
Can the Production Network Be the Testbed?

Rob Sherwood∗, Glen Gibb†, Kok-Kiong Yap†, Guido Appenzeller ‡,
Martin Casado�, Nick McKeown†, Guru Parulkar†

∗ Deutsche Telekom Inc. R&D Lab, Los Altos, CA† Stanford University, Palo Alto, CA
� Nicira Networks, Palo Alto, CA ‡ Big Switch Networks, Palo Alto, CA

Abstract
A persistent problem in computer network research is
validation. When deciding how to evaluate a new feature
or bug fix, a researcher or operator must trade-off real-
ism (in terms of scale, actual user traffic, real equipment)
and cost (larger scale costs more money, real user traf-
fic likely requires downtime, and real equipment requires
vendor adoption which can take years). Building a realis-
tic testbed is hard because “real” networking takes place
on closed, commercial switches and routers with spe-
cial purpose hardware. But if we build our testbed from
software switches, they run several orders of magnitude
slower. Even if we build a realistic network testbed, it
is hard to scale, because it is special purpose and is in
addition to the regular network. It needs its own loca-
tion, support and dedicated links. For a testbed to have
global reach takes investment beyond the reach of most
researchers.

In this paper, we describe a way to build a testbed
that is embedded in—and thus grows with—the net-
work. The technique—embodied in our first prototype,
FlowVisor—slices the network hardware by placing a
layer between the control plane and the data plane. We
demonstrate that FlowVisor slices our own production
network, with legacy protocols running in their own
protected slice, alongside experiments created by re-
searchers. The basic idea is that if unmodified hardware
supports some basic primitives (in our prototype, Open-
Flow, but others are possible), then a worldwide testbed
can ride on the coat-tails of deployments, at no extra ex-
pense. Further, we evaluate the performance impact and
describe how FlowVisor is deployed at seven other cam-
puses as part of a wider evaluation platform.

1 Introduction

For many years the networking research community has
grappled with how best to evaluate new research ideas.

Whiteboard
Plan

C/C++/Java

NS2
OPNet
Custom

VINI
Emulab

VMs
FlowVisor Vendor

Adoption

Today,
no clear path to

deployment

???
Design

Sim
ulate

Test

Deploy
in Slice

Deploy

This
Paper

Today

Control Realism

Figure 1: Today’s evaluation process is a continuum
from controlled but synthetic to uncontrolled but realistic
testing, with no clear path to vendor adoption.

Simulation [17, 19] and emulation [25] provide tightly
controlled environments to run repeatable experiments,
but lack scale and realism; they neither extend all the
way to the end-user nor carry real user traffic. Special
isolated testbeds [10, 22, 3] allow testing at scale, and
can carry real user traffic, but are usually dedicated to a
particular type of experiment and are beyond the budget
of most researchers.

Without the means to realistically test a new idea there
has been relatively little technology transfer from the re-
search lab to real-world networks. Network vendors are
understandably reluctant to incorporate new features be-
fore they have been thoroughly tested at scale, in realistic
conditions with real user traffic. This slows the pace of
innovation, and many good ideas never see the light of
day.

Peeking over the wall to the distributed systems com-
munity, things are much better. PlanetLab has proved in-
valuable as a way to test new distributed applications at
scale (over 1,000 nodes worldwide), realistically (it runs
real services, and real users opt in), and offers a straight-
forward path to real deployment (services developed in a
PlanetLab slice are easily ported to dedicated servers).

In the past few years, the networking research commu-
nity has sought an equivalent platform, funded by pro-

1

grams such as GENI [8], FIRE [6], etc. The goal is to
allow new network algorithms, features, protocols or ser-
vices to be deployed at scale, with real user traffic, on a
real topology, at line-rate, with real users; and in a man-
ner that the prototype service can easily be transferred
to run in a production network. Examples of experimen-
tal new services might include a new routing protocol,
a network load-balancer, novel methods for data center
routing, access control, novel hand-off schemes for mo-
bile users or mobile virtual machines, network energy
managers, and so on.

The network testbeds that come closest to achieving
this today are VINI [1] and Emulab [25]: both provide a
shared physical infrastructure allowing multiple simulta-
neous experiments to evaluate new services on a physi-
cal testbed. Users may develop code to modify both the
data plane and the control plane within their own isolated
topology. Experiments may run real routing software,
and expose their experiments to real network events. Em-
ulab is concentrated in one location, whereas VINI is
spread out across a wide area network.

VINI and Emulab trade off realism for flexibility in
three main ways.

Speed: In both testbeds packet processing and forwarding
is done in software by a conventional CPU. This makes
it easy to program a new service, but means it runs much
slower than in a real network. Real networks in enter-
prises, data centers, college campuses and backbones are
built from switches and routers based on ASICs. ASICs
consistently outperform CPU-based devices in terms of
data-rate, cost and power; for example, a single switch-
ing chip today can process over 600Gb/s [2].

Scale: Because VINI and Emulab don’t run new network-
ing protocols on real hardware, they must always exist as
a parallel testbed, which limits their scale. It would, for
example, be prohibitively expensive to build a VINI or
Emulab testbed to evaluate data-center-scale experiments
requiring thousands or tens of thousands of switches,
each with a capacity of hundreds of gigabits per second.
VINI’s geographic scope is limited by the locations will-
ing to host special servers (42 today). Without enormous
investment, it is unlikely to grow to global scale. Emu-
lab can grow larger, as it is housed under one roof, but
is still unlikely to grow to a size representative of a large
network.

Technology transfer: An experiment running on a net-
work of CPUs takes considerable effort to transfer to
specialized hardware; the development styles are quite
different, and the development cycle of hardware takes
many years and requires many millions of dollars.

But perhaps the biggest limitation of a dedicated
testbed is that it requires special infrastructure: equip-
ment has to be developed, deployed, maintained and sup-

ported; and when the equipment is obsolete it needs to be
updated. Networking testbeds rarely last more than one
generation of technology, and so the immense engineer-
ing effort is quickly lost.

Our goal is to solve this problem. We set out to answer
the following question: can we build a testbed that is
embedded into every switch and router of the production
network (in college campuses, data centers, WANs, en-
terprises, WiFi networks, and so on), so that the testbed
would automatically scale with the global network, rid-
ing on its coat-tails with no additional hardware? If
this were possible, then our college campus networks—
for example—interconnected as they are by worldwide
backbones, could be used simultaneously for production
traffic and new WAN routing experiments; similarly, an
existing data center with thousands of switches can be
used to try out new routing schemes. Many of the goals
of programs like GENI and FIRE could be met without
needing dedicated network infrastructure.

In this paper, we introduce FlowVisor which aims to
turn the production network itself into a testbed (Fig-
ure 1). That is, FlowVisor allows experimenters to eval-
uate ideas directly in the production network (not run-
ning in a dedicated testbed alongside it) by “slicing” the
hardware already installed. Experimenters try out their
ideas in an isolated slice, without the need for dedicated
servers or specialized hardware.

1.1 Contributions.
We believe our work makes five main contributions:

Runs on deployed hardware and at real line-rates.
FlowVisor introduces a software slicing layer between
the forwarding and control planes on network devices.
While FlowVisor could slice any control plane message
format, in practice we implement the slicing layer with
OpenFlow [16]. To our knowledge, no previously pro-
posed slicing mechanism allows a user-defined control
plane to control the forwarding in deployed production
hardware. Note that this would not be possible with
VLANs—while they crudely separate classes of traffic,
they provide no means to control the forwarding plane.
We describe the slicing layer in §2 and FlowVisor’s
architecture in §3.

Allows real users to opt-in on a per-flow basis.
FlowVisor has a policy language that maps flows
to slices. By modifying this mapping, users can easily
try new services, and experimenters can entice users to
bring real traffic. We describe the rules for mapping
flows to slices in §3.2.

Ports easily to non-sliced networks. FlowVisor (and its
slicing) is transparent to both data and control planes,
and therefore, the control logic is unaware of the slicing

2

layer. This property provides a direct path for vendor
adoption. In our OpenFlow-based implementation, nei-
ther the OpenFlow switches or the controllers need be
modified to interoperate with FlowVisor (§3.3).

Enforces strong isolation between slices. FlowVisor
blocks and rewrites control messages as they cross the
slicing layer. Actions of one slice are prevented from
affecting another, allowing experiments to safely coexist
with real production traffic. We describe the details
of the isolation mechanisms in §4 and evaluate their
effectiveness in §5.

Operates on deployed networks FlowVisor has been
deployed in our production campus network for the last 7
months. Our deployment consists of 20+ users, 40+ net-
work devices, a production traffic slice, and four stand-
ing experimental slices. In §6, we describe our cur-
rent deployment and future plans to expand into seven
other campus networks and two research backbones in
the coming year.

2 Slicing Control & Data Planes

On today’s commercial switches and routers, the con-
trol plane and data planes are usually logically distinct
but physically co-located. The control plane creates and
populates the data plane with forwarding rules, which
the data plane enforces. In a nutshell, FlowVisor as-
sumes that the control plane can be separated from the
data plane, and it then slices the communication between
them. This slicing approach can work several ways: for
example, there might already be a clean interface be-
tween the control and data planes inside the switch. More
likely, they are separated by a common protocol (e.g.,
OpenFlow [16] or ForCes [7]). In either case, FlowVisor
sits between the control and data planes, and from this
vantage point enables a single data plane to be controlled
by multiple control planes—each belonging to a separate
experiment.

With FlowVisor, each experiment runs in their own
slice of the network. A researcher, Bob, begins by re-
questing a network slice from Alice, his network admin-
istrator. The request specifies his requirements including
topology, bandwidth, and the set of traffic—defined by a
set of flows, or flowspace—that the slice controls. Within
his slice, Bob has his own control plane where he puts the
control logic that defines how packets are forwarded and
rewritten in his experiment. For example, imagine that
Bob wants to create a new http load-balancer to spread
port 80 traffic over multiple web servers. He requests
a slice: its topology should encompass the web servers,
and its flowspace should include all flows with port 80.
He is allocated a control plane where he adds his load-
balancing logic to control how flows are routed in the

Proprietary
Control Logic

Proprietary
Bus

Sw
itc
h

Al
ice

's
Lo

gi
c

Bo
b'

s
Lo

gi
c

Ca
th

y's

Lo
gi

c
O

pe
nF

lo
w

Pr
ot

oc
ol

Forwarding
Logic

O
pe
nF
lo
w

Sw
itc
hForwarding

Logic

OpenFlow

FlowVisor

Co
nt
ro
lle
rs

Co
nt

ro
l

Lo
gi

c
1

Co
nt

ro
l

Lo
gi

c
N

Sw
itc
hForwarding

Logic

Slicing Layer

...

Classical
Switch Architecture

Generic Sliced
Switch Architecture

Sliced OpenFlow
Switch Architecture

Figure 2: Classical network device architectures have
distinct forwarding and control logic elements (left). By
adding a transparent slicing layer between the forward-
ing and control elements, FlowVisor allows multiple
control logics to manage the same forwarding element
(middle). In implementation, FlowVisor uses OpenFlow
and sits between an OpenFlow switch—the forwarding
element—and multiple OpenFlow controllers—the con-
trol logic (right).

data plane. He may advertise his new service so as to at-
tract users. Interested users “opt-in” by contacting their
network administrator to add a subset of their flows to
the flowspace of Bob’s slice.

In this example, FlowVisor allocates a control plane
for Bob, and allows him to control his flows (but no oth-
ers) in the data plane. Any events associated with his
flows (e.g. when a new flow starts) are sent to his control
plane. FlowVisor enforces his slice’s topology by only
allowing him to control switches within his slice.

FlowVisor slices the network along multiple dimen-
sions, including topology, bandwidth, and forwarding
table entries. Slices are isolated from each other, so
that actions in one slice—be they faulty, malicious, or
otherwise—do not impact other slices.

2.1 Slicing OpenFlow
While architecturally FlowVisor can slice any data
plane/control plane communication channel, we built our
prototype on top of OpenFlow.

OpenFlow [16, 18] is an open standard that allows re-
searchers to directly control the way packets are routed
in the network. As described above, in a classical net-
work architecture, the control logic and the data path are
co-located on the same device and communicate via an
internal proprietary protocol and bus. In OpenFlow, the
control logic is moved to an external controller (typi-
cally a commodity PC); the controller talks to the dat-
apath (over the network itself) using the OpenFlow pro-
tocol (Figure 2, right). The OpenFlow protocol abstracts

3

VoIP
HTTP
Game

FlowVisor

Doug

Alice's
Control Logic

Bob's
Control Logic

Cathy's
Control Logic

VoIP
Server

WWW
Cache

Detour
Node

Game
Server

Figure 3: FlowVisor allows users (Doug) to delegate
control of subsets of their traffic to distinct researchers
(Alice, Bob, Cathy). Each research experiment runs in
its own, isolated network slice.

forwarding/routing directives as “flow entries”. A flow
entry consists of a bit pattern, a list of actions, and a set
of counters. Each flow entry states “perform this list of
actions on all packets in this flow” where a typical action
is “forward the packet out port X” and the flow is defined
as the set of packets that match the given bit pattern. The
collection of flow entries on a network device is called
the “flow table”.

When a packet arrives at a switch or router, the device
looks up the packet in the flow table and performs the
corresponding set of actions. If the packet doesn’t match
any entry, the packet is queued and a new flow event is
sent across the network to the OpenFlow controller. The
controller responds by adding a new rule to the flow table
to handle the queued packet. Subsequent packets in the
same flow will be handled without contacting the con-
troller. Thus, the external controller need only be con-
tacted for the first packet in a flow; subsequent packets
are forwarded at the switch’s full line rate.

Architecturally, OpenFlow exploits the fact that mod-
ern switches and routers already logically implement
flow entries and flow tables—typically in hardware as
TCAMs. As such, a network device can be made
OpenFlow-compliant via firmware upgrade.

Note that while OpenFlow allows researchers to
experiment with new network protocols on deployed
hardware, only a single researcher can use/control an
OpenFlow-enabled network at a time. As a result, with-
out FlowVisor, OpenFlow-based research is limited to
isolated testbeds, limiting its scope and realism. Thus,
FlowVisor’s ability to slice a production network is an or-
thogonal and indepenent contribution to OpenFlow-like
software-defined networks.

3 FlowVisor Design

To restate our main goal, FlowVisor aims to use the pro-
duction network as a testbed. In operation, the FlowVisor
slices the network by slicing each of the network’s corre-
sponding packet forwarding devices (e.g., switches and
routers) and links (Figure 3).

With the FlowVisor,
• Network resources are sliced in terms of their band-
width, topology, forward table entries, and device CPU
(§3.1).

• Each slice has control over a set of flows, called its
flowspace. Users can arbitrarily add (opt-in) and remove
(opt-out) their own flows from a slice’s flowspace at any-
time (§3.2).

• Each slice has its own distinct, programmable con-
trol logic, that manages how packets are forwarded and
rewritten for traffic in the slice’s flowspace. In practice,
each slice owner implements their slice-specific control
logic as an OpenFlow controller. The FlowVisor inter-
poses between data and control planes by proxying con-
nections between OpenFlow switches and each slice con-
troller (§3.3).

• Slices are defined using a slice definition policy lan-
guage. The language specifies the slice’s resource limits,
flowspace, and controller’s location in terms of IP and
TCP port-pair (§3.4).

3.1 Slicing Network Resources
Slicing a network means correctly slicing all of the cor-
responding network resources. There are four primary
slicing dimensions:

Topology. Each slice has its own view of network nodes
(e.g., switches and routers) and the connectivity between
them. In this way, slices can experience simulated net-
work events such as link failure and forwarding loops.

Bandwidth. Each slice has its own fraction of bandwidth
on each link. Failure to isolate bandwidth would allow
one slice to affect, or even starve, another slice’s through-
put.

Device CPU. Each slice is limited to what fraction of
each device’s CPU that it can consume. Switches
and routers typically have very limited general purpose
computational resources. Without proper CPU slicing,
switches will stop forwarding slow-path packets (§5.3.2),
drop statistics requests, and, most importantly, will stop
processing updates to the forwarding table.

Forwarding Tables. Each slice has a finite quota of for-
warding rules. Network devices typically support a finite

4

Translation

Isolation
Enforcement

Resource
Allocation

Policy

Alice's
Slice Def.

Bob's
Slice Def.

Cathy's
Slice Def.

Alice's
Controller

Bob's
Controller

Cathy's
Controller

FlowVisor
1

2

34
Switch

Figure 4: The FlowVisor intercepts OpenFlow messages
from guest controllers (1) and, using the user’s slicing
policy (2), transparently rewrites (3) the message to con-
trol only a slice of the network. Messages from switches
(4) are forwarded only to guests if it matches their slice
policy.

number of forwarding rules (e.g., TCAM entries). Fail-
ure to isolate forwarding entries between slices might al-
low one slice to prevent another from forwarding pack-
ets.

3.2 Flowspace and Opt-In

A slice controls a subset of traffic in the network. The
subset is defined by a collection of packet headers that
form a well-defined (but not necessarily contiguous) sub-
space of the entire space of possible packet headers. Ab-
stractly, if packet headers have n bits, then the set of
all possible packet header forms an n-dimensional space.
An arriving packet is a single point in that space repre-
senting all packets with the same header. Similar to the
geometric representation used to describe access control
lists for packet classification [14], we use this abstrac-
tion to partition the space into regions (flowspace) and
map those regions to slices.

The flowspace abstraction helps us manage users who
opt-in. To opt-in to a new experiment or service, users
signal to the network administrator that they would like
to add a subset of their flows to a slice’s flowspace. Users
can precisely decide their level of involvement in an ex-
periment. For example, one user might opt-in all of their
traffic to a single experiment, while another user might
just opt-in traffic for one application (e.g., port 80 for
HTTP), or even just a specific flow (by exactly specify-
ing all of the fields of a header). In our prototype the
opt-in process is manual; but in a ideal system, the user
would be authenticated and their request checked auto-
matically against a policy.

For the purposes of testbed we concluded flow-level
opt-in is adequate—in fact, it seems quite powerful. An-
other approach might be to opt-in individual packets,
which would be more onerous.

3.3 Control Message Slicing

By design, FlowVisor is a slicing layer interposed be-
tween data and control planes of each device in the net-
work. In implementation, FlowVisor acts as a transpar-
ent proxy between OpenFlow-enabled network devices
(acting as dumb data planes) and multiple OpenFlow
slice controllers (acting as programmable control logic—
Figure 4). All OpenFlow messages between the switch
and the controller are sent through FlowVisor. FlowVi-
sor uses the OpenFlow protocol to communicate upwards
to the slice controllers and and downwards to OpenFlow
switches. Because FlowVisor is transparent, the slice
controllers require no modification and believe they are
communicating directly with the switches.

We illustrate the FlowVisor’s operation by extend-
ing the example from §2 (Figure 4). Recall that a re-
searcher, Bob, has created a slice that is an HTTP proxy
designed to spread all HTTP traffic over a set of web
servers. While the controller will work on any HTTP
traffic, Bob’s FlowVisor policy slices the network so
that he only sees traffic from users that have opted-in
to his slice. His slice controller doesn’t know the net-
work has been sliced, so doesn’t realize it only sees a
subset of the HTTP traffic. The slice controller thinks
it can control, i.e., insert flow entries for, all HTTP traf-
fic from any user. When Bob’s controller sends a flow
entry to the switches (e.g., to redirect HTTP traffic to
a particular server), FlowVisor intercepts it (Figure 4-
1), examines Bob’s slice policy (Figure 4-2), and re-
writes the entry to include only traffic from the allowed
source (Figure 4-3). Hence the controller is controlling
only the flows it is allowed to, without knowing that the
FlowVisor is slicing the network underneath. Similarly,
messages that are sourced from the switch (e.g., a new
flow event—Figure 4-4) are only forwarded to guest con-
trollers whose flowspace match the message. That is, it
will only be forwarded to Bob if the new flow is HTTP
traffic from a user that has opted-in to his slice.

Thus, FlowVisor enforces transparency and isolation
between slices by inspecting, rewriting, and policing
OpenFlow messages as they pass. Depending on the re-
source allocation policy, message type, destination, and
content, the FlowVisor will forward a given message un-
changed, translate it to a suitable message and forward,
or “bounce” the message back to its sender in the form
of an OpenFlow error message. For a message sent
from slice controller to switch, FlowVisor ensures that
the message acts only on traffic within the resources as-
signed to the slice. For a message in the opposite di-
rection (switch to controller), the FlowVisor examines
the message content to infer the corresponding slice(s)
to which the message should be forwarded. Slice con-
trollers only receive messages that are relevant to their

5

Switch Switch Switch Switch Switch

FlowVisor FlowVisor

FlowVisorAlice's
Controller

Bob's
Controller

Cathy's
Controller

Eric's
Controller

4 4

5 5

Key:
OpenFlow
Connection

Figure 5: FlowVisor can trivially recursively slice an al-
ready sliced network, creating hierarchies of FlowVisors.

network slice. Thus, from a slice controller’s perspec-
tive, FlowVisor appears as a switch (or a network of
switches); from a switch’s perspective, FlowVisor ap-
pears as a controller.

FlowVisor does not require a 1-to-1 mapping between
FlowVisor instances and physical switches. One FlowVi-
sor instance can slice multiple physical switches, and
even re-slice an already sliced network (Figure 5) .

3.4 Slice Definition Policy

The slice policy defines the network resources, flows-
pace, and OpenFlow slice controller allocated to each
slice. Each policy is described by a text configuration
file—one file per slice. In terms of resources, the policy
defines the fraction of total link bandwidth available to
this slice (§4.3) and the budget for switch CPU and for-
warding table entries. Network topology is specified as a
list of network nodes and ports.

The flowspace for each slice is defined by an ordered
list of tuples similar to firewall rules. Each rule descrip-
tion has an associated action, e.g., allow, read-only, or
deny, and is parsed in the specified order, acting on the
first matching rule. The rules define the flowspace a slice
controls. Read-only rules allow slices to receive Open-
Flow control messages and query switch statistics, but
not to write entries into the forwarding table. Rules are
allowed to overlap, as described in the example below.

Let’s take a look at an example set of rules. Alice, the
network administrator, wants to allow Bob to conduct an
HTTP load-balancing experiment. Bob has convinced
some of his colleagues to opt-in to his experiment. Al-
ice wants to maintain control of all traffic that is not part
of Bob’s experiment. She wants to passively monitor all
network performance, to keep an eye on Bob and the pro-
duction network.

Here is a set of rules Alice could install in the FlowVi-
sor:

Bob’s Experimental Network includes all HTTP traffic
to/from users who opted into his experiment. Thus, his
network is described by one rule per user:

Allow: tcp port:80 and ip=user ip.
OpenFlow messages from the switch matching any of
these rules are forwarded to Bob’s controller. Any flow
entries that Bob tries to insert are modified to meet these
rules.

Alice’s Production Network is the complement of Bob’s
network. For each user in Bob’s experiment, the produc-
tion traffic network has a negative rule of the form:
Deny: tcp port:80 and ip=user ip. The
production network would have a final rule that matches
all flows: Allow: all.

Thus, only OpenFlow messages that do not go to Bob’s
network are sent to the production network controller.
The production controller is allowed to insert forwarding
entries so long as they do not match Bob’s traffic.

Alice’s Monitoring Network is allowed to see all traffic
in all slices. It has one rule, Read-only: all.

This rule-based policy, though simple, suffices for the
experiments and deployment described in this paper. We
expect that future FlowVisor deployments will have more
specialized policy needs, and that researchers will create
new resource allocation policies.

4 FlowVisor Implementation

We implemented FlowVisor in approximately 8000 lines
of C and the code is publicly available for download
from www.openflow.org. The notable parts of the im-
plementation are the transparency and isolation mech-
anisms. Critical to its design, FlowVisor acts as a
transparent slicing layer and enforces isolation between
slices. In this section, we describe how FlowVisor
rewrites control messages—both down to the forwarding
plane and up to the control plane—to ensure both trans-
parency and strong isolation. Because isolation mech-
anisms vary by resource, we describe each resource in
turn: bandwidth, switch CPU, and forwarding table en-
tries. In our deployment, we found that the switch CPU
was the most constrained resource, so we devote partic-
ular care to describing its slicing mechanisms.

4.1 Messages to Control Plane
FlowVisor carefully rewrites messages from the Open-
Flow switch to the slice controller to ensure transparency.
First, FlowVisor only sends control plane messages to
a slice controller if the source switch is actually in the
slice’s topology. Second, FlowVisor rewrites Open-
Flow feature negotiation messages so that the slice con-
troller only sees the physical switch ports that appear
in the slice. Third, OpenFlow port up/port down mes-
sages are similarly pruned and only forwarded to the af-
fected slices. Using these message rewriting techniques,

6

www.openflow.org

FlowVisor can easily simulate network events, such as
link and node failures.

4.2 Messages to Forwarding Plane
In the opposite direction, FlowVisor also rewrites mes-
sages from the slice controller to the OpenFlow switch.
The most important messages to the forwarding plane
were insertions and deletions to the forwarding table.
Recall (§2.1) that in OpenFlow, forwarding rules consist
of a flow rule definition, i.e., a bit pattern, and a set of
actions. To ensure both transparency and isolation, the
FlowVisor rewrites both the flow definition and the set of
actions so that they do not violate the slice’s definition.

Given a forwarding rule modification, the FlowVisor
rewrites the flow definition to intersect with the slice’s
flowspace. For example, Bob’s flowspace gives him con-
trol over HTTP traffic for the set of users—e.g., users
Doug and Eric—that have opted into his experiment. If
Bob’s slice controller tried to create a rule that affected
all of Doug’s traffic (HTTP and non-HTTP), then the
FlowVisor would rewrite the rule to only affect the in-
tersection, i.e., only Doug’s HTTP traffic. If the inter-
section between the desired rule and the slice definition
is null, e.g., Bob tried to affect traffic outside of his
slice, e.g.., Doug’s non-HTTP traffic, then the FlowVi-
sor would drop the control message and return an error
to Bob’s controller. Because flowspaces are not necessar-
ily contiguous, the intersection between the desired rule
and the slice’s flowspace may result in a single rule be-
ing expanded into multiple rules. For example, if Bob
tried to affect all traffic in the system in a single rule, the
FlowVisor would transparently expand the single rule in
to two rules: one for each of Doug’s and Eric’s HTTP
traffic.

FlowVisor also rewrites the lists of actions in a for-
warding rule. For example, if Bob creates a rule to send
out all ports, the rule is rewritten to send to just the sub-
set of ports in Bob’s slice. If Bob tries to send out a port
that is not in his slice, the FlowVisor returns a “action
is invalid” error (recall that from above, Bob’s controller
only discovers the ports that do exist in his slice, so only
in error would he use a port outside his slice).

4.3 Bandwidth Isolation
Typically, even relatively modest commodity network
hardware has some capability for basic bandwidth iso-
lation [13]. The most recent versions of OpenFlow ex-
pose native bandwidth slicing capabilities in the form of
per-port queues. The FlowVisor creates a per-slice queue
on each port on the switch. The queue is configured for
a fraction of link bandwidth, as defined in the slice def-
inition. To enforce bandwidth isolation, the FlowVisor

rewrites all slice forwarding table additions from “send
out port X” to “send out queue Y on port X ”, where Y
is a slice-specific queue ID. Thus, all traffic from a given
slice is mapped to the traffic class specified by the re-
source allocation policy. While any queuing discipline
can be used (weighted fair queuing, deficit round robin,
strict partition, etc.), in implementation, FlowVisor uses
minimum bandwidth queues. That is, a slice configured
for X% of bandwidth will receive at least X% and pos-
sibly more if the link is under-utilized. We choose min-
imum bandwidth queues to avoid issues of bandwidth
fragmentation. We evaluate the effectiveness of band-
width isolation in §5.

4.4 Device CPU Isolation

CPUs on commodity network hardware are typically
low-power embedded processors and are easily over-
loaded. The problem is that in most hardware, a highly-
loaded switch CPU will significantly disrupt the network.
For example, when a CPU becomes overloaded, hard-
ware forwarding will continue, but the switch will stop
responding to OpenFlow requests, which causes the for-
warding tables to enter an inconsistent state where rout-
ing loops become possible, and the network can quickly
become unusable.

Many of the CPU-isolation mechanisms presented are
not inherent to FlowVisor’s design, but rather a work-
around to deal with the existing hardware abstraction ex-
posed by OpenFlow. A better long-term solution would
be to expose the switch’s existing process scheduling
and rate-limiting features via the hardware abstraction.
Some architectures, e.g., the HP ProCurve 5400, already
use rate-limiters to enforce CPU isolation between Open-
Flow and non-OpenFlow VLANs. Adding these features
to OpenFlow is ongoing.

There are four main sources of load on a switch CPU:
(1) generating new flow messages, (2) handling requests
from controller, (3) forwarding “slow path” packets, and
(4) internal state keeping. Each of these sources of load
requires a different isolation mechanism.

New Flow Messages. In OpenFlow, when a packet
arrives at a switch that does not match an entry in the
flow table, a new flow message is sent to the controller.
This process consumes processing resources on a switch
and if message generation occurs too frequently, the CPU
resources can be exhausted. To prevent starvation, the
FlowVisor rate limits the new flow message arrival rate.
In implementation, the FlowVisor tracks the new flow
message arrival rate for each slice, and if it exceeds some
threshold, the FlowVisor inserts a forwarding rule to drop
the offending packets for a short period.

For example, the FlowVisor keeps a token-bucket style
counter for each flow space rule (“Bob’s slice gets (1)

7

all HTTP traffic and (2) all HTTPS traffic”, i.e., two
rules/counters). Each time the FlowVisor receives a
new flow event, the token bucket that matches the flow
gets decremented (for Bob’s slice, packets that match
HTTP count against token bucket #1, packets that match
HTTPS count against #2). Once the bucket is emp-
tied, the FlowVisor inserts a lowest-priority rule into the
switch to drop all packets in that flowspace rule, i.e.,
from the example, if the token bucket corresponding to
HTTPS is emptied, then the flowvisor will cause the
switch to drop all HTTPS packets—without generating
new flow events. The rule is set to expire in 1 second, so
it is effectively a very coarse rate limiter. In practice, if
a slice has control over “all traffic”, this mechanism ef-
fectively blocks all new flow events from saturating the
switch CPU or going to the controller, while allowing all
existing flows to continue without change. We discuss
the effectiveness of this technique in §5.3.2.

Controller Requests. The requests an OpenFlow con-
troller sends to the switch, e.g., to edit the forwarding
table or query statistics, consume CPU resources. For
each slice, the FlowVisor limits CPU consumption by
throttling the OpenFlow message rate to a maximum rate
per second. Because the amount of CPU resources con-
sumed vary by message type and by hardware implemen-
tation, it is future work to dynamically infer the cost of
each OpenFlow message for each hardware platform.

Slow-Path Forwarding. Packets that traverse the
“slow” path—i.e., not the “fast” dedicated hardware for-
warding path—consume CPU resources. Thus, an Open-
Flow rule that forwards packets via the slow path can
consume arbitrary CPU resources.

This is because, in implementations, most switches
only implement a subset of OpenFlow’s functionality
in their hardware. For example, the ASICs on most
switches do not support sending one packet out exactly
two ports (they support unicast and broadcast, but not
in between). To emulate this behavior, the switches ac-
tually process these types of flows in their local CPUs,
i.e,. on their slow path. Unfortunately, as mentioned
above, these are embedded CPUs and are not as powerful
as those on, for example, commodity PCs.

FlowVisor prevents slice controllers from insert-
ing slow-path forwarding rules by rewriting them as
one-time packet forwarding events, i.e., an OpenFlow
“packet out” message. As a result, the slow-path packets
are rate limited by the above two isolation mechanisms:
new flow messages and controller request rate limiting.

Internal Bookkeeping. All network devices use CPU
to update their internal counters, process events, update
counters, etc. So, care must be taken to ensure that there
is sufficient CPU available for the switch’s bookkeep-
ing. The FlowVisor accounts for this by ensuring that

the above rate limits are tuned to leave sufficient CPU
resources for the switch’s internal function.

4.5 Flow Entry Isolation
The FlowVisor counts the number of flow entries used
per slice and ensures that each slice does not exceed a
preset limit. The FlowVisor increments a counter for
each rule a guest controller inserts into the switch and
then decrements the counter when a rule expires. Due
to hardware limitations, certain switches will internally
expand rules that match multiple input ports, so the
FlowVisor needs to handle this case specially. When a
guest controller exceeds its flow entry limit, any new rule
insertions received a “table full” error message.

5 Evaluation

To motivate the efficiency and robustness of the design,
in this section we evaluate the FlowVisor’s scalability,
performance, and isolation properties.

5.1 Scalability
A single FlowVisor instance scales well enough to serve
our entire 40+ switch, 7 slice deployment with minimal
load. As a result, we create an artificially high work-
load to evaluate our implementation’s scaling limits. The
FlowVisor’s workload is characterized by the number of
switches, slices, and flowspace rules per slice as well as
the rate of new flow messages. We present the results for
two types of workloads: one that matches what we ob-
serve from our deployment (1 slice, 35 rules per slice, 28
switches1, 1.55 new flows per second per switch) and the
other a synthetic workload (10 switches, 100 new flows
per second per switch, 1 slice, 1000 rules per slice) de-
signed to stress the system. In each graph, we fix three
variables according to their workload and vary the forth.

Our evaluation measured FlowVisor’s CPU utilization
using a custom script. The script creates a configurable
number of OpenFlow connections to the FlowVisor, and
each connections simulates a switch that sends new flow
messages to the FlowVisor at a prescribed rate. With
each experiment, we configured the FlowVisor’s num-
ber of slices and flowspace rules per slice. The new
flow messages were carefully crafted to match only the
last rule of each slice, causing the worst case behavior
in the FlowVisor’s linear search of the flowspace rules.
Each test was run for 5 minutes and we recorded the
CPU utilization of the FlowVisor process once per sec-
ond, so each result is the average of 300 samples (shown

1This particular measurement did not include all of the switches in
out network.

8

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200 1400

%
 C

P
U

 u
til

iz
at

io
n

New flows per switch per sec (1 switch, 1 slice)

Synthetic:
1000 rules/slice

Observed:
37 rules/slice

 0

 10

 20

 30

 40

 50

 500 1000 1500 2000 2500 3000

%
 C

P
U

 u
til

iz
at

io
n

Number of rules per slice (1 slice)

Synthetic:
100 new flows/switch/s

10 switches

Observed:
1.55 new flows/switch/s; 28 switches

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10

%
 C

P
U

 u
til

iz
at

io
n

Number of slices

Synthetic:
1000 rules/slice 10 switches

100 new flows/switch/s

Observed:
37 rules/slice 28 switches
 1.55 new flows/switch/s

Figure 6: FlowVisor scales linearly with new flow rate, number of slices, switches, and flowspace rules. We generate
high synthetic workloads to explore the scalability because the workloads observed in our deployment were non-
taxing.

with one standard deviation). The FlowVisor ran on a
quad-core Intel Xeon 3GHz system running 32-bit De-
bian Linux 5.0 (Lenny).

Our results with the synthetically high workload show
that the FlowVisor’s CPU load scales linearly in each of
these four workload dimensions (as summarized in Fig-
ure 6). The result is promising, but not surprising. In-
tuitively, the FlowVisor can process a fixed number of
OpenFlow messages per second (the product of number
of switches by new flow rate) and each message must
be matched against each rule of each slice, so the to-
tal load is approximately the product of the four work-
load variables. The synthetic workload with 1,000 new
flows/s (10 switches by 100 new flows/s) is comparable
to the peak rate of published real-world enterprise net-
works [20]: an 8,000 host network generated a peak rate
of 1,200 new flows per second. Thus, we believe that
a single FlowVisor instance could manage a large enter-
prise network. By contrast, our observed workload fluc-
tuated between 0% and 10% CPU, roughly independent
of the experimental variable. This validates our belief
that our deployment can grow significantly using a sin-
gle FlowVisor instance.

While our results show that FlowVisor scales well be-
yond our current requirements and workload, it is worth
noting that it is possible to achieve even further scaling
by moving to a multi-threaded implementation (the cur-
rent implementation is single threaded) or even to multi-
ple FlowVisor instances.

5.2 Performance Overhead

Adding an additional layer between control and data
planes adds overhead to the system. However, as a re-
sult of our design, the FlowVisor does not add over-
head to the data plane. That is, with FlowVisor, packets
are forwarded at full line rate. Nor does the FlowVisor
add overhead to the control plane: control-level calcula-
tions like route selection proceed at their un-sliced rate.

FlowVisor only adds overhead to actions that cross be-
tween the control and data plane layers.

To quantify this cross-layer overhead, we measure the
increased response time for slice controller requests with
and without the FlowVisor. Specifically, we consider
the response time of the OpenFlow messages most com-
monly used in our network and by our monitoring soft-
ware: the new flow and the port status request messages.

In OpenFlow, a switch sends a new flow message to
its controller when an arriving packet does not match any
existing forwarding rules. We examine the increased de-
lay of the new flow message to better understand how
the FlowVisor affects connection setup latency. In our
experiment, we connect a machine with two interfaces to
a switch. One interface sends a packet every 20ms (50
packets per second) to the switch and the other interface
is the OpenFlow control channel. We measure the time
between sending the packet and receiving the new flow
message using libpcap. Our results (Figure 7(a)) show
that the FlowVisor increases time from the switch to con-
troller by an average of 16ms. For latency sensitive ap-
plications, e.g., web services in large data centers, 16ms
may be too much overhead. However, new flow mes-
sages add 12ms latency on average even without FlowVi-
sor, so we believe that slice controllers in those envi-
ronments will likely proactively insert flow entries into
switches, avoiding this latency all together. We point out
that the algorithm FlowVisor uses to process new flow
messages is naive, and its run-time grows linearly with
the number of flowspace rules (§5.1). We are yet to ex-
periment with the many classification algorithms that can
be expected to improve the lookup speed.

A port status request is a message sent by the con-
troller to the switch to query the byte and packet coun-
ters for a specific port. The switch returns the counters
in a corresponding port status reply message. We choose
to study the port status request because we believe it to
be a worst case for FlowVisor overhead. The message
is very cheap to process at the switch and controller, but
expensive for the FlowVisor to process: it has to edit the

9

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 1 10 100
C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

OpenFlow New Flow Latency (ms)

Avg overhead:
16.16 ms

without FlowVisor
with FlowVisor

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 1 10 100

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

OpenFlow Port Status Latency (ms)

Avg overhead:
0.483ms

without FlowVisor
with FlowVisor

Figure 7: CDF of slicing overhead for OpenFlow new flow messages and port status requests.

message per slice to remove statistics for ports that do
not appear in a sliced topology.

We wrote a special-purpose controller that sent ap-
proximately 200 port status requests per second and mea-
sured the response times. The rate was chosen to ap-
proximate the maximum request rate supported by the
hardware. The controller, switch, and FlowVisor were
all on the same local area network, but controller and
FlowVisor were hosted on separate PCs. Obviously, the
overhead can be increased by moving the FlowVisor ar-
bitrarily far away from the controller, but we design this
experiment to quantify the FlowVisor’s processing over-
head. Our results show that adding the FlowVisor causes
an average overhead for port status responses of 0.48 mil-
liseconds(Figure 7(b)). We believe that port status re-
sponse time being faster than new flow processing time
is not inherent, but simply a matter of better optimization
for port status request handling.

5.3 Isolation
5.3.1 Bandwidth

To validate the FlowVisor’s bandwidth isolation prop-
erties, we run an experiment where two slices compete
for bandwidth on a shared link. We consider the worst
case for bandwidth isolation: the first slice sends TCP-
friendly traffic and the other slice sends TCP-unfriendly
constant-bit-rate (CBR) traffic at full link speed (1Gbps).
We believe these traffic patterns are representative of a
scenario where production slice (TCP) shares a link with,
for example, a slice running a DDoS experiment (CBR).

This experiment uses 3 machines—two sources and a
common sink—all connected via the same HP ProCurve
5400 switch, i.e., the switch found in our wiring closet.
The traffic is generated by iperf in TCP mode for the
TCP traffic and UDP mode at 1Gbps for the CBR traffic.
We repeat the experiment twice: with and without the
FlowVisor’s bandwidth isolation features enabled (Fig-
ure 8(a)). With the bandwidth isolation disabled (“with-
out Slicing”), the CBR traffic consumes nearly all the

bandwidth and the TCP traffic averages 1.2% of the link
bandwidth. With the traffic isolation features enabled
(“with 30/70% reservation”), the FlowVisor maps the
TCP slice to a QoS class that guarantees at least 70%
of link bandwidth and maps the CBR slice to a class that
guarantees at least 30%. Note that theses are minimum
bandwidth guarantees, not maximum. With the band-
width isolation features enabled, the TCP slice achieves
an average of 64.2% of the total bandwidth and the CBR
an average of 28.5%. Note that the event at 20 seconds
where the CBR with QoS jumps and the TCP with QoS
experiences a corresponding dip. We believe this to be
the result of a TCP congestion event that allowed the
CBR traffic to temporarily take advantage of additional
available bandwidth, exactly as the minimum bandwidth
queue is designed.

5.3.2 Switch CPU

To quantify our ability to isolate the switch CPU re-
source, we show two experiments that monitor CPU-
usage over time of a switch with and without isolation
enabled. In the first experiment (Figure 8(b)), the Open-
Flow controller maliciously sends port stats request mes-
sages (as above) at increasing speeds (2, 4, 8 . . . 1024
requests per second). In our second experiment (Fig-
ure 8(c)), the switch generates new flow messages faster
than its CPU can handle and a faulty controller does not
add a new rule to match them. In both experiments, we
show the switch’s CPU utilization averaged over one sec-
ond, and the FlowVisor’s isolation features reduce the
switch utilization from 100% to a configurable amount.
In the first experiment, we note that the switch could han-
dle less than 256 port status requests without appreciable
CPU load, but immediately goes to 100% load when the
request rate hits 256 requests per second. In the second
experiment, the bursts of CPU activity in Figure 8(c) is
a direct result of using null forwarding rules (§4.4) to
rate limit incoming new flow messages. We expect that
future versions of OpenFlow will better expose the hard-
ware CPU limiting features already in switches today.

10

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

P
er

ce
nt

 B
an

dw
id

th

Time(s)

CBR without Slicing

TCP with 70%
Reservation

CBR with 30%
Reservation

TCP without Slicing
 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45

S
w

itc
h

C
P

U
 U

til
iz

at
io

n

Time(s)

4
re

qu
es

ts
/s

8
re

qu
es

ts
/s

16
 r

eq
ue

st
s/

s

32
 r

eq
ue

st
s/

s

64
 r

eq
ue

st
s/

s

12
8

re
qu

es
ts

/s

25
6

re
qu

es
ts

/s

51
2

re
qu

es
ts

/s

10
24

 r
eq

ue
st

s/
s

Without Isolation
With Isolation

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

S
w

itc
h

C
P

U
 U

til
iz

at
io

n

Time(s)

Without Isolation
With Isolation

Figure 8: FlowVisor’s bandwidth isolation prevents CBR traffic from starving TCP, and message throttling and new
flow message rate limiting prevents CPU starvation.

6 Deployment Experience

To provide evidence that sliced experimental traffic can
indeed co-exist with production traffic, we deployed
FlowVisor on our production network. By “production”,
we refer to the network that the authors rely on to read
their daily email, surf the web, etc. Additionally, six
other campuses are currently using the FlowVisor as part
of the GENI “meso-scale” infrastructure. In this section,
we describe our experiences in deploying FlowVisor in
our production network, its deployment in other cam-
puses, and briefly describe the experiments that have run
on the FlowVisor.

6.1 Stanford Deployment
At Stanford University, we have been running FlowVi-
sor continuously on our production network since June
4th, 2009. Our network consists of 25+ users, 5 NEC
IP8800 switches, 2 HP ProCurve 5400s, 30 wireless ac-
cess points, 5 NetFPGA [15] cards acting as OpenFlow
switches, and a WiMAX base station. Our physical
network is effectively doubly sliced: first by VLANs
and then by the FlowVisor. Our network trunks over
10 VLANs , including traffic for other research groups,
but only three of those VLANs are OpenFlow-enabled.
Of the three OpenFlow VLANs, two are sliced by
FlowVisor. We maintain multiple OpenFlow VLANs
and FlowVisor instances to allow FlowVisor develop-
ment without impacting production traffic.

For each FlowVisor-sliced VLAN, all network de-
vices point to a single FlowVisor instance, running on
a 3.0GHz quad-core Intel Xeon with 2 GB of DRAM.
For maximum uptime, we ran FlowVisor from a wrap-
per script that instantly restarts it if it should crash. The
FlowVisor was able to handle restarts seamlessly because
it does not maintain any hard state in the network. In
our production slice, we ran NOX’s routing module to
perform basic forwarding in the network. We will pub-
lish our slicing administration tools and debugging tech-
niques.

6.2 Deploying on Other Networks

As part of the GENI “meso-scale” project, we also de-
ployed FlowVisor onto test networks on six university
campuses, including University of Washington, Wis-
consin University, Princeton University, Indiana Univer-
sity, Clemson University, Rutgers University. In each
network, we have a staged deployment plan with the
eventual goal of extending the existing OpenFlow and
FlowVisor test network to their production networks.
Each network runs its own FlowVisor. Recently, at the
8th GENI Engingering Conference (GEC), we demon-
strated how slices at each campus’s network could be
combined with tunnels to create a single wide-area net-
work slice. Currently, we are in the process of extending
the FlowVisor deployment into two backbone networks
(Internet2 and National Lambda Rail), with the eventual
goal of creating a large-scale end-to-end sliceable wide
area network.

6.3 Slicing Experience

In our experience, the two largest causes of network
instability were unexpected interactions with other de-
ployed network devices and device CPU exhaustion.
One problem we had was interacting with a virtual IP
feature of the router in our building. This feature allows
multiple physical interfaces to act as a single, logical in-
terface for redundancy. In implementation, the router
would reply to ARP requests with the MAC address of
the logical interface but source packets from any of three
different MAC addresses corresponding to the physical
interfaces. As a result, we had to revise the flowspace as-
signed to the production slice to include all four MAC ad-
dresses. Another aspect that we did not anticipate is the
amount of broadcast traffic emitted from non-OpenFlow
devices. It is quite common for a device to periodi-
cally send broadcast LLDP, Spanning Tree, and other
packets. The level of broadcast traffic on the network
made debugging more difficult and could cause loops if
our OpenFlow-based loop detection/spanning tree algo-

11

rithms did not match the non-OpenFlow-bases spanning
tree.

Another issue was the interaction between OpenFlow
and device CPU usage. As discussed earlier (§ 4.4), the
most frequent form of slice isolation violations occurred
with device CPU. The main form of isolation violation
occurred when one slice would insert a forwarding rule
that could only be handled via the switch’s slow path and,
as a result, would push the CPU utilization to 100%, pre-
venting slices from updating their forwarding rules. We
also found that the cost to process an OpenFlow message
varied significantly by type and by OpenFlow implemen-
tation particularly with stats requests, e.g., the OpenFlow
aggregate stats command consumed more CPU than an
OpenFlow port stats command, but not on all implemen-
tations. As part of our future work, we plan to compute
a per-message type costs to each OpenFlow request to
more precisely slice device CPU. Additionally, the up-
coming OpenFlow version 1.1 will add support for rate
limiting messages coming from the fast to slow paths.

6.4 Experiments
We’ve demonstrated that FlowVisor supports a wide va-
riety of network experiments. On our production net-
work, we ran four networking experiments, each in its
own slice. All four experiments, including a network
load-balancer [12], wireless streaming video [26], traffic
engineering, and a hardware prototyping experiment [9],
were built on top of NOX [11]. As part of the 7th GENI
Engingeering Conference, each of the seven campuses
demonstrated their own, locally designed experiments,
running in a FlowVisor-enabled slice of the network.
Our hope is that the FlowVisor will continue to allow
researchers to run novel experiments in their own net-
works.

7 Related Work

There is a vast array of work related to network exper-
imentation in both controlled and operational environ-
ments. Here we scratch the surface by discussing some
of the more recent highlights.

The community has benefited from a number of
testbeds for performing large-scale experiments. The
two most widely used are PlanetLab [21] and Emu-
lab [25]. PlanetLab’s primary function has been that of
an overlay testbed, hosting software services on nodes
deployed around the globe. Emulab is targeted more
at localized and controlled experiments run from arbi-
trary switch-level topologies connected by PCs. Shad-
owNet [3] exposes virtualization features of specific
high-end routers, but does not provide per-flow forward-
ing control or user opt-in. VINI [1], a testbed closely

affiliated with PlanetLab, further provides the ability for
multiple researchers to construct arbitrary topologies of
software routers while sharing the same physical infras-
tructure. Similarly, software virtual routers offer both
programmability, reconfigurability, and have been shown
to manage impressive throughput on commodity hard-
ware (e.g. [5]).

In the spirit of these and other testbed technologies,
FlowVisor is designed to aid research by allowing mul-
tiple projects to operate simultaneously, and in isolation,
in realistic network environments. What distinguishes
our approach is that we slice the hardware forwarding
paths of unmodified commercial network gear.

Supercharged PlanetLab [23] is a network experimen-
tation platform designed around CPUs and NPUs (net-
work processors). NPUs can provide high performance
and isolation while allowing for sophisticated per-packet
processing. In contrast, our work forgoes the ability
to perform arbitrary per-packet computation in order to
work on unmodified hardware.

VLANs [4] are widely used for segmentation and iso-
lation in networks. VLANs slice Ethernet L2 broadcast
domains by decoupling virtual links from physical ports.
This allows multiple virtual links to be multiplexed over
a single virtual port (trunk mode), and it allows a sin-
gle switch to be segmented into multiple, L2 broadcast
networks. VLANs use a specific control logic (L2 for-
warding and learning over a spanning tree). FlowVisor,
on the other hand, allows users to define their own con-
trol logic. It also supports a more flexible method for
defining the traffic that is in a slice, and the way users
opt in. For example, with FlowVisor a user could opt-in
to two different slices, whereas with VLANs their traffic
would all be allocated to a single slice at Layer 2.

Perhaps the most similar to FlowVisor is the Prospero
ATM Switch Divider Controller [24]. Prospero uses a
hardware abstraction interface, Ariel, to allow multiple
control planes to operate on the same data plane. While
architecturally similar to our design, Prospero slices in-
dividual ATM switches where FlowVisor has a central-
ized view and can thus create a slice of the entire net-
work. Further, Ariel provides the ability to match on
ATM-related fields (e.g., VCI/VPI) where OpenFlow can
match on any combination of 12-fields spanning layers
one through four. This additional capability is critical
for our notion of flow-level opt-in.

8 Trade-offs and Caveats

The FlowVisor approach is extremely general—it simply
states that if we can insert a slicing layer between the
control and data planes of switches and routers, then we
can perform experiments in the production network. In

12

principle, the experimenter can exploit any capability of
the data plane, so long as it is made available to them.

Our prototype of FlowVisor is based on OpenFlow,
which makes very few of the hardware capabilities
available—which limits the flexibility. Most switch and
router hardware can do a lot more than is exposed via
OpenFlow (e.g. dozens of different packet scheduling
policies, encapsulation into VLANs, VPNs, GRE tun-
nels, MPLS, and so on). OpenFlow makes a trade-off:
it only exposes a lowest common denominator that is
present in all switches in return for a common vendor-
agnostic interface. So far, this minimal set has met the
needs of early experimenters—there appears to be a ba-
sic set of primitive “plumbing” actions that are suffi-
cient for a wide array of experiments, and over time we
would expect the OpenFlow specification to evolve to be
“just enough”, like the RISC instruction set in CPUs. In
addition to the diverse set of experiments we have cre-
ated, others have created experiments for data center net-
work schemes (such as VL2 and Portland), new routing
schemes, home network managers, mobility managers,
and so on.

However, there will always be experimenters who
need more control over individual packets. They might
want to use features of the hardware not exposed by
OpenFlow; or they might want full programmatic con-
trol, not available in any commercial hardware. The first
case is a little easier to handle, because a switch or router
manufacturer can expose more features to the experi-
menter if they choose, either by vendor-specific exten-
sions to OpenFlow and FlowVisor, or by allowing flows
to be sent to a logical internal port that, in turn, processes
the packets in a pre-defined box-specific way.2

But if an experiment needs a way to modify packets
arbitrarily, the researcher needs a different box. If the
experiment calls for arbitrary processing in novel ways at
every switch in the network, then OpenFlow is probably
not the right interface, and our prototype is unlikely to
be of much use. If the experiment only needs processing
at some parts of the network (e.g. to do deep packet in-
spection, or payload processing) then the researcher can
route their flows through some number of special middle-
boxes or way-points. The middle-boxes could be conven-
tional servers, NPUs [23], programmable hardware [15],
or custom hardware. The good thing is that these boxes
can be placed anywhere, and the flows belonging to a
slice can be routed through them - including all the flows
from users who opt in. In the end, the value of FlowVisor
to the researcher will depend on how many middle-boxes
the experiment needs to be realistic—just a few and it
may be worth it; if it needs hundreds or thousands then
FlowVisor is providing very little value.

2For example, this is how some OpenFlow switches implement
VPN tunnels today.

A second limitation of our prototype is the ability to
create arbitrary topologies. If a physical switch is to ap-
pear multiple times in a slice’s topology (i.e. to create a
virtual topology larger than the physical topology), there
is currently no standardized way to do this. The hardware
needs to allow packets to loop back, and pass through the
switch multiple times. In fact, most—but not all—switch
hardware allows this. At some later date we expect this
will be exposed via OpenFlow, but in the meantime it
remains a limitation.

9 Conclusion

Put bluntly, the problem with testbeds is that they are
testbeds. If we could test new ideas at scale, with real
users, traffic and topologies, without building a testbed,
then life would be much simpler. Clearly this isn’t the
case today: testbeds need to be built, maintained, and
are expensive to deploy at scale. They become obsolete
quickly, and many university machine rooms have out-
dated testbed equipment lying around unused.

By definition, a testbed is not the real network: there-
fore, we try to embed testbeds into the network by slicing
the hardware. This paper described our first attempt to-
wards embedding a testbed in the network. While not
yet bullet-proof, we believe that our approach of slicing
the communication between the control and data planes
shows promise. Our current implementation is limited to
controlling the abstraction of the forwarding element ex-
posed by OpenFlow. We believe that exposing more fine-
grained control of the forwarding elements will allow
us to solve the remaining isolation issues (e.g., device
cpu)—ideally with the help of the broader community. If
we can perfect isolation, then several good things hap-
pen: researchers could validate their ideas at scale and
with greater realism, the industry could perform safer
quality assurance of new products, and finally, network
operators could run multiple versions of the networks in
parallel, allowing them to roll back to known good states.

Acknowledgments

We would like to thank Jennifer Rexford, Srinivasan
Seetharaman, our shepherd Randy Katz, and the anony-
mous reviewers for their helpful comments and insight.

References

[1] A. Bavier, N. Feamster, M. Huang, L. Peterson, and
J. Rexford. In vini veritas: realistic and controlled
network experimentation. In SIGCOMM ’06, pages
3–14, New York, NY, USA, 2006. ACM.

13

[2] BCM88130 - 630-Gbps High-Performance
Packet Switch Fabric. http://www.

broadcom.com/products/Switching/

Carrier-and-Service-Provider/BCM88130.

[3] X. Chen, Z. M. Mao, and J. V. der Merwe. Shad-
ownet: A platform for rapid and safe network evo-
lution. In Proceedings of USENIX Anual Technical
Conference (USENIX’09). USENIX, 2009.

[4] L. S. Committee. Ieee802.1q - ieee standard for lo-
cal and metropolitan area networksvirtual bridged
local area networks. IEEE Computer Society, 2005.

[5] N. Egi, M. Hoerdt, L. Mathy, F. H. Adam Green-
halgh, and M. Handley. Towards High Performance
Virtual Routers on Commodity Hardware. In ACM
International Conference on emerging Networking
EXperiments and Technologies (CoNEXT), Decem-
ber 2008.

[6] FIRE - Future Internet Research & Experimen-
tation. http://cordis.europa.eu/fp7/ict/

fire/.

[7] IETF ForCes. http://www.ietf.org/dyn/wg/
charter/forces-charter.html.

[8] GENI.net Global Environment for Network Inno-
vations. http://www.geni.net.

[9] G. Gibb, D. Underhill, A. Covington, T. Yabe, and
N. McKeown. OpenPipes: Prototyping high-speed
networking systems. In ”Proc. ACM SIGCOMM
Conference (Demo)”, Barcelona, Spain, 2009.

[10] The gigabit testbed initiative. http://www.cnri.
reston.va.us/gigafr/.

[11] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: Towards and
operating system for networks. In ACM SIGCOMM
Computer Communication Review, July 2008.

[12] N. Handigol, S. Seetharaman, M. Flajslik, N. McK-
eown, and R. Johari. Plug-n-Serve: Load-
Balancing Web Traffic using OpenFlow. In ACM
SIGCOMM Demo, August 2009.

[13] Advanced traffic management guide. HP ProCurve
Switch Software Manual, March 2009. www.

procurve.com.

[14] T. V. Lakshman and D. Stiliadis. High-speed
policy-based packet forwarding using efficient
multi-dimensional range matching. In Proceedings
of the ACM SIGCOMM ’98, pages 203–214, New
York, NY, USA, 1998. ACM.

[15] J. W. Lockwood, N. McKeown, G. Watson,
G. Gibb, P. Hartke, J. Naous, R. Raghuraman, and
J. Luo. Netfpga–an open platform for gigabit-rate
network switching and routing. In MSE ’07: Pro-
ceedings of the 2007 IEEE International Confer-
ence on Microelectronic Systems Education, pages
160–161, 2007.

[16] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner. OpenFlow: enabling innovation
in campus networks. ACM SIGCOMM Computer
Communication Review, 38(2):69–74, April 2008.

[17] Ns2 network simulator. http://www.isi.edu/

nsnam/ns/.

[18] The OpenFlow Switch Consortium. http://www.
openflowswitch.org.

[19] Opnet technologies. http://www.opnet.com/.

[20] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson,
and B. Tierney. A first look at modern enterprise
traffic. In ACM Internet Measurement Conference,
2005.

[21] An open platform for developing, deploying, and
accessing planetary-scale services. http://www.

planet-lab.org/.

[22] J. Touch and S. Hotz. The x-bone. In Proc. Global
Internet Mini-Conference / Globecom, 1998.

[23] J. S. Turner and et al. Supercharging planetlab: a
high performance, multi-application, overlay net-
work platform. In SIGCOMM ’07, pages 85–96,
New York, NY, USA, 2007. ACM.

[24] J. E. van der Merwe and I. M. Leslie. Switchlets
and dynamic virtual atm networks. In Proceed-
ings of the fifth IFIP/IEEE international symposium
on Integrated network management V : integrated
management in a virtual world, pages 355–368,
London, UK, UK, 1997. Chapman & Hall, Ltd.

[25] B. White and J. L. et al. An integrated experimental
environment for distributed systems and networks.
In Proc. of the Fifth Symposium on Operating Sys-
tems Design and Implementation, pages 255–270,
Boston, MA, Dec. 2002. USENIX Association.

[26] K.-K. Yap, T.-Y. Huang, M. Kobayashi, M. Chan,
R. Sherwood, G. Parulkar, and N. McKeown.
Lossless Handover with n-casting between WiFi-
WiMAX on OpenRoads. In ACM Mobicom
(Demo), 2009.

14

http://www.broadcom.com/products/Switching/Carrier-and-Service-Provider/BCM88130
http://www.broadcom.com/products/Switching/Carrier-and-Service-Provider/BCM88130
http://www.broadcom.com/products/Switching/Carrier-and-Service-Provider/BCM88130
http://cordis.europa.eu/fp7/ict/fire/
http://cordis.europa.eu/fp7/ict/fire/
http://www.ietf.org/dyn/wg/charter/forces-charter.html
http://www.ietf.org/dyn/wg/charter/forces-charter.html
http://www.geni.net
http://www.cnri.reston.va.us/gigafr/
http://www.cnri.reston.va.us/gigafr/
www.procurve.com
www.procurve.com
http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/
http://www.openflowswitch.org
http://www.openflowswitch.org
http://www.opnet.com/
http://www.planet-lab.org/
http://www.planet-lab.org/

	Introduction
	Contributions.

	Slicing Control & Data Planes
	Slicing OpenFlow

	FlowVisor Design
	Slicing Network Resources
	Flowspace and Opt-In
	Control Message Slicing
	Slice Definition Policy

	FlowVisor Implementation
	Messages to Control Plane
	Messages to Forwarding Plane
	Bandwidth Isolation
	Device CPU Isolation
	Flow Entry Isolation

	Evaluation
	Scalability
	Performance Overhead
	Isolation
	Bandwidth
	Switch CPU

	Deployment Experience
	Stanford Deployment
	Deploying on Other Networks
	Slicing Experience
	Experiments

	Related Work
	Trade-offs and Caveats
	Conclusion

