
Maple: Simplifying SDN Programming
Using Algorithmic Policies

Andreas Voellmy? Junchang Wang?† Y. Richard Yang? Bryan Ford? Paul Hudak?

?Yale University †University of Science and Technology of China
{andreas.voellmy, junchang.wang, yang.r.yang, bryan.ford, paul.hudak}@yale.edu

ABSTRACT
Software-Defined Networking offers the appeal of a simple, cen-
tralized programming model for managing complex networks. How-
ever, challenges in managing low-level details, such as setting up
and maintaining correct and efficient forwarding tables on distributed
switches, often compromise this conceptual simplicity. In this pa-
per, we present Maple, a system that simplifies SDN programming
by (1) allowing a programmer to use a standard programming lan-
guage to design an arbitrary, centralized algorithm, which we call
an algorithmic policy, to decide the behaviors of an entire network,
and (2) providing an abstraction that the programmer-defined, cen-
tralized policy runs, conceptually, “afresh” on every packet enter-
ing a network, and hence is oblivious to the challenge of trans-
lating a high-level policy into sets of rules on distributed individ-
ual switches. To implement algorithmic policies efficiently, Maple
includes not only a highly-efficient multicore scheduler that can
scale efficiently to controllers with 40+ cores, but more importantly
a novel tracing runtime optimizer that can automatically record
reusable policy decisions, offload work to switches when possible,
and keep switch flow tables up-to-date by dynamically tracing the
dependency of policy decisions on packet contents as well as the
environment (system state). Evaluations using real HP switches
show that Maple optimizer reduces HTTP connection time by a
factor of 100 at high load. During simulated benchmarking, Maple
scheduler, when not running the optimizer, achieves a throughput
of over 20 million new flow requests per second on a single ma-
chine, with 95-percentile latency under 10 ms.

Categories and Subject Descriptors: C.2.3 [Computer Com-
munication Networks]: Network Operations—Network manage-
ment; D.3.4 [Programming Languages]: Processors—Compilers,
Incremental compilers, Run-time environments, Optimization.
General Terms: Algorithms, Design, Languages, Performance.
Keywords: Software-defined Networking, Policies, Openflow.

1. INTRODUCTION
A major recent development in computer networking is the no-

tion of Software-Defined Networking (SDN), which allows a net-
work to customize its behaviors through centralized policies at a
conceptually centralized network controller. In particular, Open-
flow [13] has made significant progress by establishing (1) flow
tables as a standard data-plane abstraction for distributed switches,
(2) a protocol for the centralized controller to install flow rules and
query states at switches, and (3) a protocol for a switch to forward
to the controller packets not matching any rules in its switch-local
flow table. These contributions provide critical components for re-
alizing the vision that an operator configures a network by writing
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM’13, August 12–16, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2056-6/13/08 ...$15.00.

a simple, centralized network control program with a global view
of network state, decoupling network control from the complexities
of managing distributed state. We refer to the programming of the
centralized controller as SDN programming, and a network oper-
ator who conducts SDN programming as an SDN programmer, or
just programmer.

Despite Openflow’s progress, a major remaining component in
realizing SDN’s full benefits is the SDN programming framework:
the programming language and programming abstractions. Exist-
ing solutions require either explicit or restricted declarative spec-
ification of flow patterns, introducing a major source of complex-
ity in SDN programming. For example, SDN programming using
NOX [8] requires that a programmer explicitly create and manage
flow rule patterns and priorities. Frenetic [7] introduces higher-
level abstractions but requires restricted declarative queries and poli-
cies as a means for introducing switch-local flow rules. However,
as new use cases of SDN continue to be proposed and developed, a
restrictive programming framework forces the programmer to think
within the framework’s - rather than the algorithm’s - structure,
leading to errors, redundancy and/or inefficiency.

This paper explores an SDN programming model in which the
programmer defines network-wide forwarding behaviors with the
application of a high-level algorithm. The programmer simply de-
fines a function f , expressed in a general-purpose programming
language, which the centralized controller conceptually runs on ev-
ery packet entering the network. In creating the function f , the
programmer does not need to adapt to a new programming model
but uses standard languages to design arbitrary algorithms for for-
warding input packets. We refer to this model as SDN programming
of algorithmic policies and emphasize that algorithmic policies and
declarative policies do not exclude each other. Our system supports
both, but this paper focuses on algorithmic policies.

The promise of algorithmic policies is a simple and flexible con-
ceptual model, but this simplicity may introduce performance bot-
tlenecks if naively implemented. Conceptually, in this model, the
function f is invoked on every packet, leading to a serious compu-
tational bottleneck at the controller; that is, the controller may not
have sufficient computational capacity to invoke f on every packet.
Also, even if the controller’s computational capacity can scale, the
bandwidth demand that every packet go through the controller may
be impractical. These bottlenecks are in addition to the extra la-
tency of forwarding all packets to the controller for processing [6].

Rather than giving up the simplicity, flexibility, and expressive
power of high-level programming, we introduce Maple, an SDN
programming system that addresses these performance challenges.
As a result, SDN programmers enjoy simple, intuitive SDN pro-
gramming, while achieving high performance and scalability.

Specifically, Maple introduces two novel components to make
SDN programming with algorithmic policies scalable. First, it in-
troduces a novel SDN optimizer that “discovers” reusable forward-
ing decisions from a generic running control program. Specifi-
cally, the optimizer develops a data structure called a trace tree
that records the invocation of the programmer-supplied f on a spe-
cific packet, and then generalizes the dependencies and outcome to
other packets. As an example, f may read only one specific field

of a packet, implying that the policy’s output will be the same for
any packet with the same value for this field. A trace tree captures
the reusability of previous computations and hence substantially
reduces the number of invocations of f and, in turn, the computa-
tional demand, especially when f is expensive.

The construction of trace trees also transforms arbitrary algo-
rithms to a normal form (essentially a cached data structure), which
allows the optimizer to achieve policy distribution: the generation
and distribution of switch-local forwarding rules, totally transpar-
ently to the SDN programmer. By pushing computation to dis-
tributed switches, Maple significantly reduces the load on the con-
troller as well as the latency. Its simple, novel translation and dis-
tribution technique optimizes individual switch flow table resource
usage. Additionally, it considers the overhead in updating flow ta-
bles and takes advantage of multiple switch-local tables to optimize
network-wide forwarding resource usage.

Maple also introduces a scalable run-time scheduler to com-
plement the optimizer. When flow patterns are inherently non-
localized, the central controller will need to invoke f many times,
leading to scalability challenges. Maple’s scheduler provides sub-
stantial horizontal scalability by using multi-cores.

We prove the correctness of our key techniques, describe a com-
plete implementation of Maple, and evaluate Maple through bench-
marks. For example, using HP switches, Maple optimizer reduces
HTTP connection time by a factor of 100 at high load. Maple’s
scheduler can scale with 40+ cores, achieving a simulated through-
put of over 20 million requests/sec on a single machine.

The aforementioned techniques have limitations, and hence pro-
grammers may write un-scalable f . Worst-case scenarios are that
the computation of f is (1) not reusable (e.g., depending on packet
content), or (2) difficult to parallelize (e.g., using shared states).
Maple cannot make every controller scalable, and Maple program-
mers may need to adjust their designs or goals for scalability.

The rest of the paper is organized as follows. Section 2 motivates
Maple using an example. Section 3 gives an overview of Maple
architecture. Sections 4 and 5 present the details of the optimizer
and scheduler, respectively. We present evaluations in Section 6,
discuss related work in Section 7, and conclude in Section 8.

2. A MOTIVATING EXAMPLE
To motivate algorithmic policies, consider a network whose pol-

icy consists of two parts. First, a secure routing policy: TCP flows
with port 22 use secure paths; otherwise, the default shortest paths
are used. Second, a location management policy: the network
updates the location (arrival port on ingress switch) of each host.
Specifying the secure routing policy requires algorithmic program-
ming beyond simple GUI configurations, because the secure paths
are computed using a customized routing algorithm.

To specify the preceding policy using algorithmic policies, an
SDN programmer defines a function f to be invoked on every packet
pkt arriving at pkt.inport() of switch pkt.switch():
def f(pkt):
srcSw = pkt.switch(); srcInp = pkt.inport()
if locTable[pkt.eth_src()] != (srcSw,srcInp):

invalidateHost(pkt.eth_src())
locTable[pkt.eth_src()] = (srcSw,srcInp)

dstSw = lookupSwitch(pkt.eth_dst())
if pkt.tcp_dst_port() == 22:

outcome.path = securePath(srcSw,dstSw)
else:

outcome.path=shortestPath(srcSw,dstSw)
return outcome

The function f is simple and intuitive. The programmer does not
think about or introduce forwarding rules—it is the responsibility
of the programming framework to derive those automatically.

Unfortunately, current mainstream SDN programming models
force programmers to explicitly manage low-level forwarding rules.
Here is a controller using current programming models:
def packet_in(pkt):
srcSw = pkt.switch(); srcInp = pkt.inport()
locTable[pkt.eth_src()] = (srcSw,srcInp)
dstSw = lookupSwitch(pkt.eth_dst())
if pkt.tcp_dst_port() == 22:
(nextHop,path)=securePath(srcSw,dstSw)
else:
(nextHop,path)=shortestPath(srcSw,dstSw)
fixEndPorts(path,srcSw,srcInp,pkt.eth_dst())
for each sw in path:
inport’ = path.inportAt(sw)
outport’= path.outportAt(sw)
installRule(sw,inport’,

exactMatch(pkt),
[output(outport’)])

forward(srcSw,srcInp,action,nextHop)

We see that the last part of this program explicitly constructs and
installs rules for each switch. The program uses the exactMatch
function to build a match condition that includes all L2, L3, and
L4 headers of the packet, and specifies the switch and incoming
port that the rule pertains to, as well as the action to forward on
port outport’. Thus, the program must handle the complexity
of creating and installing forwarding rules.

Unfortunately, the preceding program may perform poorly, be-
cause it uses only exact match rules, which match at a very gran-
ular level. Every new flow will fail to match at switch flow tables,
leading to a controller RTT. To make matters worse, it may not
be possible to completely cover active flows with granular rules, if
rule space in switches is limited. As a result, rules may need to be
frequently evicted to make room for new rules.

Now, assume that the programmer realizes the issue and decides
to conduct an optimization to use wildcard rules. She might replace
the exact match rule with the following:
installRule(sw,inport’,

{from:pkt.eth_src(), to:pkt.eth_dst()},
[output(outport’)])

Unfortunately, this program has bugs! First, if a host A sends
a TCP packet that is not to port 22 to another host B, then rules
with wildcard will be installed for A to B along the shortest path. If
A later initiates a new TCP connection to port 22 of host B, since
the packets of the new connection match the rules already installed,
they will not be sent to the controller and as a result, will not be sent
along the desired path. Second, if initially host A sends a packet to
port 22 of B, then packets to other ports will be misrouted.

To fix the bugs, the programmer must prioritize rules with appro-
priate match conditions. A program fixing these bugs is:
def packet_in(pkt):
...
if pkt.tcp_dst_port() == 22:
(nextHop,path)=securePath(srcSw,dstSw)
fixEndPorts(path,srcSw,srcInp,pkt.eth_dst())
for each sw in path:
inport’ = path.inportAt(sw)
outport’= path.outportAt(sw)
installRule(sw,inport’,priority=HIGH,

{from:pkt.eth_src(),
to:pkt.eth_dst(),to_tcp_port:22},
[output(output’)])

forward(srcSw,srcInp,action,nextHop)
else:
(nexthop,path)=shortestPath(srcSw,dstSw)
fixEndPorts(path,srcSw,srcInp,pkt.eth_dst())
for each sw in path:
inport’ = path.inportAt(sw)
outport’= path.outportAt(sw)
installRule(sw,inport’,priority=MEDIUM,

{from:pkt.eth_src(),
to:pkt.eth_dst(),to_tcp_port:22},
[output(toController)])

installRule(sw,inport’,priority=LOW,
{from:pkt.eth_src(),to:pkt.eth_dst()},
[output(outport’)])

forward(srcSw,srcInp,action,nextHop)

This program is considerably more complex. Consider the else
statement. Since it handles non port 22 traffic, it installs wildcard
rules at switches along the shortest path, not the secure path. Al-
though the rules are intended for only non port 22 traffic, since flow
table rules do not support negation (i.e., specifying a condition of
port != 22), it installs wildcard rules that match all traffic from src
to dst. To avoid such a wildcard rule being used by port 22 traffic,
it adds a special rule, whose priority (MEDIUM) is higher than that
of the wildcard rule, to prevent the wildcard from being applied to
port 22 traffic. This is called a barrier rule. Furthermore, the pro-
gram may still use resources inefficiently. For example, for some
host pairs, the most secure route may be identical to the shortest
path. In this case, the program will use more rules than necessary.

Comparing the example programs using the current models with
the function f defined at the beginning of this section, we see
the unnecessary burden that current models place on programmers,
forcing them to consider issues such as match granularity, encod-
ing of negation using priorities, and rule dependencies. One might
assume that the recent development of declarative SDN program-
ming, such as using a data query language, may help. But such
approaches require that a programmer extract decision conditions
(e.g., conditional and loop conditions) from an algorithm and ex-
press them declaratively. This may lead to easier composition and
construction of flow tables, but it still places the burden on the pro-
grammer, leading to errors, restrictions, and/or redundancies.
3. ARCHITECTURE OVERVIEW

The core objective of Maple is to offer an SDN programmer the
abstraction that a general-purpose program f defined by the pro-
grammer runs “from scratch” on a centralized controller for ev-
ery packet entering the network, hence removing low-level details,
such as distributed switch flow tables, from the programmer’s con-
ceptual model. A naive implementation of this abstraction, how-
ever, would of course yield unusable performance and scalability.

Maple introduces two key components in its design to efficiently
implement the abstraction. The first is an optimizer, or tracing run-
time, which automatically discovers reusable (cachable) algorith-
mic policy executions at runtime, offloads work to switches when
possible, and invalidates cached policy executions due to environ-
ment changes. One can build a proactive rule installer on top of the
tracing runtime, for example, using historical packets, or develop a
static analyzer to proactively evaluate f . These are out of the scope
of this paper. The second is a run-time scheduler, or scheduler for
short, which provides Maple scalable execution of policy “misses”
generated by the many switches in a large network on multicore
hardware. Figure 1 illustrates the positions of the two components.

In addition, Maple allows a set of higher-level tools to be built
on top of the basic abstraction: (1) deployment portal, which im-
poses constraints on top of Maple, in forms such as best practices,
domain-specific analyzers, and/or higher-level, limited configura-
tion interfaces to remove some flexibility of Maple; and (2) policy
composer, which an SDN programmer can introduce.

This paper focuses on the basic abstraction, the optimizer, and
the scheduler. This section sketches a high-level overview of these
three pieces, leaving technical details to subsequent sections.

3.1 Algorithmic Policy f

An SDN programmer specifies the routing of each packet by pro-
viding a function f, conceptually invoked by our run-time sched-

Figure 1: Maple system components.
uler on each packet. An SDN programmer can also provide han-
dlers for other events such as switch-related events, but we focus
here on packet-arrival events. Although the function f may in prin-
ciple be expressed in any language, for concreteness we illustrate f
in a functional style:
f :: (PacketIn,Env) -> ForwardingPath

Specifically, f is given two inputs: PacketIn, consisting of a
packet (Packet) and the ingress switch/port; and Env, a handle
to an environment context. The objective of (Env) is to provide f
with access to Maple-maintained data structures, such as a network
information base that contains the current network topology.

The return value of a policy f is a forwarding path, which spec-
ifies whether the packet should be forwarded at all and if so how.
For multicast, this result may be a tree instead of a linear path. The
return of f specifies global forwarding behavior through the net-
work, rather than hop-by-hop behavior.

Except that it must conform to the signature, f may use arbitrary
algorithms to classify the packets (e.g., conditional and loop state-
ments) and compute forwarding actions (e.g., graph algorithms).

3.2 Optimizer
Although a policy f might in principle follow a different execu-

tion path and yield a different result for every packet, in practice
many packets—and often many flows—follow the same or simi-
lar execution paths in realistic policies. For example, consider the
example algorithmic policy in Section 2. f assigns the same path
to two packets if they match on source and destination MAC ad-
dresses and neither has a TCP port value 22. Hence, if we invoke f
on one packet, and then a second packet arrives, and the two pack-
ets satisfy the preceding condition, then the first invocation of f is
reusable for the second packet. The key objective of the optimizer
is to leverage these reusable algorithm executions.

3.2.1 Recording reusable executions
The technique used by Maple to detect and utilize reusable exe-

cutions of a potentially complex program f is to record the essence
of its decision dependencies: the data accesses (e.g., reads and as-
sertions) of the program on related inputs. We call a sequence of
such data accesses a trace, and Maple obtains traces by logging
data accesses made by f.

As an example, assume that the log during one execution of an f
is follows: (1) the only data access of the program is to apply a test
on TCP destination port for value 22, (2) the test is true, and (3) the
program drops the packet. One can then infer that if the program
is again given an arbitrary packet with TCP destination port 22, the
program will similarly choose to drop the packet.

The key data structure maintained by the optimizer is a collection
of such data access traces represented as a trace tree. Figure 2 is a
trace tree from 3 traces of a program f. In one of these traces, the
program first tests TCP destination port for 22 and the result is false
(the right branch is false). The program then reads the field value
of Ethernet destination (=4) and Ethernet source (=6), resulting in

tcpDst:22

drop

true

ethDst

drop
2

ethSrc

path 6->4: h6->s1/port 30->s2/port 3->s3/port 4 (h4)
6

4

false

h6 s1

s2s4

s3h4

1

30

3

4

Figure 2: An example trace tree. Diamond indicates a test
of some condition, circle indicates reading an attribute, and
rectangles contain return values. tcpDst denotes TCP destina-
tion; ethDst and ethSrc denote Ethernet destination and source.
Topology of the network is shown on the right.
the program’s decision to forward packets from host 6 to host 4
along the shortest path between these two hosts. For concreteness,
Figure 2 shows the details of how a path is represented. Assume
that host 6 is attached at switch s1/port 1, and host 4 at switch
s3/port 4. Figure 2 shows the detail of the path from host 6 to
host 4 as: from host 6 (s1/port 1) to output port 30 of s1, which is
connected to switch s2; s2 sends out at port 3, which is connected
to s3, where host 4 is attached at port 4. The trace tree abstracts
away the details of f but still retains its output decisions as well as
the decisions’ dependencies on the input packets.

3.2.2 Utilizing distributed flow tables
Merely caching prior policy decisions using trace trees would

not make SDN scalable if the controller still had to apply these
decisions centrally to every packet. Real scalability requires that
the controller be able to “push” many of these packet-level deci-
sions out into the flow tables distributed on the individual Openflow
switches to make quick, on-the-spot per-packet decisions.

To achieve this goal, the optimizer maintains, logically, a trace
tree for each switch, so that the leaves for a switch’s trace tree con-
tain the forwarding actions required for that switch only. For exam-
ple, for the trace tree shown in Figure 2, the switch-specific trace
tree maintained by Maple for switch s1 has the same structure, but
includes only port actions for switch s1 at the leaves (e.g., the right
most leave is labeled only port 30, instead of the whole path).

Given the trace tree for a switch, the optimizer compiles the trace
tree to a prioritized set of flow rules, to form the flow table of the
switch. In particular, there are two key challenges to compile an ef-
ficient flow table for a switch. First, the table size at a switch can be
limited, and hence it is important to produce a compact table to fit
more cached policy decisions at the switch. Second, the optimizer
will typically operate in an online mode, in which it needs to contin-
uously update the flow table as new decisions are cached. Hence, it
is important to achieve fast, efficient flow table updates. To address
the challenges, our optimizer introduces multiple techniques: (1) it
uses incremental compilation, avoiding full-table compilation; (2)
it optimizes the number of rules used in a flow table, through both
switch-local and network-wide optimizations on switch tables; and
(3) it minimizes the number of priorities used in a flow table, given
that the update time to a flow table is typically proportional to the
number of priority levels [18].

3.2.3 Keeping trace trees, flow tables up-to-date
Just as important as using distributed flow tables efficiently is

keeping them up-to-date, so that stale policy decisions are not ap-
plied to packets. Specifically, the decision of f on a packet depends
on not only the fields of the packet, but also other variables. For ex-
ample, data accesses by f through the Env handle to access the net-
work information base will also generate dependency, which Maple
tracks. Hence, trace trees record the dependencies of prior policy

decisions on not only packet fields but also Maple-maintained en-
vironment state such as network topology and configurations.

A change to the environment state may invalidate some part of
the trace trees, which in turn may invalidate some entries of the
flow tables. There is a large design spectrum on designing the in-
validation scheme, due to various trade-offs involving simplicity,
performance, and consistency. For example, it can be simple and
“safe” to invalidate more flow table entries than necessary—though
doing so may impact performance. To allow extensible invalidation
design, Maple provides a simple invalidation/update API, in which
a flexible selection clause can be specified to indicate the cached
computations that will be invalidated. Both system event handlers
and user-defined functions (i.e., g in Figure 1) can issue these API
calls. Hence, user-defined f can introduce its own (persistent) envi-
ronment state, and manage its consistency. Note that dependencies
that Maple cannot automatically track will require user-initiated in-
validations (see Section 4.2) to achieve correctness.
3.3 Multicore Scheduler

Even with efficient distributed flow table management, some frac-
tion of the packets will “miss” the cached policy decisions at switches
and hence require interaction with the central controller. This controller-
side processing of misses must scale gracefully if the SDN as a
whole is to scale.

Maple therefore uses various techniques to optimize the con-
troller’s scalability, especially for current and future multicore hard-
ware. A key design principle instrumental in achieving controller
scalability is switch-level parallelism: designing the controller’s
thread model, memory management, and event processing loops to
localize controller state relevant to a particular “client” switch. This
effectively reduces the amount and frequency of accesses to state
shared across the processing paths for multiple client switches.

While many of our design techniques represent “common sense”
and are well-known in the broader context of parallel/multicore
software design, all of the SDN controllers that we had access to
showed major scalability shortcomings, as we explore later in Sec-
tion 6. We were able to address most of these shortcomings through
a judicious application of switch-level parallelism principles, such
as buffering and batching input and output message streams, and
appropriate scheduling and load balancing across cores. Section 5
discusses scheduling considerations further.

4. MAPLE OPTIMIZER
This section details the optimizer, highlighting the construction

and invalidation of trace trees and methods for converting trace
trees to flow tables. We choose to present out ideas in steps, from
basic ideas to optimizations, to make understanding easier.

4.1 Basic Concepts
Trace tree: A trace tree provides an abstract, partial representation
of an algorithmic policy. We consider packet attributes a1, . . . an

and write p.a for the value of the a attribute of packet p. We write
dom(a) for the set of possible values for attribute a: p.a ∈ dom(a)
for any packet p and attribute a.

DEFINITION 1 (TRACE TREE). A trace tree (TT) is a rooted
tree where each node t has a field typet whose value is one of L
(leaf), V (value), T (test), or Ω (empty) and such that:

1. If typet = L, then t has a valuet field, which ranges over
possible return values of the algorithmic policy. This node
represents the behavior of a program that returns valuet

without inspecting the packet further.

2. If typet = V, then t has an attr t field, and a subtreet field,
where subtreet is an associative array such that subtreet[v]

Algorithm 1: SEARCHTT(t, p)

1 while true do
2 if typet = Ω then
3 return NIL;

4 else if typet = L then
5 return valuet;

6 else if typet = V ∧ p.attr t ∈ keys(subtreet) then
7 t← subtreet[p.attr t];

8 else if typet = V ∧ p.attr t /∈ keys(subtreet) then
9 return NIL;

10 else if typet = T ∧ p.attr t = valuet then
11 t← t+;

12 else if typet = T ∧ p.attr t 6= valuet then
13 t← t−;

is a trace tree for value v ∈ keys(subtreet). This node rep-
resents the behavior of a program that if the supplied packet
p satisfies p.attr t = v, then it continues to subtreet[v].

3. If typet = T, then t has an attr t field, a valuet field, such
that valuet ∈ dom(attr t), and two subtree fields t+ and
t−. This node reflects the behavior of a program that tests
the assertion p.attr t = valuet of a supplied packet p and
then branches to t+ if true, and t− otherwise.

4. If typet = Ω, then t has no fields. This node represents
arbitrary behavior (i.e., an unknown result).

Given a TT, one can look up the return value of a given packet, or
discover that the TT does not include a return value for the packet.
Algorithm 1 shows the SEARCHTT algorithm, which defines the
semantics of a TT. Given a packet and a TT, the algorithm traverses
the tree, according to the content of the given packet, terminating
at an L node with a return value or an Ω node which returns NIL.

Flow table (FT): A pleasant result is that given a trace tree, one
can generate an Openflow flow table (FT) efficiently.

To demonstrate this, we first model an FT as a collection of FT
rules, where each FT rule is a triple (priority,match, action),
where priority is a natural number denoting its priority, with the
larger the value, the higher the priority; match is a collection of
zero or more (packet attribute, value) pairs, and action denotes the
forwarding action, such as a list of output ports, or ToController,
which denotes sending to the controller. Matching a packet in an
FT is to find the highest priority rule whose match field matches
the packet. If no rule is found, the result is ToController. Note
that FT matches do not support negations; instead, priority ordering
may be used to encode negations (see below).

Trace tree to forwarding table: Now, we describe BUILDFT(t), a
simple algorithm shown in Algorithm 2 that compiles a TT rooted
at node t into an FT by recursively traversing the TT. It is simple
because its algorithm structure is quite similar to the standard in-
order tree traversal algorithm. In other words, the elegance of the
TT representation is that one can generate an FT from a TT using
basically simple in-order tree traversal.

Specifically, BUILDFT(t), which starts at line 1, first initial-
izes the global priority variable to 0, and then starts the recur-
sive BUILD procedure. Note that each invocation of BUILD is pro-
vided with not only the current TT node t, but also a match param-
eter denoted m, whose function is to accumulate attributes read or
positively tested along the path from the root to the current node
t. We can see that BUILDFT(t) starts BUILD with m being any
(i.e., match-all-packets). Another important variable maintained by
BUILD is priority . One can observe an invariant (lines 8 and 16)

Algorithm 2: BUILDFT(t)

1 Algorithm BUILDFT(t)
2 priority ← 0;
3 BUILD(t,any);
4 return;

5 Procedure BUILD(t,m)
6 if typet = L then
7 emitRule(priority,m, valuet);
8 priority ← priority + 1;

9 else if typet = V then
10 for v ∈ keys(subtreest) do
11 BUILD(subtreest[v],m ∧ (attr t : v));

12 else if typet = T then
13 BUILD(t−,m);
14 mt = m ∧ (attr t : valuet);
15 emitRule(priority,mt,ToController);
16 priority ← priority + 1;
17 BUILD(t+,mt);

that its value is increased by one after each output of an FT rule. In
other words, BUILD assigns each FT rule with a priority identical
to the order in which the rule is added to the FT.

BUILD processes a node t according to its type. First, at a leaf
node, BUILD emits an FT rule (at line 7) with the accumulated
match m and the designated action at the leaf node. The priority
of the FT rule is the current value of the global variable priority .
Second, at a V node (line 9), BUILD recursively emits the FT rules
for each subtree branch. Before proceeding to branch with value v,
BUILD adds the condition on the branch (denoted attrt : value) to
the current accumulated match m. We write m1∧m2 to denote the
intersection of two matches.

The third case is a T node t. One might think that this is similar
to a V node, except that a T node has only two branches. Un-
fortunately, flow tables do not support negation, and hence BUILD
cannot include the negation condition in the accumulated match
condition when recursing to the negative branch. To address the
issue, BUILD uses the following techniques. (1) It emits an FT rule,
which we call the barrier rule for the t node, with action being
ToController and match mt being the intersection of the assertion
of the T node (denoted as attrt : valuet) and the accumulated
match m. (2) It ensures that the barrier rule has a higher priority
than any rules emitted from the negative branch. In other words,
the barrier rule prevents rules in the negated branch from being ex-
ecuted when mt holds. (3) To avoid that the barrier rule blocks
rules generated from the positive branch, the barrier rule should
have lower priority than those from the positive branch. Formally,
denote rb as the barrier rule at a T node, r− a rule from the nega-
tive branch, and r+ a rule from the positive branch. BUILD needs
to enforce the following ordering constraints:

r− → rb → r+, (1)

where r1 → r2 means that r1 has lower priority than r2.
Since BUILD increases priority after each rule, enforcing the pre-

ceding constraints is easy: in-order traversal, first negative and then
positive. One can verify that the run-time complexity of BUILDFT(t)
is O(n), where n is the size of the trace tree rooted at t.

Example: We apply BUILDFT to the root of the trace tree shown
in Figure 2, for switch s1 (e.g., leaves containing only actions per-
taining to s1, such as drop and port 30). Since the root of the tree
is a T node, testing on TCP destination port 22, BUILD, invoked
by BUILDFT, goes to line 12. Line 13 recursively calls BUILD on
the negative (right) branch with match m still being any . Since
the node (labeled ethDst) is a V node on the Ethernet destination

attribute, BUILD proceeds to visit each subtree, adding a condition
to match on the Ethernet destination labeled on the edge to the sub-
tree. Since the subtree on edge labeled 2 is a leaf, BUILD (executing
at line 7) emits an FT rule with priority 0, with a match on Ether-
net destination 2. The action is to drop the packet. BUILD then
increments the priority, returns to the parent, and visits the subtree
labeled 4, which generates an FT rule at priority level 1 and in-
crements the priority. After returning from the subtree labeled 4,
BUILD backtracks to the T node (tcpDst:22) and outputs a barrier
rule with priority 2, with match being the assertion of the node:
matching on TCP destination port 22. BUILD outputs the final FT
rule for the positive subtree at priority 3, dropping packets to TCP
destination port 22. The final FT for switch s1 is:
[(3, tcp_dst_port=22 , drop),
(2, tcp_dst_port=22 , toController),
(1, eth_dst=4 && eth_src=6, port 30),
(0, eth_dst=2 , drop)]

If one examines the FT carefully, one may observe some ineffi-
ciencies in it, which we will address in Section 4.3. A key at this
point is that the generated FT is correct:

THEOREM 1 (FT CORRECTNESS). tree and BUILDFT(tree)
encode the same function on packets.

4.2 Trace Tree Augmentation & Invalidation
With the preceding basic concepts, we now describe our tracing

runtime system, to answer the following questions: (1) how does
Maple transparently generate a trace tree from an arbitrary algo-
rithmic policy? (2) how to invalidate outdated portions of a trace
tree when network conditions change?
Maple packet access API: Maple builds trace trees with a sim-
ple requirement from algorithmic policies: they access the values
of packet attributes and perform boolean assertions on packet at-
tributes using the Maple packet access API:

readPacketField :: Field -> Value
testEqual :: (Field,Value) -> Bool
ipSrcInPrefix :: IPPrefix -> Bool
ipDstInPrefix :: IPPrefix -> Bool

The APIs simplify programming and allow the tracing runtime to
observe the sequence of data accesses and assertions made by a pol-
icy. A language specific version of Maple can introduce wrappers
for these APIs. For example, pkt.eth_src() used in Section 2
is a wrapper invoking readPacketField on Ethernet source.
Trace: Each invocation of an algorithmic policy that uses the packet
access API on a particular packet generates a trace, which consists
of a sequence of trace items, where each trace item is either a Test
item, which records an assertion being made and its outcome, or a
Read item, which records the field being read and the read value.
For example, if a program calls testEqual(tcpDst, 22) on
a packet and the return is false, a Test item with assertion of TCP
destination port being 22 and outcome being false is added to the
trace. If the program next calls readPacketField(ethDst)
and the value 2 is returned, a Read item with field being Ethernet
destination and value being 2 will be appended to the trace. As-
sume that the program terminates with a returned action of drop,
then drop will be set as the returned action of the trace, and the
trace is ready to be added to the trace tree.
Augment trace tree with a trace: Each algorithmic policy starts
with an empty trace tree, represented as Ω. After collecting a new
trace, the optimizer augments the trace tree with the new trace. The
AUGMENTTT(t , trace) algorithm, presented in Algorithm 3, adds
a new trace trace to a trace tree rooted at node t. The algorithm
walks the trace tree and the trace in lock step to find the location
at which to extend the trace tree. It then extends the trace tree

at the found location with the remaining part of the trace. The
algorithm uses head(trace) to read the first item of a trace, and
next(trace) to remove the head and return the rest. The algorithm
uses a straightforward procedure TRACETOTREE(trace), which
we omit here, that turns a linear list into a trace tree.

Algorithm 3: AUGMENTTT(t, trace)

1 if typet = Ω then
2 t← TRACETOTREE(trace);
3 return;

4 repeat
5 item = head(trace); trace ← next(trace);
6 if typet = T then
7 if item.outcome is true then
8 if typet+ = Ω then
9 t+ ← TRACETOTREE(trace);

10 return;

11 else
12 t← t+ ;

13 else
14 if typet− = Ω then
15 t− ← TRACETOTREE(trace);
16 return;

17 else
18 t← t− ;

19 else if typet = V then
20 if item.value ∈ keys(subtreet) then
21 t← subtreet[item.value];

22 else
23 subtreet[item.value]← TRACETOTREE(trace);
24 return;

25 until;

Example: Figure 3 illustrates the process of augmenting an ini-
tially empty tree. The second tree results from augmenting the
first tree with trace Test(tcpDst , 22; False), Read(ethDst ; 2); ac-
tion=drop. In this step, AUGMENTTT calls TRACETOTREE at the
root. Note that TRACETOTREE always places an Ω node in an un-
explored branch of a T node, such as the t+ branch of the root of
the second tree. The third tree is derived from augmenting the sec-
ond tree with the trace Test(tcpDst , 22; False), Read(ethDst ; 4),
Read(ethSrc, 6); action=port 30 . In this case, the extension is at
a V node. Finally, the fourth tree is derived by augmenting the
third tree with trace Test(tcpDst , 22; True); action=drop. This
step fills in the positive branch of the root.
Correctness: The trace tree constructed by the preceding algorithm
returns the same result as the original algorithmic policy, when
there is a match. Formally, we have:

THEOREM 2 (TT CORRECTNESS). Let t be the result of aug-
menting the empty tree with the traces formed by applying the algo-
rithmic policy f to packets pkt1 . . . pktn. Then t safely represents
f in the sense that if SEARCHTT(t, pkt) is successful, then it has
the same answer as f(pkt).
Optimization: trace compression: A trace may have redundancy.
Specifically, although the number of distinct observations that a
program f can make of the packet is finite, a program may repeat-
edly observe or test the same attribute (field) of the packet, for ex-
ample during a loop. This can result in a large trace, increasing the
cost of tracing. Furthermore, redundant trace nodes may increase
the size of the trace tree and the number of rules generated.

Maple applies COMPRESSTRACE, Algorithm 4, to eliminate both
read and test redundancy in a trace before applying the preceding
augmentation algorithm. In particular, the algorithm tracks the sub-
set of packets that may follow the current trace. When it encounters

Ω

(a)

tcpDst:22

Ω

true

ethDst

drop
2

false

(b)

tcpDst:22

Ω

true

ethDst

drop
2

ethSrc

port 30
6

4

false

(c)

tcpDst:22

drop

true

ethDst

drop
2

ethSrc

port 30
6

4

false

(d)
Figure 3: Augmenting a trace tree for switch s1. Trace tree starts as empty (Ω) as (a).

Algorithm 4: COMPRESSTRACE()

1 for next access entry on attribute a do
2 if range(entry) included in knownRange then
3 ignore

4 else
5 update knownRange

a subsequent data access, it determines whether the outcome of this
data access is completely determined by the current subset. If so,
then the data access is ignored, since the program is equivalent to a
similar program that simply omits this redundant check. Otherwise,
the data access is recorded and the current subset is updated.
Maple trace tree invalidation API: In addition to the preceding
packet access API, Maple also provides an API to invalidate part of
a trace tree, where SelectionClause specifies the criteria:

invalidateIf :: SelectionClause -> Bool

For example, the invalidateHost call in the motivating ex-
ample shown in Section 2 is a shorthand of invoking invalidateIf
with SelectionClause as source or destination MAC addresses
equal to a host’s address. This simple call removes all outdated for-
warding actions involving the host after it changes location.

As another example, if SelectionClause specifies a switch
and port pair, then all paths using the switch/port pair (i.e., link)
will be invalidated. This topology invalidation is typically invoked
by a Maple event listener that receives Openflow control events.
Maple also contains an API to update the trace tree to implement
fast-routing. This is out of scope of this paper.
4.3 Rule & Priority Optimization
Motivation: With the basic algorithms covered, we now present
optimizations. We start by revisiting the example that illustrates
BUILDFT at the end of Section 4.1. Let FTB denote the example FT
generated. Consider the following FT, which we refer as FTO:
[(1, tcp_dst_port=22 , drop),
(0, eth_dst==4 && eth_src==6, port 30),
(0, eth_dst==2 , drop)]

One can verify that the two FTs produce the same result. In other
words, the example shows that BUILDFT has two problems: (1) it
may generate more flow table rules than necessary, since the barrier
rule in FTB is unnecessary; and (2) it may use more priority levels
than necessary, since FTB has 4 priorities, while FTO has only 2.

Reducing the number of rules generated for an FT is desirable,
because rules are often implemented in TCAMs where rule space
is limited. Reducing the number of priority levels is also benefi-
cial, because TCAM update algorithms often have time complexity
linear in the number of priority levels needed in a flow table [18].

Barrier elimination: We start with eliminating unnecessary bar-
rier rules. BUILDFT outputs a barrier rule for each T node t. How-
ever, if the rules emitted from the positive branch t+ of t is com-
plete (i.e., every packet matching t+’s match condition is handled
by t+’s rules), then there is no need to generate a barrier rule for
t, as the rules for t+ already match all packets that the barrier rule

would match. One can verify that checking this condition elimi-
nates the extra barrier rule in FTB.

Define a general predicate isComplete(t) for an arbitrary tree
node t: for an L node, isComplete(t) = true , since a BUILDFT
derived compiler will generate a rule for the leaf to handle exactly
the packets with the match condition; for a V node, isComplete(t) =
true if both |subtreest| = |dom(attr t)| and isComplete(subtreev)
for each v ∈ keys(subtreest); otherwise isComplete(t) = false
for the V node. For a T node t, isComplete(t) = isComplete(t−).
We define needsBarrier(t) at a T node t to be true if t+ is not
complete and t− is not Ω, false otherwise.
Priority minimization: Minimizing the number of priorities is
more involved. But as we will show, there is a simple, efficient
algorithm achieving the goal, without the need to increase priority
after outputting every single rule, as BUILDFT does.

Consider the following insight: since rules generated from dif-
ferent branches of a V node are disjoint, there is no need to use
priority levels to distinguish them. Hence, the priority increment
from 0 to 1 by BUILDFT for the example at the end of Section 4.1
is unnecessary. The preceding insight is a special case of the gen-
eral insight: one can assign arbitrary ordering to two rules if their
match conditions are disjoint.

Combining the preceding general insight with the ordering con-
straints shown in Equation (1) in Section 4.1, we define the minimal
priority assignment problem as choosing a priority assignment P to
rules with the minimal number of distinct priority values:

minimize
P

|P |

subject to (ri → rj) ∧ (ri, rj overlap) : P (ri) < P (rj)
(2)

One may solve Problem (2) using topological ordering. Specif-
ically, construct a directed acyclic graph (DAG) Gr = (Vr, Er),
where Vr is the set of rules, and Er the set of ordering constraints
among the rules: there is an edge from ri to rj iff ri → rj and
ri, rj overlap. Initialize variable priority to 0. Assign rule priori-
ties as follows: select all nodes without any incoming edges, assign
them priority, delete all such nodes, increase priority by 1, and
then repeat until the graph is empty.

An issue of the preceding algorithm is that it needs to first gen-
erate all rules, compute their ordering constraints, and then assign
priorities. However, Maple’s trace tree has special structures that
allow us to make simple changes to BUILDFT to still use in-order
trace tree traversal to assign minimal priority levels. The algorithm
that we will design is simple, more efficient, and also better suited
for incremental updates.

Define a weighted graph Go(Vo, Eo,Wo) for a trace tree to cap-
ture all ordering constraints. Specifically, Vo is the set of all trace
tree nodes. All edges of the trace tree, except those from a T node
t to t−, belong to Eo as well. To motivate additional edges in
Eo, consider all ordering constraints among the rules. Note that
the edges of a trace tree do not include constraints of the form
r− → rb, as defined in Equation (1). To introduce such constraints
in Go, extend Eo to include up-edges from rule-generating nodes
(i.e., T nodes with barriers or L nodes). Identifying the up-edges
from a rule-generating node n is straightforward. Consider the path

from the tree root to node n. Consider each T node t along path. If
n is on the negative branch of t and the intersection of the accumu-
lated match conditions of t+ and n is nonempty, then there should
be an up-edge from n to t. One can verify that Go is a DAG.

To remove the effects of edges that do not convey ordering con-
straints, we assign all edges weight 0 except the following:

1. For an edge from a T node t to t+, this edge has w(e) = 1
if t needs a barrier and w(e) = 0 otherwise;

2. For each up-edge, the weight is 1.

Example: Figure 4 shows Go for Figure 3(d). Dashed lines are
up-edges of Eo. Edges that are in both the TT and Eo are shown as
thick solid lines, while edges that are only in TT are shown as thin
solid lines. Eo edges with weight 1 are labeled w = 1. The drop
leaf in the middle has an up-edge to the root, for example, because
its accumulated match condition is ethDst : 2, which overlaps the
root’s positive subtree match condition of tcpDst : 22. The Eo

edge to the positive subtree of the root has weight 0, because the
root node is complete and hence no barrier is needed for it.

tcpDst:22

drop

true

ethDst

drop
2

ethSrc

port 30
6

4

false

w = 1

w = 1

Figure 4: Order graph Go for trace tree of Figure 3(d).
Algorithm: The algorithm based on Go to eliminate barriers and
minimize priorities is shown in OPTBUILDFT. The algorithm tra-
verses the TT in-order, the same as BUILDFT. Each TT node t has
a variable priority(t), which is initialized to 0, and is incremented
as the algorithm runs, in order to be at least equal to the priority of
a processed node x plus the link weight from x to t. Since all non-
zero weight edges flow from right to left (i.e., negative to positive)
in Go, in-order traversal guarantees that when it is time to output a
rule at a node, all nodes before it in the ordering graph have already
been processed, and hence the node’s priority is final.
Example 1: Consider executing OPTBUILDFT on the example of
Figure 4. The algorithm begins by processing the negative branch
of the root. At the ethDst V node, OPTBUILDFT updates the pri-
ority of its two children with priority 0, since its priority is 0 and
the edge weights to its children are 0. The algorithm then processes
the drop leaf for ethDst : 2, emits a rule at priority 0, and updates
the root priority to 1, since its priority is 0 and its up-edge weight
is 1. The algorithm then processes the ethDst : 4 branch where
it processes the leaf in a similar way. After backtracking to the
root, OPTBUILDFT skips the barrier rule, since its positive subtree
is complete, and updates the priority of its positive child to be 1 (its
priority), since the edge weight to the positive child is 0. Finally, it
proceeds to the positive child and outputs a drop rule at priority 1.
Example 2: Consider the following policy that tests membership
of the IP destination of a packet in a set of IP prefixes:
f(p): if p.ipDstInPrefix(103.23.0.0/16):

if p.ipDstInPrefix(103.23.3.0/24):
return a

else:
return b

if p.ipDstInPrefix(101.1.0.0/16):
return c

if p.ipDstInPrefix(101.0.0.0/13):
return d

return e

Algorithm 5: OPTBUILDFT(t)

1 Algorithm OPTBUILDFT(t)
2 OPTBUILD(t,any);
3 return;

4 Procedure update(t)
5 for (t, x) ∈ Eo do
6 priority(x) =

max(priority(x),weight(t, x) + priority(t));

7 Procedure OPTBUILD(t,m)
8 if typet = L then
9 emitRule(priority(t),m, valuet);

10 update(t);

11 else if typet = V then
12 update(t);
13 for v ∈ keys(subtreest) do
14 OPTBUILD(subtreest[v],m ∧ (attr t : v));

15 else if typet = T then
16 BUILD(t−,m);
17 mt = m ∧ (attr t : valuet);
18 if needsBarrier(t) then
19 emitRule(priority(t),mt,ToController);

20 update(t);
21 OPTBUILD(t+,mt);

103.23.0.0/16

103.23.3.0/24

a

true

b

false

true

101.1.0.0/16

c

true

101.0.0.0/13

d

true

e
false

false

false

Figure 5: Trace tree from an IP prefix matching example.

An example trace tree of this program is shown in Figure 5,
which also shows the Go edges for this TT. By avoiding barrier
rules and by using the dependency graph to limit priority incre-
ments, OPTBUILDFT generates the following, optimal prioritiza-
tion:

2, ipDst:103.23.3.0/24 --> a
2, ipDst:101.1.0.0/16 --> c
1, ipDst:101.23.0.0/16 --> b
1, ipDst:101.0.0.0/13 --> d
0, * --> e

4.4 Efficient Insertion and Invalidation
We now adapt the algorithms of the preceding sections to be-

come incremental algorithms, which typically update rules by ex-
amining only a small portion of a trace tree, rather than compiling
the entire trace tree “from scratch”. Maple allows efficient updates
because of information maintained in Go, which we call node an-
notations of the tree.

First consider augmenting a trace tree with a new trace. We mod-
ify AUGMENTTT to accumulate the identities of T nodes when the
trace follows the negative branch. After attaching the new trace, we
build rules starting with the priority stored at the attachment point.
Since building rules for the new trace may increase the priorities of
some of the T nodes accumulated above, we modify augmentation
to backtrack towards the root and rebuild any positive sub-branches
of those T nodes along this path whose priorities have increased.
Note that the method avoids recompiling branches at V nodes other
than the branch being augmented. It also avoids recompiling nega-
tive branches of positive T ancestors of the augmentation point.

Algorithm 6: ROUTEAGGREGATION(ft)

1 Safe elimination of rules in ft that have action ToController;
2 for each destination d mentioned in ft do
3 act = action of lowest priority rule in ft overlapping

destination d ;
4 p = priority of highest priority rule that overlaps packets

to d and agrees with act and such that all lower priority
rules overlapping with packets to d agree with act ;

5 Delete rules at priority ≤ p matching on destination d
from ft ;

6 emitRule(p,matchForDest(d), act);

Invalidation is also simple, because the node annotations pro-
vide sufficient information to reconstruct the flow rules generated
through a series of updates, even if a full compilation would assign
priorities differently. Hence the invalidation of a part of a tree sim-
ply involves obtaining the previously-generated rules for that part,
leaving all other parts of the tree intact.

4.5 Optimization for Distributed Flow Tables
Maple further optimizes flow table usage through network-wide

optimizations, by considering network properties. Below we spec-
ify two such optimizations that Maple conducts automatically.
Elimination of ToController at network core: To motivate the
idea, consider converting the global trace tree in Figure 2 to switch
trace trees. Consider the trace tree for a switch s4, which is not
on the path from host 6 to 4. If a packet from 6 to 4 does arrive at
switch s4, a general, safe action should be ToController, to handle
the exception (e.g., due to host mobility). Now Maple uses network
topology to know that switch s4 is a core switch (i.e., it does not
have any connection to end hosts). Then Maple is assured that the
exception will never happen, and hence there is no need to generate
the ToController rule for switch s4. This is an example of the
general case that core switches do not see “decision misses”, which
are seen only by edge switches. Hence, Maple does not install
ToController rules on core switches and still achieves correctness.
Maple can conduct further analysis on network topologies and the
trace trees of neighboring switches to remove unnecessary rules
from a switch.
Route aggregation: The preceding step prepares Maple to con-
duct more effectively a second optimization which we call route
aggregation. Specifically, a common case is that routing is only
destination based (e.g., Ethernet, IP or IP prefix). Hence, when the
paths from two sources to the same destination merge, the remain-
ing steps are the same. Maple identifies safe cases where multiple
rules to the same destination can be replaced by a single, broader
rule that matches on destination only. Algorithm 6 shows the de-
tails of the algorithm. The elimination of rules with ToController
as action improves the effectiveness of the optimization, because
otherwise, the optimization will often fail to find agreement among
overlapping rules.

THEOREM 3. ROUTEAGGREGATION does not alter the forward-
ing behavior of the network, provided rules at ingress ports include
all generated rules with action ToController.

5. MAPLE MULTICORE SCHEDULER
Even with the preceding optimizations, the Maple controller must

be powerful and scalable enough to service the “cache misses” from
a potentially large number of switches. Scalability and parallelism
within the controller are thus critical to achieving scalability of the
SDN as a whole. This section outlines key details of our imple-
mentation, in particular, on the scheduler, to achieve graceful scal-
ability. A technical report offers more details [22].

Programming language and runtime: While Maple’s architec-
ture is independent of any particular language or runtime infras-
tructure, its exact implementation will be language-dependent. Our
current system allows a programmer to define an algorithmic policy
f in either Haskell or Java. In this paper, we focus on implement-
ing f in Haskell, using the Glasgow Haskell Compiler (GHC). We
explore the scheduling of f on processor cores, efficiently manag-
ing message buffers, parsing and serializing control messages to
reduce memory traffic, synchronization between cores, and syn-
chronization in the language runtime system.

Affinity-based, switch-level scheduling of f on cores: Consider
application of f at the controller on a sequence of packets. One can
classify these packets according to the switches that originated the
requests. Maple’s scheduler uses affinity-based, switch-level paral-
lel scheduling. Processing by f of packets from the same switch is
handled by a single, lightweight user-level thread from a set of user-
level threads atop of a smaller set of CPU cores [11, 12]. The sched-
uler maintains affinity between lightweight threads and hardware
cores, shifting threads between cores only in response to persistent
load imbalances. This affinity reduces the latency introduced by
transferring messages between cores, and enables threads serving
“busy” switches to retain cached state relevant to that switch.

This design provides abundant fine-grained parallelism, based
on two assumptions. First, a typical network includes many more
switches than the controller has cores. Second, each individual
switch generates request traffic at a rate that can easily be processed
by a single processor core. We expect these assumptions to hold in
realistic SDN networks [14].

Achieving I/O scalability: Bottlenecks can arise due to synchro-
nization in the handling of I/O operations. To achieve I/O scala-
bility, Maple further leverages its thread-per-switch design by en-
suring that each OS-level thread invokes I/O system calls (read,
write, and epoll in this case) on sockets for switches currently
assigned to that particular core. Since the scheduler assigns each
switch to one core at a time, this affinity avoids I/O-related con-
tention on those sockets both at application level and within the OS
kernel code servicing system calls on those sockets.

Further, Maple internally processes messages in batches to han-
dle the issue that an OpenFlow switch typically sends on a TCP
stream many short, variable-length messages preceded by a length
field, potentially requiring two expensive read system calls per
message. By reading batches of messages at once, and sending
batches of corresponding replies, Maple reduces system call costs.

Large batched read operations often leave the head of a switch’s
message stream in between message boundaries. This implies that
using multiple user-level threads to process a switch’s message
stream would cause frequent thread stalls while one thread waits
for the parsing state of a previous parsing thread to become avail-
able. Large non-atomic write operations cause similar problems
on the output path. However, since Maple dedicates a thread to
each switch, its switch-level parallelism avoids unnecessary syn-
chronization and facilitates efficient request batching.

6. EVALUATIONS
In this section, we demonstrate that (1) Maple generates high

quality rules, (2) Maple can achieve high throughputs on augmenta-
tion and invalidation, and (3) Maple can effectively scale controller
computation over large multicore processors.

6.1 Quality of Maple Generated Flow Rules
We first evaluate if Maple generates compact switch flow rules.

Algorithmic policies: We use two types of policies. First, we use a
simple data center routing policy named mt-route. Specifically,
the network is divided into subnets, with each subnet assigned a

/24 IPv4 prefix. The subnets are partitioned among multiple ten-
ants, and each tenant is assigned its own weights to network links
to build a virtual topology when computing shortest paths. Upon
receiving a packet, the mt-route policy reads the /24 prefixes of
both the source and the destination IPv4 addresses of the packet,
looks up the tenants of the source and the destination using the IP
prefixes, and then computes intra-tenant routing (same tenant) or
inter-tenant routing (e.g., deny or through middleboxes).

Second, we derive policies from filter sets generated by Class-
bench [20]. Specifically, we use parameter files provided with
Classbench to generate filter sets implementing Access Control Lists
(ACL), Firewalls (FW), and IP Chains (IPC). For each parame-
ter file, we generate two filter sets with roughly 1000 and 2000
rules, respectively. The first column of Table 1 names the gener-
ated filter sets, and the second indicates the number of filters in each
Classbench-generated filter set (except for the mt-route policy,
which does not use a filter set). For example, acl1a and acl1b
are two filter sets generated from a parameter file implementing
ACL, with 973 and 1883 filters respectively. We program an f that
acts as a filter set interpreter, which does the following for a given
input filter set: upon receiving a packet, the policy tests the packet
against each filter, in sequence, until it finds the first matching filter,
and then returns an action based on the matched rule. Since TCP
port ranges are not directly supported by Openflow, our interpreter
checks most TCP port ranges by reading the port value and then
performing the test using program logic. However, if the range con-
sists of all ports the interpreter omits the check, and if it consists of
a single port the interpreter performs an equality assertion. Further-
more, the interpreter takes advantage of a Maple extension which
allows a user-defined f to perform a single assertion on multiple
conditions. The interpreter makes one or more assertions per filter,
and therefore makes heavy use of T nodes, unlike mt-route.

Packet-in: For each Classbench filter set, we use the trace file
(i.e., a sequence of packets) generated by Classbench to exercise
it. Since not all filters of a filter set are triggered by its given Class-
bench trace, we use the third column of Table 1 to show the number
of distinct filters triggered for each filter set. For the mt-route
policy, we generate traffic according to [2], which provides a char-
acterization of network traffic in data centers.

In our evaluations, each packet generates a packet-in message
at a variant of Cbench [5] — an Openflow switch emulator used to
benchmark Openflow controllers — which we modified to generate
packets from trace files. For experiments requiring accurate mea-
surements of switch behaviors such as flow table misses, we further
modified Cbench to maintain a flow table and process packets ac-
cording to the flow table. This additional code was taken from the
Openflow reference switch implementation.

Results: Table 1 shows the results. We make the following obser-
vations. First, Maple generates compact switch flow tables. For
example, the policy acl1a has 973 filters, and Maple generates a
total of only 1006 Openflow rules (see column 4) to handle pack-
ets generated by Classbench to test acl1a. The number of flow
rules generated by Maple is typically higher than the number of
filters in a filter set, due to the need to turn port ranges into exact
matches and to add barriers to handle packets from ports that have
not been exactly matched yet. Define Maple compactness for each
filter set as the ratio of the number of rules generated by Maple
over the number of rules in the filter set. One can see (column 5)
that the largest compactness ratio is for acl3b, which is still only
1.31. One can also evaluate the compactness by using the triggered
filters in a filter set. The largest is still for acl3b, but at 2.09.

Second, we observe that Maple is effective at implementing com-
plex filter sets with a small number of flow table priorities (column

Alg. policy #Filts #Trg #Rules Cmpkt #Pr Mods/Rule
mt-route 73563 1 1.00

acl1a 973 604 1006 1.03 9 2.25
acl2a 949 595 926 0.98 85 10.47
acl3a 989 622 1119 1.13 33 2.87
fw1a 856 539 821 0.96 79 17.65
fw2a 812 516 731 0.90 56 10.66
ipc1a 977 597 1052 1.08 81 4.20
ipc2a 689 442 466 0.68 26 6.73
acl1b 1883 1187 1874 1.00 18 5.35
acl2b 1834 1154 1816 0.99 119 5.02
acl3b 1966 1234 2575 1.31 119 6.13
fw1b 1700 1099 1775 1.04 113 18.32
fw2b 1747 1126 1762 1.01 60 7.69
ipc1b 1935 1227 2097 1.08 112 9.49
ipc2b 1663 1044 1169 0.70 31 10.02

Table 1: Numbers of flow rules, priorities and modifications
generated by Maple for evaluated policies.

6). For example, it uses only 9 priorities for acl1a, which has 973
filters. The mt-route policy uses only one priority level.

Third, operating in an online mode, Maple does need to issue
more flow table modification commands (column 7) than the final
number of rules. For example, for acl1a, on average, 2.25 switch
modification commands are issued for each final flow rule.

6.2 Effects of Optimizing Flow Rules
Maple generates wildcard flow rules when possible to reduce

flow table “cache” misses. To demonstrate the benefits, we use the
mt-route policy and compare the performance of Maple with
that of a simple controller that uses only exact matches.

Flow table miss rates: We measure the switch flow table miss rate,
defined as the fraction of packets that are diverted from a switch
to the controller, at a single switch. We generate network traffic
for a number of sessions between 10 hosts and 20 servers, each in
distinct tenants, with an average of 4 TCP sessions per pair of hosts.
Figure 6(a) shows the flow table miss rates of Maple compared with
those of the exact-match controller, as a function of the number of
TCP packets per flow, denoted F . We vary F from 4 to 80 packets
per flow, as the size of most data center flows fall in this range [2].

As expected, the exact match controller incurs a miss rate of ap-
proximately 1/F , for example incurring 25.5% and 12.8% miss
rates for F = 4 and F = 8, respectively. In contrast, Maple incurs
a miss rate 3 to 4 times lower, for example 6.7% and 4.1% at F = 4
and F = 8. Maple achieves this improvement by generating rules
for this policy that match only on source and destination addresses,
which therefore decreases the expected miss rate by a factor of 4,
the average number of flows per host pair.

Real HP switch load: We further measure the effects using 3 real
HP 5406 Openflow switches (s1, s2, and s3). We build a simple
topology in which s1 connects to s2 and s2 connects to s3. A client
running httperf [17] at subnet 1 connected at s1 makes HTTP re-
quests to an HTTP server at subnet 3 connected at s3.

We use three controllers. The first two are the same as above:
exact match and mt-route, which modified to match only on IP
and transport fields to accommodate the switches’ restrictions on
which flows can be placed in hardware tables. We interpret an exact
match as being exact on IP and transport fields. We introduce the
third controller, which is the native L2 mode (i.e., no Openflow) at
any of the switches.

Figure 6(b) shows the mean end-to-end HTTP connection time,
which is measured by httperf as the time between a TCP connection
is initiated to the time that the connection is closed, and hence in-
cludes the time to set up flow tables at all 3 switches. The x-axis of
the figure is the request rate and number of requests from the client
to the HTTP server. For example, 100 means that the client issues
one HTTP connection per 10 ms (=1/100 sec) for a total of 100

(a) Flow table miss rate

(b) HTTP connection time using real HP switches
Figure 6: Effects of optimizing flow rules.

connections. Note that the y-axis is shown as log scale. We make
the following observations. First, the HTTP connection setup time
of the exact-match controller and that of Maple are the same when
the connection rate is 1. Then, as the connection rate increases,
since Maple incurs table misses only on the first connection, its
HTTP connection time reduces to around 1 ms to slightly above
2 ms when the connection rate is between 10 to 120. In contrast,
the exact-match controller incurs table misses on every connection
and hence its HTTP connection time increases up to 282 ms at con-
nection rate 120. This result reflects limitations in the switches,
since the load on the controller CPU remains below 2% throughout
the test, and we ensured that the switches’ Openflow rate limiters
are configured to avoid affecting the switches’ performance. Sec-
ond, we observe that when the connection rate increases from 80
to 100, the switch CPUs becomes busy, and the HTTP connection
time starts to increase from around 1 ms to 2 ms. Third, Maple has
a longer HTTP connection time compared with native L2 switch,
which suggests potential benefits of proactive installation.

6.3 Flow Table Management Throughput
After evaluating the quality of Maple generated flow table rules,

we now evaluate the throughput of Maple; that is, how fast can
Maple maintain its trace tree and compile flow tables?
Types of operations: We subject Maple to 3 types of operations:
(1) augments, where Maple evaluates a policy, augments the trace
tree, generates flow table updates, and installs the updates at switches;
(2) lookups, where Maple handles a packet by looking up the cached
answer in the trace tree; and (3) invalidations, where Maple inval-
idates part of the trace tree and deletes rules generated for those
subtrees. In particular, we evaluate host invalidations, which are
caused by host mobility and remove all leaf nodes related to a
moved host, and port invalidations, which support topology up-
dates and remove any leaf node whose action uses a given port.
Workload: We use the same policies and packet traces as in Sec-
tion 6.1, but we process each packet trace multiple times. In partic-
ular, during the first pass, as nearly every packet will cause an aug-
ment operation, we measure the throughput of Maple to record and

Filter set Augments/s Lookups/s H Invals/s P Invals/s
mt-route 58719.65 555937 156284 13215
acl1a 1180.74 58631 2491 3378
acl2a 508.40 15931 1151 1745
acl3a 605.34 19348 1569 2332
fw1a 202.17 73433 3828 5487
fw2a 205.52 85013 4629 7250
ipc1a 362.98 18053 1194 1770
ipc2a 621.23 50544 3089 5066
acl1b 666.67 40133 1358 2200
acl2b 245.92 9809 601 924
acl3b 223.75 9749 626 965
fw1b 68.52 32917 1468 2073
fw2b 51.40 25994 1292 1933
ipc1b 142.11 10143 518 846
ipc2b 185.07 17622 928 1934

Table 2: Maple augments/invalids rates. H Invals and P Invals
denote host and port invalidations respectively.

install new rules. During subsequent passes, we measure lookup
throughput, as the trace tree has cached results for every packet in
the trace. Finally, we perform invalidations for either all hosts used
in the trace or for all ports used in the trace
Server: We run Maple on a Dell PowerEdge R210 II server, with
16GB DDR3 memory and Intel Xeon E31270 CPUs (with hyper-
threading) running at 3.40GHz. Each CPU has 256KB L2 cache
and 8MB shared L3 cache. We run CBench on a separate server
and both servers are connected by a 10Gbps Ethernet network.
Results: Table 2 shows throughput for each operation type and
policy, using a single 3.40 GHz core, with a single thread. For the
mt-route policy, which uses only V nodes, Maple can perform
all operations at high-speed, including both augments and invali-
dates. The augmentation throughput of Classbench-based policies
varies. The fw2b policy takes the longest time (20 ms) for Maple
to handle a miss. For most policies, invalidation can be handled
faster than augmentation, reflecting the fact that invalidations do
not require adjusting priority levels, and thus can be done faster.

6.4 Run-time Scheduler
We next evaluate the performance of our multicore scheduler. In

particular, if the programmer-provided function f has no locality,
then all requests will be forwarded to the controller for centralized
processing. We use learning switch with exact match to evaluate
our scheduler, since this controller is available in other frameworks.
We measure both throughput (i.e., the number of requests that our
controller can process each second) and latency. The optimizer
component of Maple is not executed in evaluations in this section to
compare with Beacon and NOX-MT [21], two well-known Open-
flow control frameworks that aim to provide high performance.
Server: We run our Openflow controllers on an 80 core SuperMi-
cro server, with 8 Intel Xeon E7-8850 2.00GHz processors, each
having 10 cores with a 24MB smart cache and 32MB L3 cache. We
use four 10 Gbps Intel NICs. Our server software includes Linux
kernel version 3.7.1 and Intel ixgbe driver (version 3.9.17).
Workload: We simulate switches with a version of Cbench modi-
fied to run on several servers, in order to generate sufficient work-
load. We use 8 Cbench workload servers connected over 10Gbps
links to a single L2 switch, which connects to four 10Gbps inter-
faces of our control server. We limit the packet-in messages gener-
ated by CBench, so that the number of requests outstanding from a
single CBench instance does not exceed a configurable limit. This
allows us to control the response time while evaluating throughput.
Results: Figure 7(a) shows the throughput as a function of the
number of cores used for all three systems. We observe that Maple
serves over 20 million requests per second using 40 cores and scales
substantially better than Beacon or NOX-MT. In particular Beacon

(a) Throughput comparison

(b) Latency comparison

Figure 7: Throughput and latency of SDN controllers.

scales to less than 15 millions/second, and NOX-MT is only around
2 millions/second. Figure 7(b) shows the corresponding latency
CDF for all three systems. The median latency of Maple is 1 ms,
Beacon is almost 4 ms, and NOX-MT reaches as high as 17 ms.
The 95-percentile latency of Maple is still under 10 ms.

7. RELATED WORK
SDNs have motivated much recent work, which we classify into

basic SDN controllers, programming abstractions, offloading work
to switches, and controller scalability.

Basic SDN controllers: NOX [8] offers C++ and Python APIs for
raw event handling and switch control, while Beacon [1] offers a
similar API for Java. These APIs require the programmer to man-
age low-level Openflow state explicitly, such as switch-level rule
patterns, priorities, and timeouts. Maple derives this low-level state
from a high-level algorithmic policy expression.

SDN programming abstractions and languages: Maestro [3] raises
the abstraction level of SDN programming with modular network
state management using programmer-defined views. SNAC [19]
and FML [9] offer high-level pattern languages for specifying se-
curity policies. Onix [10] introduces the NIB abstraction so that
applications modify flow tables through reading and writing to the
key-value pairs stored in the NIB. Casado et al. [4] proposes net-
work virtualization abstraction. Frenetic [7], Pyretic [16] and Net-
tle [23] provide new languages for SDN programming. Frenetic’s
NetCore language supports specialized forms of composition, such
as between statistics-gathering and control rules. In contrast, Maple
is agnostic to the language for expressing policies, and benefits
from whatever features (e.g., composition) the language offers.

Offloading work to switches: Devoflow [6] increases scalability
by refactoring the Openflow API, reducing the coupling between
centralized control and centralized visibility. Frenetic leverages its
NetCore language to compile rules for switch flow tables, alleviat-
ing the complex challenge of managing flow tables [7, 15]. Maple
similarly compiles to switch flow tables, but its tracing approach
supports generic algorithms expressed in arbitrary languages. Also,

Maple designs an optimizer that minimizes the number of priority
levels, important for reducing update overhead.
SDN controller scaling: The NOX-MT branch of NOX uses Boost
for IO and threading. Beacon [1] uses Java threads to scale to a
modest number of cores. Onix [10] partitions network state across
multiple distributed controllers, alleviating scalability and fault-
tolerance concerns by compromising the attractive simplicity of
the centralized model. Maestro [3] offers multiple techniques to
scale across multiple cores. Maple uses techniques such as affinity-
based, switch-level scheduling to achieve substantial scalability.
8. CONCLUSIONS

This paper explores a powerful, programmer-friendly SDN pro-
gramming model in which a programmer uses standard algorith-
mic programming to design arbitrary algorithms for SDN control.
We present novel techniques to address the scalability challenges
of algorithmic SDN programming transparently, and show that the
result is highly scalable on a variety of benchmarks using both sim-
ulated and real network workloads.
Acknowledgements: We thank Richard Beebe, Michael F.
Nowlan, Lewen Yu, Ramki Gummadi, Erran Li, Haibin Song, Chen
Tian, SIGCOMM reviewers, and Ion Stoica (shepherd) for sugges-
tions. Andreas Voellmy was primarily supported by a gift from Fu-
turewei, and partially supported by NSF grant CNS-1017206. Paul
Hudak was supported in part by a gift from Microsoft Research.

9. REFERENCES
[1] https://openflow.stanford.edu/display/Beacon/Home.
[2] T. Benson, A. Akella, and D. A. Maltz. Network Traffic Characteristics of Data

Centers in the Wild. In Proc. of IMC, 2010.
[3] Z. Cai, A. L. Cox, and T. S. Eugene Ng. Maestro: Balancing Fairness, Latency

and Throughput in the OpenFlow Control Plane. Technical report, Rice, 2011.
[4] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker. Virtualizing the

Network Forwarding Plane. In Proc. of PRESTO, 2010.
[5] Cbench. Cbench, 2012. [Online; accessed 10-April-2012].
[6] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and

S. Banerjee. DevoFlow: Scaling Flow Management for High-Performance
Networks. In Proc. of SIGCOMM, 2011.

[7] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story, and
D. Walker. Frenetic: a Net. Programming Language. In Proc. of ICFP, 2011.

[8] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker. NOX: Towards an Operating System for Networks. SIGCOMM
Comput. Commun. Rev., 2008.

[9] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker. Practical
Declarative Network Management. In Proc. of WREN, 2009.

[10] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker. Onix: a
Distributed Control Platform for Large-scale Production Networks. In Proc. of
OSDI, 2010.

[11] S. Marlow, S. Peyton Jones, and S. Singh. Runtime Support for Multicore
Haskell. In Proc. of ICFP, 2009.

[12] B. Marsh, M. Scott, T. LeBlanc, and E. Markatos. First-class User-level
Threads. ACM SIGOPS Operating Systems Review, 1991.

[13] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. OpenFlow: Enabling Innovation in
Campus Networks. SIGCOMM Comput. Commun. Rev., 2008.

[14] J. C. Mogul et al. DevoFlow: Cost-effective Flow Management for High
Performance Enterprise Networks. In Proc. of Hotnets, 2010.

[15] C. Monsanto, N. Foster, R. Harrison, and D. Walker. A Compiler and Run-time
System for Network Programming Languages. In Proc. of POPL, 2012.

[16] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker. Composing
Software-Defined Networks. In Proc. of NSDI, 2013.

[17] D. Mosberger and T. Jin. httperf: a Tool for Measuring Web Server
Performance. SIGMETRICS Perform. Eval. Rev., 1998.

[18] D. Shah and P. Gupta. Fast Updating Algo. for TCAMs. IEEE Micro, 2001.
[19] Simple network access control (SNAC).

http://www.openflow.org/wp/snac/.
[20] D. E. Taylor and J. S. Turner. Classbench: a Packet Classification Benchmark.

IEEE/ACM Trans. Networking, 2007.
[21] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood. On

Controller Performance in Software-Defined Networks. In Hot-ICE, 2012.
[22] A. Voellmy, B. Ford, P. Hudak, and Y. R. Yang. Scaling Software-defined

Network Controllers on Multicore Servers. YaleCS TR1468, 2012.
[23] A. Voellmy and P. Hudak. Nettle: Taking the Sting Out of Programming

Network Routers. In Proc. of PADL, 2011.

