses, and to centralize them into one platform.

Use Case
Development Time Tool Complexity

[person-hours] [lines of code]

from scratch with S2E from scratch with S2E

Testing of proprietary
device drivers

2,400 38 47,000 720

Reverse engineering of
closed-source drivers

3,000 40 57,000 580

Multi-path in-vivo
performance profiling

n/a 20 n/a 767

Table 4: Comparative productivity when building analysis tools from

scratch (i.e., without S2E) vs. using S2E. Reported LOC include only new
code written or modified; any code that was reused from QEMU, KLEE, or
other sources is not included. For reverse engineering, 10 KLOC of offline
analysis code is used in both versions. For performance profiling, we do not

know of any equivalent non-S2E tool, hence the lack of comparison.

6.1.1 Automated Testing of Proprietary Device Drivers

We used S2E to build DDT
+, a tool for testing closed-source Win-

dows device drivers. This is a reimplementation of DDT [22], an ad-

273

hoc combination of changes to QEMU and KLEE, along with hand-
written interface annotations: 35 KLOC added to QEMU, 3 KLOC

added to KLEE, 2 KLOC modified in KLEE, and 7 KLOC modified
in QEMU. By contrast, DDT+ has 720 LOC of C++ code, which glues
together several exploration and analysis plugins, and provides the
necessary kernel/driver interface annotations.

DDT
+ combines several plugins: the CodeSelector plugin re-

stricts multi-path exploration to the target driver, while the Memo-
ryCheck, DataRaceDetector, and WinBugCheck analyzers look for
bugs. To collect additional information about the quality of test-
ing (e.g., coverage), we use the ExecutionTracer analyzer plugin.
Additional checkers can be easily added. DDT

+ implements local
consistency (LC) via interface annotations that specify where to in-
ject symbolic values while respecting local consistency—examples
of annotations appear in [22]. In the absence of annotations, DDT

+

reverts to strict consistency (SC-SE), where the only symbolic input
comes from hardware. None of the reported bugs are false positives,
indicating the appropriateness of local consistency for bug finding.

We run DDT
+ on two Windows network drivers, RTL8029 and

AMD PCnet. DDT
+ finds the same 7 bugs reported in [22], includ-

ing memory leaks, segmentation faults, race conditions, and mem-
ory corruption. Of these bugs, 2 can be found when operating under
SC-SE consistency; relaxation to local consistency (via annotations)
helps find 5 additional bugs. DDT

+ takes <20 minutes to complete
testing of each driver and explores thousands of paths in each one.

For each bug found, DDT
+ outputs a crash dump, an instruction

trace, a memory trace, a set of concrete inputs (e.g., registry values
and hardware input) and values that where injected according to the
LC model that trigger the buggy execution path.

As DDT
+ uses the LC model, the traces may are globally infea-

sible. Indeed, while it is always possible to produce concrete inputs
for the system that would lead it to the same local state (i.e., to
reproduce the bug) along a globally feasible path, the exploration
engine does not do it in a LC model. Consequently, replaying ex-
ecution traces provided by DDT

+ requires replaying the injection
into the system that was made in accordance to the LC model. Such
replaying could be done in S2E itself. Despite being only locally
consistent, the replay is still useful for debugging: the execution of
the driver during the replay is valid and consistant, injected corre-
spond to the values that the kernel could have passed to the driver
under different conditions.

S2E generates crash dumps readable by Microsoft WinDbg.
Developers can thus inspect the crashes using their existing tools,
scripts, and extensions for WinDbg. They can also compare crash
dumps from different execution paths to better understand the bugs.

6.1.2 Reverse Engineering of Closed-Source Drivers

We also built REV+, a tool for reverse engineering binary Windows
device drivers; it is a reimplementation of RevNIC [13]. REV+ takes
a closed-source binary driver, traces its execution, and then feeds
the traces to an offline component that reverse engineers the driver’s
logic and produces new device driver code that implements the
exact same hardware protocol as the original driver. In principle,
REV+ can synthesize drivers for any OS, making it easy to port
device drivers, without any vendor documentation or source code.

Adopting the S2E perspective, we cast reverse engineering as
a type of behavior analysis. As in DDT+, the CodeSelector plugin
restricts the symbolic domain to the driver’s code segment. The Ex-

ecutionTracer plugin is configured to log the driver’s executed in-
structions, memory and register accesses, hardware I/O, and writes
them to a file. The existing RevNIC’s offline analysis tool processes
these traces to synthesize a new driver.

REV
+ uses overapproximate consistency (RC-OC). The main

goal of the tracer is to merely see each basic block execute, in order
to extract its logic—full path consistency is not necessary. The trace

interpreter only needs fragments of paths in order to reconstruct the
original control flow graph—details appear in [13]. By using RC-

OC, REV+ sacrifices consistency in favor of obtaining coverage fast.

RevNIC REV+ Improvement
PCnet 59% 66% +7%
RTL8029 82% 87% +5%
91C111 84% 87% +3%
RTL8139 84% 86% +2%

Table 5: REV+ obtains better coverage than RevNIC.

We run REV+ on the same drivers reported in [13], and REV+

reverse engineers them with better coverage than RevNIC (see Ta-
ble 5) in less than an hour. Fig. 6 shows how coverage evolves over
time during reverse engineering. By inspecting the covered basic
blocks, we found the resulting drivers to be equivalent to those gen-
erated by RevNIC.

0 %

20 %

40 %

60 %

80 %

100 %

 0 10 20 30 40 50 60 70 80 90
B

a
s
ic

 B
lo

c
k
 C

o
v
e

ra
g

e
 (

%
)

Running Time (minutes)

RTL8029
91C111

RTL8139
PCnet

Figure 6: Basic block coverage over time for REV+.

6.1.3 Multi-Path In-Vivo Performance Profiling

To further illustrate S2E’s generality, we used it to develop PROFS,
a multi-path in-vivo performance profiler and debugger. To our
knowledge, such a tool does not exist today, and this use case is the
first in the literature to employ symbolic execution for performance
analysis. In this section, we show through several examples how
PROFS can be used to predict performance for certain classes of
inputs. To obtain realistic profiles, performance analysis can be
done under local consistency or any stricter consistency models.

PROFS allows users to measure instruction count, cache misses,
TLB misses, and page faults for arbitrary memory hierarchies, with
flexibility to combine any number of cache levels, size, associativ-
ity, line sizes, etc. This is a superset of the cache profiling function-
ality found in Valgrind [37], which can only simulate L1 and L2
caches, and can only measure cache misses.

To build PROFS, we developed the PerformanceProfile plugin.
It counts the number of instructions along each path and, for read
and write operations, it simulates the behavior of the desired cache
hierarchy and counts hits and misses. This plugin is a generalization
of the logic contained in Valgrind. The path exploration in PROFS

is tunable, allowing the user to choose any execution consistency
model. We configured PROFS with 64 KB I1 and D1 caches with
64-byte cache lines and associativity 2. We also configured a 1 MB

L2 cache with 64-byte cache lines and associativity 4.
The first PROFS experiment analyzes the distribution of instruc-

tion counts and cache misses for Apache’s URL parser. In particu-
lar, we were interested to see whether there is any opportunity for
a denial-of-service attack on the Apache web server via carefully
constructed URLs. The analysis ran under local consistency for 9.5
hours and explored 5,515 different paths through the code. Of the
9.5 hours, 2.5 hours were spent in the constraint solver and 6 hours
were spent running concrete code. In this experiment, the analysis
carries high overhead, because it simulates a TLB and 3 caches.

274

We found each path involved in parsing a URL to take on the
order of 4.3 × 106 instructions, with one interesting feature: for
every additional “/” character present in the URL, there are 10
extra instructions being executed. We found no upper bound on the
execution of URL parsing: a URL containing n + k “/” characters
will take 10 × k more instructions to parse than a URL with n

“/” characters. The total number of cache misses on each path
was predictable at 15, 984± 20. These are examples of behavioral
insights one can obtain with a multi-path performance profiler.
Such insights can help developers fine-tune their code or make it
more secure (e.g., by checking that password processing time does
not depend on the password itself, to avoid side channel attacks).

We also set out to measure the page fault rate experienced by
the Microsoft IIS web server inside its SSL modules while serving
a static page workload over HTTPS. Our goal was to check the
distribution of page faults in the cryptographic algorithms, to see
if there is any opportunity for side channel attacks. We found no
page faults in the SSL code along any of the paths, and only a small
number of them in gzip.dll. This suggests that counting page faults
should not be the first choice if trying to break IIS’s SSL encryption.

Next, we aimed to establish a performance envelope in terms
of instructions executed, cache misses, and page faults for the
ubiquitous ping program. This program has on the order of 1.3
KLOC. The performance analysis ran under local consistency LC,
explored 1,250 different paths, and ran for 5.9 hours. Unlike the
URL parsing case, almost 5.8 hours of the analysis were spent in
the constraint solver—the first 1,000 paths were explored during
the first 3 hours, after which the exploration rate slowed down.

The analysis did not find a bound on execution time, and pointed
to a path that could go around a loop without bound. This hap-
pens when the reply packet to ping’s initial packet has the record
route (RR) flag set and the option length is 3 bytes, leaving no room
to store the IP address list. ping finds that the list of addresses is
empty and, instead of break-ing out of the loop, it does continue
without updating the loop counter. This is an example where perfor-
mance analysis can identify a performance bug that some may con-
sider a security bug. Once we patched ping, we found the perfor-
mance envelope to consist of a minimum of 1,645 and a maximum
of 129,086 instructions executed. When the bug was still present,
the maximum had reached 1.5× 106 and continued growing.

PROFS can also find inputs for which we get best-case perfor-
mance, without enumerating all paths. For this, we modify slightly
the PerformanceProfile plugin to keep track of the current lower
bound (for instructions, page faults, etc.) across all paths being ex-
plored at the moment; any time a path exceeds this minimum, its ex-
ploration is automatically abandoned. This modification makes use
of the PathKiller selector, described in §4. This type of function-
ality can be used, e.g., to efficiently and automatically determine
workloads that make a system perform at its best; it is an example
of something that can only be done using multi-path analysis.

We wanted to compare our results to what a combination of
existing tools could achieve: run KLEE to obtain inputs for paths
through the program, then run each such test case in Valgrind (for
multi-path analysis) and with Oprofile (for in-vivo analysis). This is
not possible for ping, because KLEE’s networking model does not
support ICMP packets. It is not possible for binary drivers either,
because KLEE cannot fork kernel state and requires source code.
These difficulties illustrate the benefits of having a platform like
S2E that does not require models and can automatically cross back
and forth the boundary between symbolic and concrete domains.

To conclude, we used S2E to build a thorough multi-path in-
vivo performance profiler that achieves better path coverage (and
therefore more precise results) than classic profilers. Valgrind [37]
is thorough, but only single-path and not in-vivo. Unlike Valgrind-
type tools, PROFS performs its analyses along multiple paths at a

time, not just one, and can measure the effects of the OS kernel on
the program’s cache behavior and vice versa, not just the program
in isolation. Although tools like Oprofile [29] can perform in-vivo
measurements, but not multi-path, they are based on sampling, so
they lack the precision of PROFS—it is impossible, for instance,
to count the exact number of cache misses in an execution. Such
improvements over state-of-the-art tools come “for free” with S2E.

6.1.4 Other Uses of S2E

S2E can be used for pretty much any type of system-wide analysis.
We describe here four additional ideas: energy profiling, hardware
validation, certification of binaries, and privacy analysis.

First, S2E could be used to profile energy use of embedded
applications: given a power consumption model, S2E could find
energy-hogging paths and help the developer optimize them. Sec-
ond, S2E could serve as a hardware model validator: S2E can sym-
bolically execute a SystemC-based model together with the real
driver and OS; when there is enough confidence in the correctness
of the hardware model, the chip can be synthesized. Third, S2E

could perform end-to-end certification of binaries—S2E alleviates
the need to trust a compiler, since it performs all analysis on the fi-
nal binary. For instance, S2E could check that memory safety holds
along all critical paths. Finally, S2E could be used to analyze bi-
naries for privacy leaks: by monitoring the flow of symbolic input
values (e.g., credit card numbers) through the software stack, S2E

could tell whether any of the data leaks outside the system.

6.2 Implementation Overhead

S2E introduces ∼6× runtime overhead over vanilla QEMU when
running in concrete mode, and ∼78× in symbolic mode. Concrete-
mode overhead is mainly due to checks for accesses to symbolic
memory (for lazy concretization), while the overhead in symbolic
mode is due to interpretation and handling of symbolic expressions.

The overhead of symbolic execution is mitigated in practice by
the fact that the symbolic domain is much smaller than the con-
crete domain. All the system code (e.g., page fault handler, timer
interrupt, system calls) that is called frequently, as well as all the
software that is running (e.g., services and daemons) are in con-
crete mode. Furthermore, S2E can distinguish inside the symbolic
domain instructions that can execute concretely (e.g., when they
do not touch symbolic data) and run them natively. For instance,
for the ping experiments, S2E executed 3 × 104 times more x86
instructions concretely than it did symbolically. These 4 orders of
magnitude provide a lower bound on the amount of savings selec-
tive symbolic execution brings over classic symbolic execution: by
executing concretely those paths that would otherwise run symbol-
ically, S2E saves the overhead of further forking (e.g., on branches
inside the concrete domain) paths that are ultimately not of interest.

Another source of overhead comes from symbolic pointers. We
compared the performance of symbolically executing the unlink

utility’s x86 binary in S2E vs. symbolically executing its LLVM

version in KLEE. Since KLEE recognizes all memory allocations
performed by the program, it can pass to the constraint solver
memory arrays of exactly the right size; in contrast, S2E must pass
entire memory pages. In 1 hour, with a 256-byte page size, S2E

explores 7,082 paths, compared to 7,886 paths in KLEE. Average
constraint solving time is 0.06 sec for both. With 4 KB pages,
though, S2E explores only 2,000 states and averages 0.15 sec per
constraint.

We plan to reduce this overhead in two ways: First, we can in-
strument the LLVM bitcode generated by S2E with calls to the sym-
bolic execution engine, before JITing it into native machine code,
to avoid the overhead of interpreting each instruction in KLEE. This
is similar in spirit to what QEMU does vis-a-vis the Bochs [6] em-
ulator: while the latter interprets instructions in one giant switch

275

Consistency 91C111 Driver PCnet Driver Lua
RC-OC 1,400 3,300 1,103
LC 1,600 3,200 1,114
SC-SE 1,700 1,300 1,148
SC-UE 5 7 -

Table 6: Time (in sec) under different consistencies: overapproximate (RC-
OC), local (LC), system-level strict (SC-SE), and unit-level strict (SC-UE).

statement, the former JITs them to native code, which results in a
significant speedup. Second, we plan to add support for directly ex-
ecuting native LLVM binaries inside S2E, which would reduce sig-
nificantly the blowup resulting from x86-to-LLVM translation and
would reduce the overhead of symbolic pointers.

6.3 Execution Consistency Model Trade-Offs

Having seen the ability of S2E to serve as a platform for building
powerful analysis tools, we now experimentally evaluate the trade-
offs involved in the use of different execution consistency models.
In particular, we measure how total running time, memory usage,
and path coverage efficiency are influenced by the choice of mod-
els. We illustrate the tradeoffs using both kernel-mode binaries—
the SMSC 91C111 and AMD PCnet network drivers—and a user-
mode binary—the interpreter for the Lua embedded scripting lan-
guage [25]. The 91C111 closed-source driver binary has 19 KB,
PCnet has 35 KB; the symbolic domain consists of the driver, and
the concrete domain is everything else. Lua has 12.7 KLOC; the
concrete domain consists of the lexer+parser (2 KLOC) and the en-
vironment, while the symbolic domain is the remaining code (e.g.,
the interpreter). Parsers are the bane of symbolic execution engines,
because they have many possible execution paths, of which only a
small fraction are paths that pass the parsing/lexing stage [19]. The
ease of separating the Lua interpreter from its parser in S2E illus-
trates the benefit of selective symbolic execution.

We use a script in the guest OS to call the entry points of
the drivers. Execution proceeds until all paths have reached the
unload entry point. We configure a selector plugin to exercise
the entry points in steps. If S2E has not discovered any new basic
block for some time (60 sec), this plugin kills all paths but one at
random. The plugin chooses the remaining path so that execution
can proceed to the next entry point.

The selector plugin also discards redundant subtrees when en-
try points return and makes it possible to exercise entire drivers.
Without path selection, drivers would remain stuck in the early ini-
tialization phase, because of the state explosion problem. E.g., the
tree rooted at the initialization entry point may have several thou-
sand leaves (paths) when its exploration completes. Yet, calling the
next entry point in the context of these execution states will mostly
exercise the same paths, because these states have few differences.

For Lua, we provided a symbolic string as the input program
in the Lua language, under SC-SE consistency. Under local consis-
tency, the input is concrete, and we insert a suitably constrained
symbolic Lua opcode after the parser stage. Finally, in RC-OC

mode, we make the opcode completely unconstrained. We aver-
age results over 10 runs for each consistency model on a 4×6-core
AMD Opteron 8435 machine, 2.6 GHz, 96GB of RAM. Table 6
shows running times for different execution consistencies.

Weaker (more relaxed) consistency models help achieve higher
basic block coverage, as shown in Fig. 7. For PCnet, coverage
varies from 14% to 66%, while 91C111 ranges from 10% to 88%.
The stricter the model, the fewer sources of symbolic values, hence
the fewer explorable paths and discoverable basic blocks in a given
amount of time. In the case of our Windows drivers, system-level
strict consistency (SC-SE) keeps all registry inputs concrete, which
prevents several configuration-dependent parts from being ex-
plored. In unit-level strict consistency (SC-UE), concretizing sym-

bolic inputs to arbitrary values prevents the driver from loading,
thus yielding poor coverage.

In the case of Lua, the local consistency model allows bypassing
the lexer component, which is especially difficult to symbolically
execute due to its loops and complex string manipulations. RC-OC

exceptionally yielded less coverage because execution got stuck in
complex crash paths reached due to incorrect Lua opcodes.

0 %

20 %

40 %

60 %

80 %

100 %

RC-OC LC SC-SE SC-UE

B
a

s
ic

 B
lo

c
k

C
o

v
e

ra
g

e
 (

%
) 91C111

PCnet
Lua

Figure 7: Effect of consistency models on coverage.

Path selection together with adequate consistency models opti-
mize memory usage (Fig. 8). In local consistency, the PCnet driver
spends 4 minutes in the initialization method, exploring ∼7,000
paths and using 8 GB of memory. In contrast, it spends only 2
minutes (∼2,500 paths) and 4 GB under RC-OC consistency. Under
LC consistency, the CardType registry setting is symbolic, caus-
ing the initialization entry point to call in parallel several functions
that look for different card types. Under LC consistency, S2E ex-
plores these functions slower than under RC-OC consistency, where
we liberally inject symbolic values to help these functions finish
quicker. Slower exploration leads to less frequent timeout reset,
hence longer exploration, more paths, and more memory consump-
tion. Under SC-SE and SC-UE consistency, registry settings are con-
crete, exploring only functions for one card type.

 2

 4

 6

 8

 10

RC-OC LC SC-SE SC-UE

M
e

m
o

ry
 H

ig
h

W
a

te
rm

a
rk

 (
G

B
)

91C111
PCnet

Lua

Figure 8: Effect of consistency models on memory usage.

Finally, consistency models affect constraint solving time (Fig. 9).
The relationship between consistency model and constraint solving
often depends on the structure of the system being analyzed—
generally, the deeper a path, the more complex the corresponding
path constraints. We observe that, for our targets, solving time de-
creases with stricter consistency, because stricter models restrict
the amount of symbolic data. For 91C111, switching from local to
overapproximate consistency increases solving time by 10×. This
is mostly due to the unconstrained symbolic inputs passed to the
QueryInformationHandler and SetInformationHandler

entry points, which results in complex expressions being gener-
ated by switch statements. In Lua, the structure of the constraints
causes S2E to spend most of its time in the constraint solver.

0 %

20 %

40 %

60 %

80 %

100 %

RC-OC LC SC-SE SC-UE

F
ra

ct
io

n
 o

f
ti

m
e

 s
p

e
n

t
in

 c
o

n
st

ra
in

t
so

lv
e

r

PCnet
91C111

Lua

 0.001

 0.01

 0.1

 1

RC-OC LC SC-SE SC-UE

A
v

e
ra

g
e

 t
im

e
 t

o
so

lv
e

 a
 q

u
e

ry
 (

se
c)

PCnet
91C111

Lua

Figure 9: Impact of consistency models on the constraint solver

As in §6.1.3, we wished to include in these results a compar-
ison to vanilla KLEE. Besides the problems faced in the case of

276

drivers, we expected that the Lua interpreter, being completely in
user-mode and not having any complex interactions with the en-
vironment, could be handled by KLEE. However, KLEE does not
model some operations. For example, the Lua interpreter makes
use of setjmp and longjmp, which become calls into libc that
manipulate the PC and other registers in a way that confuses KLEE.
Unlike S2E, engines like KLEE do not have a unified representation
of the hardware, so all these details must be explicitly coded for
(e.g., detect that setjmp / longjmp is being used, and ensure that
KLEE’s view of the execution state is appropriately adjusted). In
S2E, this comes “for free,” because the CPU registers, memory, I/O
devices, etc. are shared between the concrete and symbolic domain.

7. Related Work

We are not aware of any platform that can offer the level of general-
ity in terms of dynamic analyses and execution consistency models
that S2E offers. Nevertheless, a subset of the ideas behind S2E did
appear in various forms in earlier work.

BitBlaze [36] is the closest dynamic analysis framework to S2E.
It combines virtualization and symbolic execution for malware
analysis and offers a form of local consistency to introduce sym-
bolic values into API calls. In contrast, S2E brings four additional
consistency models and different generic path selectors that trade
accuracy for exponentially improved performance in more flexible
ways. To our knowledge, S2E is the first to handle all aspects of
hardware communication, which consists of I/O, MMIO, DMA, and
interrupts. This enables symbolic execution across the entire soft-
ware stack, down to hardware, resulting in richer analyses.

One way to tackle the state explosion problem is to use mod-
els and/or relax execution consistency. File system models have al-
lowed, for instance, KLEE to test UNIX utilities without involving
the real filesystem. However, based on our own experience writ-
ing models for KLEE, doing so is labor-intensive and error-prone.
Writing and maintaining a model for the kernel/driver interface of
a modern OS takes several person-years [2].

Other bodies of work have chosen to execute the “outside
world” concretely, with various levels of consistency that were
appropriate for the specific analysis in question, most commonly
bug finding. For instance, CUTE [35] can run concrete code con-
sistently (unlike KLEE) without modeling, but it is limited to strict
consistency and code-based selection. SJPF [31] can switch from
concrete to symbolic domains, but does not track constraints when
switching back, so it cannot preserve consistency.

Another approach to tackle state explosion is compositional
symbolic execution [17]. This approach aims to save the result of
exploration of parts of the program and reuse them when those parts
are called again in a different context. We are investigating how to
implement this approach in S2E, to further improve scalability.

Non-VM based approaches cannot control the environment out-
side the analyzed program. E.g., both KLEE and EXE allow a sym-
bolically executing program to call into the concrete domain (e.g.,
perform a system call), but they cannot fork the global system state.
As a result, different paths clobber each other’s concrete domain,
with unpredictable consequences. Concolic execution [34] runs ev-
erything concretely and scales to full systems (and is not affected
by state clobbering), but may result in lost paths when execution
crosses program boundaries. Likewise, CUTE, KLEE, and others
cannot track the branch conditions in the concrete code (unlike
S2E), and thus cannot determine how to redo calls in order to enable
overconstrained but feasible paths.

In-situ model checkers [16, 20, 28, 34, 39, 40] can directly
check programs written in a common programming language, usu-
ally with some simplifications such as data-range reduction, with-
out requiring the creation of a model. Since S2E directly executes
the target binary, one could say it is an in-situ tool. However, S2E

goes further and provides a consistent separation between the “out-
side world” (whose symbolic execution is not necessary) and the
target code to be tested (which is typically orders of magnitude
smaller than the rest)—this is what we call in-vivo in S2E: analyz-
ing the target code in-situ, while transparently facilitating its inter-
action with that code’s unmodified, real environment. Murphy et al.
propose a technique [27] to inject test suites with concrete inputs
in a forked version of a process to preserve the consistency of the
original run. Our definition differs from theirs, where in-vivo stands
for executing tests in production environments.

Several static analysis frameworks have been proposed. Sat-
urn [14] and bddbddb [23] prove the presence or absence of bugs
using a path-sensitive analysis engine to decrease the number of
false positives. Saturn uses function summaries to scale to larger
programs and looks for bugs described in a logic programming lan-
guage. bddbddb stores programs in a database as relations that
can be searched for buggy patterns using Datalog. Besides detect-
ing bugs, bddbddb helped optimizing locks in multi-threaded pro-
grams. Static analysis tools rely on source code for accurate type
information and cannot easily verify run-time properties and rea-
son about the entire system. Both bddbddb and Saturn require to
learn a new language.

Dynamic analysis frameworks alleviate the limitations of static
analysis tools. In particular, they allow the analysis of binary soft-
ware. Theoretically, one could statically convert an x86 binary to,
say, LLVM and run it in a system like KLEE, but this faces the clas-
sic undecidable problems of disassembly and decompilation [33]:
disambiguating code from data, determining the targets of indirect
jumps, unpacking code, etc.

S2E adds multi-path analysis abilities to all single-path dynamic
tools, while not limiting the types of analysis. PTLsim [41] is a VM-
based cycle-accurate x86 simulator that selectively limits profiling
to user-specified code ranges to improve scalability. Valgrind [37]
is a framework best known for cache profiling tools, memory leak
detectors, and call graph generators. PinOS [9] can instrument oper-
ating systems and unify user/kernel-mode tracers. However, PinOS

relies on Xen and a paravirtualized guest OS, unlike S2E. PTLsim,
PinOS, and Valgrind implement cache simulators that model multi-
level data and code cache hierarchies. S2E allowed us to implement
an equivalent multi-path simulator with little effort.

S2E complements classic single-path, non VM-based, profiling
and tracing tools. For instance, DTrace [15] is a framework for
troubleshooting kernels and applications on production systems
in real time. DTrace, and other techniques for efficient profiling,
such as continuous profiling [1], sampling-based profiling [10], and
data type profiling [30] trade accuracy for low overhead. They are
useful in settings where the overhead of precise instrumentation
is prohibitive. Other projects have also leveraged virtualization to
achieve goals that were previously prohibitively expensive. These
tools could be improved with S2E by allowing them to witness
multi-path executions.

Finally, S2E reuses mixed-mode execution as an optimiza-
tion, to increase efficiency. This idea first appeared in DART [18],
CUTE [35], and EXE [12], and later in Bitscope [8]. However, auto-
matic bidirectional data conversions across the symbolic-concrete
boundary did not exist in previous work, and is key to S2E’s scala-
bility.

To summarize, S2E embodies numerous ideas that were fully
or partially explored in earlier work. What is unique in S2E is its
generality for writing various analyses, the availability of multi-
ple user-selectable (as well as definable) consistency models, au-
tomatic bidirectional conversion of data between the symbolic and
concrete domains, and its ability to operate without any modeling
or modification of the (concretely running) environment.

277

8. Conclusions

This paper described S2E, a new platform for in-vivo multi-path
analysis of systems, which scales even to large, proprietary, real-
world software stacks, like Microsoft Windows. It is the first time
virtualization, dynamic binary translation, and symbolic execution
are combined for the purpose of generic behavior analysis. S2E

simultaneously analyzes entire families of paths, operates directly
on binaries, and operates in vivo, i.e., includes in its analyses the
entire software stack: user programs, libraries, kernel, drivers, and
hardware. S2E uses automatic bidirectional symbolic–concrete data
conversions and relaxed execution consistency models to achieve
scalability. We showed that S2E enables rapid prototyping of a
variety of system behavior analysis tools with little effort. S2E can
be downloaded from http://s2e.epfl.ch/.

Acknowledgments

We thank Jim Larus, our shepherd, and Andrea Arpaci-Dusseau,
Herbert Bos, Miguel Castro, Byung-Gon Chun, Petros Maniatis,
Raimondas Sasnauskas, Willy Zwaenepoel, Johannes Kinder, the
S2E user community, and the anonymous reviewers for their help
in improving our paper. We are grateful to Microsoft Research for
supporting this work through a PhD Fellowship starting in 2011.

References

[1] J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger, S.-T.
Leung, D. Sites, M. Vandevoorde, C. A. Waldspurger, and W. E. Weihl.
Continuous profiling: Where have all the cycles gone? In Symp. on
Operating Systems Principles, 1997.

[2] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGar-
vey, B. Ondrusek, S. K. Rajamani, and A. Ustuner. Thorough static
analysis of device drivers. In ACM SIGOPS/EuroSys European Conf.
on Computer Systems, 2006.

[3] T. Ball, E. Bounimova, V. Levin, R. Kumar, and J. Lichtenberg. The
static driver verifier research platform. In Intl. Conf. on Computer
Aided Verification, 2010.

[4] F. Bellard. QEMU, a fast and portable dynamic translator. In USENIX
Annual Technical Conf., 2005.

[5] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler. A few bil-
lion lines of code later: using static analysis to find bugs in the real
world. Communications of the ACM, 53(2), 2010.

[6] Bochs IA-32 Emulator. http://bochs.sourceforge.net/.
[7] P. Boonstoppel, C. Cadar, and D. R. Engler. RWset: Attacking path

explosion in constraint-based test generation. In Intl. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems, 2008.

[8] D. Brumley, C. Hartwig, M. G. Kang, Z. L. J. Newsome,
P. Poosankam, D. Song, and H. Yin. BitScope: Automatically dissect-
ing malicious binaries. Technical Report CMU-CS-07-133, Carnegie
Mellon University, 2007.

[9] P. P. Bungale and C.-K. Luk. PinOS: a programmable framework
for whole-system dynamic instrumentation. In Intl. Conf. on Virtual
Execution Environments, 2007.

[10] M. Burrows, U. Erlingson, S.-T. Leung, M. T. Vandevoorde, C. A.
Waldspurger, K. Walker, and W. E. Weihl. Efficient and flexible value
sampling. In Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, 2000.

[11] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and au-
tomatic generation of high-coverage tests for complex systems pro-
grams. In Symp. on Operating Systems Design and Implementation,
2008.

[12] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
EXE: Automatically generating inputs of death. In Conf. on Computer
and Communication Security, 2006.

[13] V. Chipounov and G. Candea. Reverse engineering of binary device
drivers with RevNIC. In ACM SIGOPS/EuroSys European Conf. on
Computer Systems, 2010.

[14] I. Dillig, T. Dillig, and A. Aiken. Sound, complete and scalable path-
sensitive analysis. In Conf. on Programming Language Design and
Implementation, 2008.

[15] Dtrace. http://www.sun.com/bigadmin/content/

dtrace/index.jsp.

[16] P. Godefroid. Model checking for programming languages using
Verisoft. In Symp. on Principles of Programming Languages, 1997.

[17] P. Godefroid. Compositional dynamic test generation. In Symp. on
Principles of Programming Languages, 2007. Extended abstract.

[18] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated
random testing. In Conf. on Programming Language Design and
Implementation, 2005.

[19] P. Godefroid, M. Y. Levin, and D. Molnar. Automated whitebox fuzz
testing. In Network and Distributed System Security Symp., 2008.

[20] Java PathFinder. http://javapathfinder.sourceforge.net, 2007.
[21] J. C. King. Symbolic execution and program testing. Communications

of the ACM, 1976.
[22] V. Kuznetsov, V. Chipounov, and G. Candea. Testing closed-source

binary device drivers with DDT. In USENIX Annual Technical Conf.,
2010.

[23] M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin, D. Avots,
M. Carbin, and C. Unkel. Context-sensitive program analysis as
database queries. In Symp. on Principles of Database Systems, 2005.

[24] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis and transformation. In Intl. Symp. on Code Genera-
tion and Optimization, 2004.

[25] Lua: A lightweight embeddable scripting language. http://www.
lua.org/, 2010.

[26] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. PIN: building customized pro-
gram analysis tools with dynamic instrumentation. In Conf. on Pro-
gramming Language Design and Implementation, 2005.

[27] C. Murphy, G. Kaiser, I. Vo, and M. Chu. Quality assurance of
software applications using the in vivo testing approach. In Intl. Conf.
on Software Testing Verification and Validation, 2009.

[28] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu. Finding and reproducing Heisenbugs in concurrent pro-
grams. In Symp. on Operating Systems Design and Implementation,
2008.

[29] Oprofile. http://oprofile.sourceforge.net.
[30] A. Pesterev, N. Zeldovich, and R. T. Morris. Locating cache perfor-

mance bottlenecks using data profiling. In ACM SIGOPS/EuroSys Eu-
ropean Conf. on Computer Systems, 2010.

[31] C. Păsăreanu, P. Mehlitz, D. Bushnell, K. Gundy-Burlet, M. Lowry,
S. Person, and M. Pape. Combining unit-level symbolic execution and
system-level concrete execution for testing NASA software. In Intl.
Symp. on Software Testing and Analysis, 2008.

[32] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: a dynamic data race detector for multithreaded programs. ACM
Transactions on Computer Systems, 15(4), 1997.

[33] B. Schwarz, S. Debray, and G. Andrews. Disassembly of executable
code revisited. In Working Conf. on Reverse Engineering, 2002.

[34] K. Sen. Concolic testing. In Intl. Conf. on Automated Software
Engineering, 2007.

[35] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing
engine for C. In Symp. on the Foundations of Software Eng., 2005.

[36] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena. Bitblaze: A new
approach to computer security via binary analysis. In Intl. Conf. on
Information Systems Security, 2008.

[37] Valgrind. http://valgrind.org/.
[38] D. Wheeler. SLOCCount. http://www.dwheeler.com/

sloccount/, 2010.
[39] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang, F. Long,

L. Zhang, and L. Zhou. MODIST: Transparent model checking of
unmodified distributed systems. In Symp. on Networked Systems
Design and Implementation, 2009.

[40] J. Yang, C. Sar, and D. Engler. EXPLODE: a lightweight, general sys-
tem for finding serious storage system errors. In Symp. on Operating
Systems Design and Implementation, 2006.

[41] M. T. Yourst. PTLsim: A cycle accurate full system x86-64 microar-
chitectural simulator. In IEEE Intl. Symp. on Performance Analysis of
Systems and Software, 2007.

278

