
Ethane: Taking Control of the Enterprise

Martìn Casado, Michael J. Freedman,
Justin Pettit, Jianying Luo,

and Nick McKeown
Stanford University

Scott Shenker
U.C. Berkeley and ICSI

ABSTRACT
This paper presents Ethane, a new network architecture for the
enterprise. Ethane allows managers to define a single network-
wide fine-grain policy, and then enforces it directly. Ethane cou-
ples extremely simple flow-based Ethernet switches with a central-
ized controller that manages the admittance and routing of flows.
While radical, this design is backwards-compatible with existing
hosts and switches.

We have implemented Ethane in both hardware and software,
supporting both wired and wireless hosts. Our operational Ethane
network has supported over 300 hosts for the past four months in
in Stanford University’s network, and this deployment experience
has significantly affected Ethane’s design.

Categories and Subject Descriptors
C.2.6 [Computer Communication Networks]: Internetworking;
C.2.1 [Computer Communication Networks]: Network Archi-
tecture and Design

General Terms
Design, Experimentation, Performance

Keywords
Network, Architecture, Security, Management

1. INTRODUCTION
Enterprise networks are often large, run a wide variety of appli-

cations and protocols, and typically operate under strict reliability
and security constraints; thus, they represent a challenging envi-
ronment for network management. The stakes are high, as busi-
ness productivity can be severely hampered by network misconfig-
urations or break-ins. Yet the current solutions are weak, making
enterprise network management both expensive and error-prone.
Indeed, most networks today require substantial manual configura-
tion by trained operators [11, 22, 23, 25] to achieve even moderate
security [24]. A Yankee Group report found that 62% of network

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’07, August 27–31, 2007, Kyoto, Japan.
Copyright 2007 ACM 978-1-59593-713-1/07/0008 ...$5.00.

downtime in multi-vendor networks comes from human-error and
that 80% of IT budgets is spent on maintenance and operations [16].

There have been many attempts to make networks more manage-
able and more secure. One approach introduces proprietary middle-
boxes that can exert their control effectively only if placed at net-
work choke-points. If traffic accidentally flows (or is maliciously
diverted) around the middlebox, the network is no longer managed
nor secure [25]. Another approach is to add functionality to ex-
isting networks—to provide tools for diagnosis, to offer controls
for VLANs, access-control lists, and filters to isolate users, to in-
strument the routing and spanning tree algorithms to support better
connectivity management, and then to collect packet traces to al-
low auditing. This can be done by adding a new layer of protocols,
scripts, and applications [1, 10] that help automate configuration
management in order to reduce the risk of errors. However, these
solutions hide the complexity, not reduce it. And they have to be
constantly maintained to support the rapidly changing and often
proprietary management interfaces exported by the managed ele-
ments.

Rather than building a new layer of complexity on top of the
network, we explore the question: How could we change the en-
terprise network architecture to make it more manageable? Our
answer is embodied in the architecture we describe here, called
Ethane. Ethane is built around three fundamental principles that
we feel are important to any network management solution:

The network should be governed by policies declared over high-
level names. Networks are most easily managed in terms of the en-
tities we seek to control—such as users, hosts, and access points—
rather than in terms of low-level and often dynamically-allocated
addresses. For example, it is convenient to declare which services
a user is allowed to use and to which machines they can connect.

Policy should determine the path that packets follow. There are
several reasons for policy to dictate the paths. First, policy might
require packets to pass through an intermediate middlebox; for ex-
ample, a guest user might be required to communicate via a proxy,
or the user of an unpatched operating system might be required to
communicate via an intrusion detection system. Second, traffic can
receive more appropriate service if its path is controlled; direct-
ing real-time communications over lightly loaded paths, important
communications over redundant paths, and private communications
over paths inside a trusted boundary would all lead to better ser-
vice. Allowing the network manager to determine the paths via
policy—where the policy is in terms of high-level names—leads
to finer-level control and greater visibility than is easily achievable
with current designs.

The network should enforce a strong binding between a packet
and its origin. Today, it is notoriously difficult to reliably deter-
mine the origin of a packet: Addresses are dynamic and change

frequently, and they are easily spoofed. The loose binding between
users and their traffic is a constant target for attacks in enterprise
networks. If the network is to be governed by a policy declared
over high-level names (e.g., users and hosts) then packets should
be identifiable, without doubt, as coming from a particular physical
entity. This requires a strong binding between a user, the machine
they are using, and the addresses in the packets they generate. This
binding must be kept consistent at all times, by tracking users and
machines as they move.

To achieve these aims, we followed the lead of the 4D project [14]
and adopted a centralized control architecture. Centralized solu-
tions are normally an anathema for networking researchers, but we
feel it is the proper approach for enterprise management. IP’s best-
effort service model is both simple and unchanging, well-suited for
distributed algorithms. Network management is quite the opposite;
its requirements are complex and require strong consistency, mak-
ing it quite hard to compute in a distributed manner.

There are many standard objections to centralized approaches,
such as resilience and scalability. However, as we discuss later in
the paper, our results suggest that standard replication techniques
can provide excellent resilience, and current CPU speeds make it
possible to manage all control functions on a sizable network (e.g.,
25,000 hosts) from a single commodity PC.

Ethane bears substantial resemblance to SANE, our recently-
proposed clean-slate approach to enterprise security [12]. SANE
was, as are many clean-slate designs, difficult to deploy and largely
untested. While SANE contained many valuable insights, Ethane
extends this previous work in three main ways:

Security follows management. Enterprise security is, in many
ways, a subset of network management. Both require a network
policy, the ability to control connectivity, and the means to observe
network traffic. Network management wants these features so as to
control and isolate resources, and then to diagnose and fix errors,
whereas network security seeks to control who is allowed to talk to
whom, and then to catch bad behavior before it propagates. When
designing Ethane, we decided that a broad approach to network
management would also work well for network security.

Incremental deployability. SANE required a “fork-lift" replace-
ment of an enterprise’s entire networking infrastructure and changes
to all the end-hosts. While this might be suitable in some cases, it is
clearly a significant impediment to widespread adoption. Ethane is
designed so that it can be incrementally deployed within an en-
terprise: it does not require any host modifications, and Ethane
Switches can be incrementally deployed alongside existing Ether-
net switches.

Significant deployment experience. Ethane has been implemented
in both software and hardware (special-purpose Gigabit Ethernet
switches) and deployed at Stanford’s Computer Science department
for over four months and managed over 300 hosts. This deployment
experience has given us insight into the operational issues such a
design must confront, and resulted in significant changes and ex-
tensions to the original design.

In this paper, we describe our experiences designing, implement-
ing, and deploying Ethane. We begin with a high-level overview of
the Ethane design in §2, followed by a detailed description in §3. In
§4, we describe a policy language Pol-Eth that we built to manage
our Ethane implementation. We then discuss our implementation
and deployment experience (§5), followed by performance analy-
sis (§6). Finally we present limitations (§7), discuss related work
(§8), and then conclude (§9).

2. OVERVIEW OF ETHANE DESIGN
Ethane controls the network by not allowing any communica-

tion between end-hosts without explicit permission. It imposes this
requirement through two main components. The first is a central
Controller containing the global network policy that determines the
fate of all packets. When a packet arrives at the Controller—how
it does so is described below—the Controller decides whether the
flow represented by that packet1 should be allowed. The Controller
knows the global network topology and performs route computa-
tion for permitted flows. It grants access by explicitly enabling
flows within the network switches along the chosen route. The
Controller can be replicated for redundancy and performance.

The second component is a set of Ethane Switches. In con-
trast to the omniscient Controller, these Switches are simple and
dumb. Consisting of a simple flow table and a secure channel to
the Controller, Switches simply forward packets under the direc-
tion of the Controller. When a packet arrives that is not in the flow
table, they forward that packet to the Controller (in a manner we
describe later), along with information about which port the packet
arrived on. When a packet arrives that is in the flow table, it is for-
warded according to the Controller’s directive. Not every switch
in an Ethane network needs to be an Ethane Switch: Our design
allows Switches to be added gradually, and the network becomes
more manageable with each additional Switch.

2.1 Names, Bindings, and Policy Language
When the Controller checks a packet against the global policy,

it is evaluating the packet against a set of simple rules, such as
“Guests can communicate using HTTP, but only via a web proxy”
or “VoIP phones are not allowed to communicate with laptops.” If
we want the global policy to be specified in terms of such physical
entities, we need to reliably and securely associate a packet with the
user, group, or machine that sent it. If the mappings between ma-
chine names and IP addresses (DNS) or between IP addresses and
MAC addresses (ARP and DHCP) are handled elsewhere and are
unauthenticated, then we cannot possibly tell who sent the packet,
even if the user authenticates with the network. This is a notorious
and widespread weakness in current networks.

With (logical) centralization, it is simple to keep the namespace
consistent as components join, leave and move around the network.
Network state changes simply require updating the bindings at the
Controller. This is in contrast to today’s network where there are no
widely used protocols for keeping this information consistent. Fur-
ther, distributing the namespace among all switches would greatly
increase the trusted computing base and require high overheads to
maintain consistency on each bind event.

In Ethane, we also use a sequence of techniques to secure the
bindings between packet headers and the physical entities that sent
them. First, Ethane takes over all the binding of addresses. When
machines use DHCP to request an IP address, Ethane assigns it
knowing to which switch port the machine is connected, enabling
Ethane to attribute an arriving packet to a physical port.2 Second,
the packet must come from a machine that is registered on the net-
work, thus attributing it to a particular machine. Finally, users are
required to authenticate themselves with the network—for exam-

1All policies considered in Ethane are based over flows, where the
header fields used to define a flow are based on the packet type (for
example, TCP/UDP flows include the Ethernet, IP and transport
headers). Thus, only a single policy decision need be made for
each such “flow”.
2As we discuss later, a primary advantage of knowing the ingress
port of a packet is that it allows the Controller to apply filters to the
first-hop switch used by unwanted traffic.

Figure 1: Example of communication on an Ethane network.
Route setup shown by dotted lines; the path taken by the first
packet of a flow shown by dashed lines.

ple, via HTTP redirects in a manner similar to those used by com-
mercial WiFi hotspots—binding users to hosts. Therefore, when-
ever a packet arrives at the Controller, it can securely associate the
packet to the particular user and host that sent it.

There are several powerful consequences of the Controller know-
ing both where users and machines are attached and all bindings
associated with them. First, the Controller can keep track of where
any entity is located: When it moves, the Controller finds out as
soon as packets start to arrive from a different Switch port. The
Controller can choose to allow the new flow or it might choose to
deny the moved flow (e.g., to restrict mobility for a VoIP phone
due to E911 regulations). Another powerful consequence is that
the Controller can journal all bindings and flow-entries in a log.
Later, if needed, the Controller can reconstruct all network events;
e.g., which machines tried to communicate or which user commu-
nicated with a service. This can make it possible to diagnose a
network fault or to perform auditing or forensics, long after the
bindings have changed.

In principle, Ethane does not mandate the use of a particular pol-
icy language. For completeness, however, we have designed and
deployed Pol-Eth, in which policies are declared as a set of rules
consisting of predicates and, for matching flows, the set of result-
ing actions (e.g., allow, deny, or route via a waypoint). As we will
see, Pol-Eth’s small set of easily understood rules can still express
powerful and flexible policies for large, complex networks.

2.2 Ethane in Use
Putting all these pieces together, we now consider the five basic

activities that define how an Ethane network works, using Figure 1
to illustrate:

Registration. All Switches, users, and hosts are registered at the
Controller with the credentials necessary to authenticate them. The
credentials depend on the authentication mechanisms in use. For
example, hosts may be authenticated by their MAC addresses, users
via username and password, and switches through secure certifi-
cates. All switches are also preconfigured with the credentials needed
to authenticate the Controller (e.g., the Controller’s public key).

Bootstrapping. Switches bootstrap connectivity by creating a span-
ning tree rooted at the Controller. As the spanning tree is being
created, each switch authenticates with and creates a secure chan-
nel to the Controller. Once a secure connection is established, the
switches send link-state information to the Controller, which ag-
gregates this information to reconstruct the network topology.

Authentication.

1. UserA joins the network with hostA. Because no flow entries
exist in switch 1 for the new host, it will initially forward all

Figure 2: An example Ethane deployment.

of hostA’s packets to the Controller (marked with switch 1’s
ingress port).

2. HostA sends a DHCP request to the Controller. After check-
ing hostA’s MAC address,3 the Controller allocates an IP ad-
dress (IPA) for it, binding hostA to IPA, IPA to MACA, and
MACA to a physical port on switch 1.

3. UserA opens a web browser, whose traffic is directed to the
Controller, and authenticates through a web-form. Once au-
thenticated, userA is bound to hostA.

Flow Setup.

1. UserA initiates a connection to userB (who we assume has
already authenticated in a manner similar to userA). Switch
1 forwards the packet to the Controller after determining that
the packet does not match any active entries in its flow table.

2. On receipt of the packet, the Controller decides whether to
allow or deny the flow, or require it to traverse a set of way-
points.

3. If the flow is allowed, the Controller computes the flow’s
route, including any policy-specified waypoints on the path.
The Controller adds a new entry to the flow tables of all the
Switches along the path.

Forwarding.

1. If the Controller allowed the path, it sends the packet back
to switch 1 which forwards it based on the new flow entry.
Subsequent packets from the flow are forwarded directly by
the Switch, and are not sent to the Controller.

2. The flow-entry is kept in the switch until it times out (due to
inactivity) or is revoked by the Controller.

3. ETHANE IN MORE DETAIL

3.1 An Ethane Network
Figure 2 shows a typical Ethane network. The end-hosts are

unmodified and connect via a wired Ethane Switch or an Ethane
wireless access point. (From now on, we will refer to both as
“Switches”, described next in §3.2).4

3The network may use a stronger form of host authentication, such
as 802.1X, if desired.
4We will see later that an Ethane network can also include legacy
Ethernet switches and access points, so long as we include some
Ethane Switches in the network. The more switches we replace,
the easier to manage and the more secure the network.

When we add an Ethane Switch to the network, it has to find the
Controller (§3.3), open a secure channel to it, and help the Con-
troller figure out the topology. We do this with a modified mini-
mum spanning tree algorithm (per §3.7 and denoted by thick, solid
lines in the figure). The outcome is that the Controller knows the
whole topology, while each Switch only knows a part of it.

When we add (or boot) a host, it has to authenticate itself with the
Controller. From the Switch’s point-of-view, packets from the new
host are simply part of a new flow, and so packets are automatically
forwarded to the Controller over the secure channel, along with
the ID of the Switch port on which they arrived. The Controller
authenticates the host and allocates its IP address (the Controller
includes a DHCP server).

3.2 Switches
A wired Ethane Switch is like a simplified Ethernet switch. It

has several Ethernet interfaces that send and receive standard Eth-
ernet packets. Internally, however, the switch is much simpler, as
there are several things that conventional Ethernet switches do that
an Ethane switch doesn’t need: An Ethane Switch doesn’t need to
learn addresses, support VLANs, check for source-address spoof-
ing, or keep flow-level statistics (e.g., start and end time of flows,
although it will typically maintain per-flow packet and byte coun-
ters for each flow entry). If the Ethane Switch is replacing a Layer-
3 “switch” or router, it doesn’t need to maintain forwarding tables,
ACLs, or NAT. It doesn’t need to run routing protocols such as
OSPF, ISIS, and RIP. Nor does it need separate support for SPANs
and port-replication (this is handled directly by the flow table under
the direction of the Controller).

It is also worth noting that the flow table can be several orders-of-
magnitude smaller than the forwarding table in an equivalent Eth-
ernet switch. In an Ethernet switch, the table is sized to minimize
broadcast traffic: as switches flood during learning, this can swamp
links and makes the network less secure.5 As a result, an Ethernet
switch needs to remember all the addresses it’s likely to encounter;
even small wiring closet switches typically contain a million en-
tries. Ethane Switches, on the other hand, can have much smaller
flow tables: they only need to keep track of flows in-progress. For
a wiring closet, this is likely to be a few hundred entries at a time,
small enough to be held in a tiny fraction of a switching chip. Even
for a campus-level switch, where perhaps tens of thousands of flows
could be ongoing, it can still use on-chip memory that saves cost
and power.

We expect an Ethane Switch to be far simpler than its corre-
sponding Ethernet switch, without any loss of functionality. In fact,
we expect that a large box of power-hungry and expensive equip-
ment will be replaced by a handful of chips on a board.

Flow Table and Flow Entries. The Switch datapath is a man-
aged flow table. Flow entries contain a Header (to match packets
against), an Action (to tell the switch what to do with the packet),
and Per-Flow Data (which we describe below).

There are two common types of entry in the flow table: per-
flow entries describing application flows that should be forwarded,
and per-host entries that describe misbehaving hosts whose packets
should be dropped. For TCP/UDP flows, the Header field covers
the TCP/UDP, IP, and Ethernet headers, as well as physical port
information. The associated Action is to forward the packet to a
particular interface, update a packet-and-byte counter (in the Per-
Flow Data), and set an activity bit (so that inactive entries can be
timed-out). For misbehaving hosts, the Header field contains an

5In fact, network administrators often use manually configured and
inflexible VLANs to reduce flooding.

Ethernet source address and the physical ingress port.6 The associ-
ated Action is to drop the packet, update a packet-and-byte counter,
and set an activity bit (to tell when the host has stopped sending).

Only the Controller can add entries to the flow table. Entries are
removed because they timeout due to inactivity (local decision) or
because they are revoked by the Controller. The Controller might
revoke a single, badly behaved flow, or it might remove a whole
group of flows belonging to a misbehaving host, a host that has just
left the network, or a host whose privileges have just changed.

The flow table is implemented using two exact-match tables:
One for application-flow entries and one for misbehaving-host en-
tries. Because flow entries are exact matches, rather than longest-
prefix matches, it is easy to use hashing schemes in conventional
memories rather than expensive, power-hungry TCAMs.

Other Actions are possible in addition to just forward and drop.
For example, a Switch might maintain multiple queues for differ-
ent classes of traffic, and the Controller can tell it to queue pack-
ets from application flows in a particular queue by inserting queue
IDs into the flow table. This can be used for end-to-end L2 iso-
lation for classes of users or hosts. A Switch could also perform
address translation by replacing packet headers. This could be used
to obfuscate addresses in the network by “swapping” addresses at
each Switch along the path—an eavesdropper would not be able
to tell which end-hosts are communicating—or to implement ad-
dress translation for NAT in order to conserve addresses. Finally, a
Switch could control the rate of a flow.

The Switch also maintains a handful of implementation-specific
entries to reduce the amount of traffic sent to the Controller. This
number should remain small to keep the Switch simple, although
this is at the discretion of the designer. On one hand, such entries
can reduce the amount of traffic sent to the Controller; on the other
hand, any traffic that misses on the flow table will be sent to the
Controller anyway, so this is just an optimization.

Local Switch Manager. The Switch needs a small local manager
to establish and maintain the secure channel to the Controller, to
monitor link status, and to provide an interface for any additional
Switch-specific management and diagnostics. (We implemented
our manager in the Switch’s software layer.)

There are two ways a Switch can talk to the Controller. The
first one, which we have assumed so far, is for Switches that are
part of the same physical network as the Controller. We expect this
to be the most common case; e.g., in an enterprise network on a
single campus. In this case, the Switch finds the Controller using
our modified Minimum Spanning Tree protocol described in §3.7.
The process results in a secure channel stretching through these
intermediate Switches all the way to the Controller.

If the Switch is not within the same broadcast domain as the
Controller, the Switch can create an IP tunnel to it (after being
manually configured with its IP address). This approach can be
used to control Switches in arbitrary locations, e.g., the other side
of a conventional router or in a remote location. In one applica-
tion of Ethane, the Switch (most likely a wireless access point) is
placed in a home or small business and then managed remotely by
the Controller over this secure tunnel.

The local Switch manager relays link status to the Controller so
it can reconstruct the topology for route computation. Switches
maintain a list of neighboring switches by broadcasting and receiv-
ing neighbor-discovery messages. Neighbor lists are sent to the
Controller after authentication, on any detectable change in link
status, and periodically every 15 seconds.

6If a host is spoofing, its first-hop port can be shut of directly (§3.3).

Figure 3: High-level view of Controller components.

3.3 Controller
The Controller is the brain of the network and has many tasks;

Figure 3 gives a block-diagram. The components do not have to
be co-located on the same machine (indeed, they are not in our
implementation).

Briefly, the components work as follows. The authentication
component is passed all traffic from unauthenticated or unbound
MAC addresses. It authenticates users and hosts using credentials
stored in the registration database. Once a host or user authenti-
cates, the Controller remembers to which switch port they are con-
nected.

The Controller holds the policy file, which is compiled into a fast
lookup table (see §4). When a new flow starts, it is checked against
the rules to see if it should be accepted, denied, or routed through a
waypoint. Next, the route computation uses the network topology
to pick the flow’s route. The topology is maintained by the switch
manager, which receives link updates from the Switches.

In the remainder of this section, we describe each component’s
function in more detail. We leave description of the policy language
for the next section.

Registration. All entities that are to be named by the network (i.e.,
hosts, protocols, Switches, users, and access points7) must be reg-
istered. The set of registered entities make up the policy namespace
and is used to statically check the policy (§4) to ensure it is declared
over valid principles.

The entities can be registered directly with the Controller, or—as
is more likely in practice and done in our own implementation—
Ethane can interface with a global registry such as LDAP or AD,
which would then be queried by the Controller.

By forgoing Switch registration, it is also possible for Ethane to
provide the same “plug-and-play” configuration model for Switches
as Ethernet. Under this configuration, the Switches distribute keys
on boot-up (rather than require manual distribution) under the as-
sumption that the network has not been compromised.

Authentication. All Switches, hosts, and users must authenticate
with the network. Ethane does not specify a particular host au-
thentication mechanism; a network could support multiple authen-
tication methods (e.g., 802.1X or explicit user login) and employ
entity-specific authentication methods. In our implementation, for
example, hosts authenticate by presenting registered MAC addresses,
while users authenticate through a web front-end to a Kerberos
server. Switches authenticate using SSL with server- and client-
side certificates.

7We define an access point here as a {Switch,port} pair

Tracking Bindings. One of Ethane’s most powerful features is that
it can easily track all the bindings between names, addresses, and
physical ports on the network, even as Switches, hosts, and users
join, leave, and move around the network. It is Ethane’s ability
to track these dynamic bindings that makes the policy language
possible: It allows us to describe policies in terms of users and
hosts, yet implement the policy using flow tables in Switches.

A binding is never made without requiring authentication, so as
to prevent an attacker from assuming the identity of another host or
user. When the Controller detects that a user or host leaves, all of
its bindings are invalidated, and all of its flows are revoked at the
Switch to which it was connected. Unfortunately, in some cases, we
cannot get reliable join and leave events from the network. There-
fore, the Controller may resort to timeouts or the detection of move-
ment to another physical access point before revoking access.

Namespace Interface. Because Ethane tracks all the bindings be-
tween users, hosts, and addresses, it can make information avail-
able to network managers, auditors, or anyone else who seeks to
understand who sent what packet and when.

In current networks, while it is possible to collect packet traces, it
is almost impossible to figure out later which user—or even which
host—sent or received the packets, as the addresses are dynamic
and there is no known relationship between users and packet ad-
dresses.

An Ethane Controller can journal all the authentication and bind-
ing information: The machine a user is logged in to, the Switch
port their machine is connected to, the MAC address of their pack-
ets, and so on. Armed with a packet trace and such a journal, it
is possible to determine exactly which user sent a packet, when it
was sent, the path it took, and its destination. Obviously, this in-
formation is very valuable for both fault diagnosis and identifying
break-ins. On the other hand, the information is sensitive and con-
trols need to be placed on who can access it. We expect Ethane
Controllers to provide an interface that gives privileged users ac-
cess to the information. In our own system, we built a modified
DNS server that accepts a query with a timestamp, and returns the
complete bound namespace associated with a specified user, host,
or IP address (described in §5).

Permission Check and Access Granting. Upon receiving a packet,
the Controller checks the policy to see what actions apply to it. The
results of this check (if the flow is allowed) are forwarded to the
route computation component which determines the path given the
policy constraint. In our implementation all paths are pre-computed
and maintained via a dynamic all-pairs shortest path algorithm [13].
Section 4 describes our policy model and implementation.

Enforcing Resource Limits. There are many occasions when a
Controller wants to limit the resources granted to a user, host, or
flow. For example, it might wish to limit a flow’s rate, limit the rate
at which new flows are setup, or limit the number of IP addresses al-
located. Such limits will depend on the design of the Controller and
Switch, and they will be at the discretion of the network manager.
In general, however, Ethane makes it easy to enforce such limits
either by installing a filter in a Switch’s flow table or by telling the
Switch to limit a flow’s rate.

The ability to directly manage resources from the Controller is
the primary means of protecting the network (and Controller) from
resource exhaustion attacks. To protect itself from connection flood-
ing from unauthenticated hosts, a Controller can place a limit on
the number of authentication requests per host and per switch port;
hosts that exceed their allocation can be closed down by adding an
entry in the flow table that blocks their MAC address. If such hosts

spoof their address, the Controller can disable their Switch port.
A similar approach can be used to prevent flooding from authenti-
cated hosts.

Flow state exhaustion attacks are also preventable through re-
source limits. Since each flow setup request is attributable to a
user, host, and access point, the Controller can enforce limits on
the number of outstanding flows per identifiable source. The net-
work may also support more advanced flow-allocation policies. For
example, an integrated hardware/software Switch can implement
policies such as enforcing strict limits on the number of flows for-
warded in hardware per source and looser limits on the number of
flows in the slower (and more abundant) software forwarding ta-
bles.

3.4 Handling Broadcast and Multicast
Enterprise networks typically carry a lot of multicast and broad-

cast traffic. It is worth distinguishing broadcast traffic (which is
mostly discovery protocols, such as ARP) from multicast traffic
(which is often from useful applications, such as video). In a flow-
based network like Ethane, it is quite easy for Switches to handle
multicast: The Switch keeps a bitmap for each flow to indicate
which ports the packets are to be sent to along the path. The Con-
troller can calculate the broadcast or multicast tree and assign the
appropriate bits during path setup.

In principle, broadcast discovery protocols are also easy to han-
dle in the Controller. Typically, a host is trying to find a server
or an address; given that the Controller knows all, it can reply to
a request without creating a new flow and broadcasting the traffic.
This provides an easy solution for ARP traffic, which is a signifi-
cant fraction of all network traffic In practice, however, ARP could
generate a huge load for the Controller; one design choice would
be to provide a dedicated ARP server in the network to which all
Switches direct all ARP traffic. But there is a dilemma when trying
to support other discovery protocols: each one has its own proto-
col, and it would be onerous for the Controller to understand all of
them. Our own approach has been to implement the common ones
directly in the Controller and to broadcast unknown request types
with a rate-limit. Clearly this approach does not scale well, and we
hope that, if Ethane becomes widespread in the future, discovery
protocols will largely go away. After all, they are just looking for
binding information that the network already knows; it should be
possible to provide a direct way to query the network. We discuss
this problem further in §7.

3.5 Replicating the Controller: Fault-Tolerance
and Scalability

Designing a network architecture around a central controller raises
concerns about availability and scalability. While our measure-
ments in §6 suggest that thousands of machines can be managed
by a single desktop computer, multiple Controllers may be desir-
able to provide fault-tolerance or to scale to very large networks.

This section describes three techniques for replicating the Con-
troller. In the simplest two approaches, which focus solely on im-
proving fault-tolerance, secondary Controllers are ready to step in
upon the primary’s failure: these can be in cold-standby (having no
network binding state) or warm-standby (having network binding
state) modes. In the fully-replicated model, which also improves
scalability, requests from Switches are spread over multiple active
Controllers.

In the cold-standby approach, a primary Controller is the root of
the minimum spanning tree (MST) and handles all registration, au-
thentication, and flow-establishment requests. Backup Controllers
sit idly-by waiting to take over if needed. All Controllers partici-

pate in the MST, sending HELLO messages to Switches advertising
their ID. Just as with a standard spanning tree, if the root with the
“lowest” ID fails, the network will converge on a new root (i.e., a
new Controller). If a backup becomes the new MST root, it will
start to receive flow requests and begin acting as the primary Con-
troller. In this way, Controllers can be largely unaware of each
other: the backups need only contain the registration state and the
network policy (as this data changes very slowly, simple consis-
tency methods can be used). The main advantage of cold-standby
is its simplicity; the downside is that hosts, Switches, and users
need to re-authenticate and re-bind upon the primary’s failure. Fur-
thermore, in large networks, it might take a while for the MST to
reconverge.

The warm-standby approach is more complex, but recovers faster.
In this approach, a separate MST is created for every Controller.
The Controllers monitor one another’s liveness and, upon detect-
ing the primary’s failure, a secondary Controller takes over based
on a static ordering. As before, slowly-changing registration and
network policy are kept consistent among the Controllers, but we
now need to replicate bindings across Controllers as well. Because
these bindings can change quickly as new users and hosts come
and go, we recommend that only weak consistency be maintained:
Because Controllers make bind events atomic, primary failures can
at worst lose the latest bindings, requiring that some new users and
hosts reauthenticate themselves.

The fully-replicated approach takes this one step further and has
two or more active Controllers. While an MST is again constructed
for each Controller, a Switch need only authenticate itself to one
Controller and can then spread its flow-requests over the Controllers
(e.g., by hashing or round-robin). With such replication, we should
not underestimate the job of maintaining consistent journals of the
bind events. We expect that most implementations will simply
use gossiping to provide a weakly-consistent ordering over events.
Pragmatic techniques can avoid many potential problems that would
otherwise arise, e.g., having Controllers use different private IP ad-
dress spaces during DHCP allocation to prevent temporary IP al-
location conflicts. Of course, there are well-known, albeit heavier-
weight, alternatives to provide stronger consistency guarantees if
desired (e.g., replicated state machines). There is plenty of scope
for further study: Now that Ethane provides a platform with which
to capture and manage all bindings, we expect future improvements
can make the system more robust.

3.6 Link Failures
Link and Switch failures must not bring down the network as

well. Recall that Switches always send neighbor-discovery mes-
sages to keep track of link-state. When a link fails, the Switch re-
moves all flow table entries tied to the failed port and sends its new
link-state information to the Controller. This way, the Controller
also learns the new topology. When packets arrive for a removed
flow-entry at the Switch, the packets are sent to the Controller—
much like they are for new flows—and the Controller computes
and installs a new path based on the new topology.

3.7 Bootstrapping
When the network starts, the Switches must connect to and au-

thenticate with the Controller.8 Ethane bootstraps in a similar way
to SANE [12]: On startup, the network creates a minimum span-
ning tree with the Controller advertising itself as the root. Each

8This method does not apply to Switches that use an IP tunnel to
connect to the Controller—they simply send packets via the tunnel
and then authenticate.

Switch has been configured with the Controller’s credentials and
the Controller with the Switches’ credentials.

If a Switch finds a shorter path to the Controller, it attempts two-
way authentication with it before advertising that path as a valid
route. Therefore, the minimum spanning tree grows radially from
the Controller, hop-by-hop as each Switch authenticates.

Authentication is done using the preconfigured credentials to en-
sure that a misbehaving node cannot masquerade as the Controller
or another Switch. If authentication is successful, the Switch cre-
ates an encrypted connection with the Controller that is used for all
communication between the pair.

By design, the Controller knows the upstream Switch and phys-
ical port to which each authenticating Switch is attached. After a
Switch authenticates and establishes a secure channel to the Con-
troller, it forwards all packets it receives for which it does not have
a flow entry to the Controller, annotated with the ingress port. This
includes the traffic of authenticating Switches.

Therefore, the Controller can pinpoint the attachment point to the
spanning tree of all non-authenticated Switches and hosts. Once
a Switch authenticates, the Controller will establish a flow in the
network between itself and the Switch for the secure channel.

4. THE POL-ETH POLICY LANGUAGE
Pol-Eth is a language for declaring policy in an Ethane network.

While Ethane doesn’t mandate a particular language, we describe
Pol-Eth as an example, to illustrate what’s possible. We have im-
plemented Pol-Eth and use it in our prototype network.

4.1 Overview
In Pol-Eth, network policy is declared as a set of rules, each con-

sisting of a condition and a corresponding action. For example, the
rule to specify that user bob is allowed to communicate with the
web server (using HTTP) is the following:

[(usrc="bob")∧(protocol="http")∧(hdst="websrv")]:allow;
Conditions. Conditions are a conjunction of zero or more pred-
icates which specify the properties a flow must have in order for
the action to be applied. From the preceding example rule, if the
user initiating the flow is “bob” and the flow protocol is “HTTP”
and the flow destination is host “websrv,” then the flow is allowed.
The left hand side of a predicate specifies the domain, and the right
hand side gives the entities to which it applies. For example, the
predicate (usrc=“bob”) applies to all flows in which the source
is user bob. Valid domains include {usrc, udst, hsrc, hdst, apsrc,
apdst, protocol}, which respectively signify the user, host, and ac-
cess point sources and destinations and the protocol of the flow.

In Pol-Eth, the values of predicates may include single names
(e.g., “bob”), list of names (e.g., [“bob”,“linda”]), or group inclu-
sion (e.g., in(“workstations”)). All names must be registered with
the Controller or declared as groups in the policy file, as described
below.

Actions. Actions include allow, deny, waypoints, and outbound-
only (for NAT-like security). Waypoint declarations include a list
of entities to route the flow through, e.g., waypoints(“ids”,“web-
proxy”).

4.2 Rule and Action Precedence
Pol-Eth rules are independent and don’t contain an intrinsic or-

dering; thus, multiple rules with conflicting actions may be satis-
fied by the same flow. Conflicts are resolved by assigning priorities
based on declaration order. If one rule precedes another in the pol-
icy file, it is assigned a higher priority.

Groups —
desktops = ["griffin","roo"];
laptops = ["glaptop","rlaptop"];
phones = ["gphone","rphone"];
server = ["http_server","nfs_server"];
private = ["desktops","laptops"];
computers = ["private","server"];
students = ["bob","bill","pete"];
profs = ["plum"];
group = ["students","profs"];
waps = ["wap1","wap2"];
%%
Rules —
[(hsrc=in("server")∧(hdst=in("private"))] : deny;
Do not allow phones and private computers to communicate
[(hsrc=in("phones")∧(hdst=in("computers"))] : deny;
[(hsrc=in("computers")∧(hdst=in("phones"))] : deny;
NAT-like protection for laptops
[(hsrc=in("laptops")] : outbound-only;
No restrictions on desktops communicating with each other
[(hsrc=in("desktops")∧(hdst=in("desktops"))] : allow;
For wireless, non-group members can use http through
a proxy. Group members have unrestricted access.
[(apsrc=in("waps"))∧(user=in("group"))] :allow;
[(apsrc=in("waps"))∧(protocol="http)] : waypoints("http-proxy");
[(apsrc=in("waps"))] : deny;
[]: allow; # Default-on: by default allow flows

Figure 4: A sample policy file using Pol-Eth

Unfortunately, in today’s multi-user operating systems, it is dif-
ficult from a network perspective to attribute outgoing traffic to a
particular user. In Ethane, if multiple users are logged into the same
machine (and not identifiable from within the network), Ethane ap-
plies the least restrictive action to each of the flows. This is an
obvious relaxation of the security policy. To address this, we are
exploring integration with trusted end-host operating systems to
provide user-isolation and identification (for example, by provid-
ing each user with a virtual machine having a unique MAC).

4.3 Policy Example
Figure 4 contains a derivative of the policy which governs con-

nectivity for our university deployment. Pol-Eth policy files consist
of two parts—group declarations and rules—separated by a ‘%%’
delimiter. In this policy, all flows which do not otherwise match
a rule are permitted (by the last rule). Servers are not allowed to
initiate connections to the rest of the network, providing protection
similar to DMZs today. Phones and computers can never commu-
nicate. Laptops are protected from inbound flows (similar to the
protection provided by NAT), while workstations can communicate
with each other. Guest users from wireless access points may only
use HTTP and must go through a web proxy, while authenticated
users have no such restrictions.

4.4 Implementation
Given how frequently new flows are created—and how fast de-

cisions must be made—it is not practical to interpret the network
policy. Instead, we need to compile it. But compiling Pol-Eth is
non-trivial because of the potentially huge namespace in the net-
work: Creating a lookup table for all possible flows specified in the
policy would be impractical.

Our Pol-Eth implementation combines compilation and just-in-
time creation of search functions. Each rule is associated with the
principles to which it applies. This is a one-time cost, performed at
startup and on each policy change.

The first time a sender communicates with a new receiver, a cus-
tom permission check function is created dynamically to handle all

subsequent flows between this source/destination pair. The func-
tion is generated from the set of rules which apply to the connec-
tion. In the worst case, the cost of generating the function scales
linearly with the number of rules (assuming each rule applies to ev-
ery source entity). If all of the rules contain conditions that can be
checked statically at bind time (i.e., the predicates are defined only
over users, hosts, and access points), then the resulting function
consists solely of an action. Otherwise, each flow request requires
that the actions be aggregated in real-time.

We have implemented a source-to-source compiler that gener-
ates C++ from a Pol-Eth policy file. The resulting source is then
compiled and linked into the Ethane binary. As a consequence,
policy changes currently require relinking the Controller. We are
currently upgrading the policy compiler so that policy changes can
be dynamically loaded at runtime.

5. PROTOTYPE AND DEPLOYMENT
We’ve built and deployed a functional Ethane network at our uni-

versity over the last four months. At the time of writing, Ethane
connects over 300 registered hosts and several hundred users. Our
deployment includes 19 Switches of three different types: Ethane
wireless access points and Ethane Ethernet switches in two flavors
(one gigabit in dedicated hardware and one in software). Registered
hosts include laptops, printers, VoIP phones, desktop workstations,
and servers. We have also deployed a remote Switch in a private
residence; the Switch tunnels to the remote Controller which man-
ages all communications on the home network. The whole network
is managed by a single PC-based Controller.

In the following section, we describe our Ethane prototype and
its deployment within Stanford’s Computer Science department,
drawing some lessons and conclusions based on our experience.

5.1 Switches
We have built three different Ethane Switches: An 802.11g wire-

less access point (based on a commercial access point), a wired 4-
port Gigabit Ethernet Switch that forwards packets at line-speed
(based on the NetFPGA programmable switch platform [7] and
written in Verilog), and a wired 4-port Ethernet Switch in Linux
on a desktop PC (in software, both as a development environment
and to allow rapid deployment and evolution).

For design re-use, we implemented the same flow table in each
Switch design, even though in real-life we would optimize for each
platform. The main table—for packets that should be forwarded
(see Section 3.2)—has 8,192 flow entries and is searched using an
exact match on the whole header. We use two hash functions (two
CRCs) to reduce the chance of collisions, and we place only one
flow in each entry of the table.

We implemented a second table with 32K entries. We did this
because our Controller is stateless and we wanted to implement the
outbound-only action in the flow table. When an outbound flow
starts, we’d like to setup the return-route at the same time (because
the Controller is stateless, it doesn’t remember that the outbound-
flow was allowed). Unfortunately, when proxy ARP is used, we
don’t know the MAC address of packets flowing in the reverse di-
rection until they arrive. So, we use the second table to hold flow
entries for return-routes (with a wildcard MAC address) as well as
for dropped packets. A stateful Controller wouldn’t need these en-
tries.

Finally, we keep a small table for flows with wildcards in any
field. This table is present for convenience during prototyping,
while we determine how many entries a real deployment would
need for bootstrapping and control traffic. It currently holds flow
entries for the spanning tree, ARP, and DHCP messages.

Ethane Wireless Access Point. Our access point runs on a Linksys
WRTSL54GS wireless router (266MHz MIPS, 32MB RAM) run-
ning OpenWRT [8]. The data-path and flow table are based on
5K lines of C++ (1.5K are for the flow table). The local switch
manager is written in software and talks to the Controller using the
native Linux TCP stack. When running from within the kernel, the
Ethane forwarding path runs at 23Mb/s—the same speed as Linux
IP forwarding and L2 bridging.

Ethane 4-port Gigabit Ethernet Switch: Hardware Solution.
The Switch is implemented on NetFPGA v2.0 with four Gigabit
Ethernet ports, a Xilinx Virtex-II FPGA, and 4MB of SRAM for
packet buffers and the flow table. The hardware forwarding path
consists of 7K lines of Verilog; flow entries are 40 bytes long. Our
hardware can forward minimum-size packets in full-duplex at a line
rate of 1Gb/s.

Ethane 4-port Gigabit Ethernet Switch: Software Solution. We
also built a Switch from a regular desktop PC (1.6GHz Celeron
CPU and 512MB of DRAM) and a 4-port Gigabit Ethernet card.
The forwarding path and the flow table are implemented to mirror
(and therefore help debug) our implementation in hardware. Our
software Switch in kernel mode can forward MTU size packets at
1Gb/s. However, as the packet size drops, the switch can’t keep
pace with hashing and interrupt overheads. At 100 bytes, the switch
can only achieve a throughput of 16Mb/s. Clearly, for now, the
switch needs to be implemented in hardware for high-performance
networks.

5.2 Controller
We implemented the Controller on a standard Linux PC (1.6GHz

Celeron CPU and 512MB of DRAM). The Controller is based on
45K lines of C++ (with an additional 4K lines generated by the
policy compiler) and 4.5K lines of Python for the management in-
terface.

Registration. Switches and hosts are registered using a web inter-
face to the Controller and the registry is maintained in a standard
database. For Switches, the authentication method is determined
during registration. Users are registered using our university’s stan-
dard directory service.

Authentication. In our system, users authenticate using our univer-
sity authentication system, which uses Kerberos and a university-
wide registry of usernames and passwords. Users authenticate via
a web interface—when they first connect to a browser they are
redirected to a login web-page. In principle, any authentication
scheme could be used, and most enterprises have their own. Ethane
Switches also, optionally, authenticate hosts based on their MAC
address, which is registered with the Controller.

Bind Journal and Namespace Interface. Our Controller logs
bindings whenever they are added or removed, or when we decide
to checkpoint the current bind-state; each entry in the log is times-
tamped. We use BerkeleyDB for the log [2], keyed by timestamp.

The log is easily queried to determine the bind-state at any time
in the past. We enhanced our DNS server to support queries of
the form key.domain.type-time, where “type” can be “host”, “user”,
“MAC”, or “port”. The optional time parameter allows historical
queries, defaulting to the present time.

Route Computation. Routes are pre-computed using an all pairs
shortest path algorithm [13]. Topology recalculation on link fail-
ure is handled by dynamically updating the computation with the
modified link-state updates. Even on large topologies, the cost of
updating the routes on failure is minimal. For example, the aver-

 0

 200

 400

 600

 0 2 4 6 8 10

Lo
ad

 (f
lo

w
s

/ s
)

Time (hours)

 0

 200

 400

 600

 800

 0 24 48 72 96

Lo
ad

 (f
lo

w
s

/ s
)

Time (hours)
Figure 5: Frequency of flow-setup requests per second to Con-
troller over a 10-hour period (top) and 4-day period (bottom).

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0 2000 4000 6000 8000 10000

Re
sp

on
se

 ti
m

e
(m

s)

Load (flows / s)

Figure 6: Flow-setup times as a function of Controller load.
Packet sizes were 64B, 128B and 256B, evenly distributed.

age cost of an update on a 3,000 node topology is 10ms. In the
following section we present an analysis of flow-setup times under
normal operation and during link failure.

5.3 Deployment
Our Ethane prototype is deployed in our department’s 100Mb/s

Ethernet network. We installed eleven wired and eight wireless
Ethane Switches. There are currently approximately 300 hosts on
this Ethane network, with an average of 120 hosts active in a 5-
minute window. We created a network policy to closely match—
and in most cases exceed—the connectivity control already in place.
We pieced together the existing policy by looking at the use of
VLANs, end-host firewall configurations, NATs and router ACLs.
We found that often the existing configuration files contained rules
no longer relevant to the current state of the network, in which case
they were not included in the Ethane policy.

Briefly, within our policy, non-servers (workstations, laptops,
and phones) are protected from outbound connections from servers,
while workstations can communicate uninhibited. Hosts that con-
nect to an Ethane Switch port must register a MAC address, but
require no user authentication. Wireless nodes protected by WPA
and a password do not require user authentication, but if the host
MAC address is not registered (in our network this means they are
a guest), they can only access a small number of services (HTTP,
HTTPS, DNS, SMTP, IMAP, POP, and SSH). Our open wireless
access points require users to authenticate through the university-
wide system. The VoIP phones are restricted from communicating
with non-phones and are statically bound to a single access point to

 0
 200
 400
 600
 800

 1000
 1200

 0 5 10 15 20 25 30 35

Ac
tiv

e
flo

w
s

Time (hours)
Figure 7: Active flows for LBL network [19].

 0
 2000
 4000
 6000
 8000

 10000

 0 5 10 15 20 25 30

Lo
ad

 (f
lo

w
s

/ s
)

Time (days)
Figure 8: Flow-request rate for Stanford network.

prevent mobility (for E911 location compliance). Our policy file is
132 lines long.

6. PERFORMANCE AND SCALABILITY
Deploying Ethane has taught us a lot about the operation of a

centrally-managed network, and it enabled us to evaluate many as-
pects of its performance and scalability, especially with respect to
the numbers of users, end-hosts, and Switches. We start by look-
ing at how Ethane performs in our network, and then, using our
measurements and data from others, we try to extrapolate the per-
formance for larger networks.

In this section, we first measure the Controller’s performance
as a function of the flow-request rate, and we then try to estimate
how many flow-requests we can expect in a network of a given
size. This allows us to answer our primary question: How many
Controllers are needed for a network of a given size? We then
examine the behavior of an Ethane network under Controller and
link failures. Finally, to help decide the practicality and cost of
Switches for larger networks, we consider the question: How big
does the flow table need to be in the Switch?

6.1 Controller Scalability
Recall that our Ethane prototype is currently used by approx-

imately 300 hosts, with an average of 120 hosts active in a 5-
minute window. From these hosts, we see 30-40 new flow requests
per second (Figure 5) with a peak of 750 flow requests per sec-
ond.9 Figure 6 shows how our Controller performs under load:
for up to 11,000 flows per second—greater than the peak laod we
observed—flows were set up in less than 1.5 milliseconds in the
worst case, and the CPU showed negligible load.

Our results suggest that a single Controller could comfortably
handle 10,000 new flow requests per second. We fully expect this
number to increase if we concentrated on optimizing the design.
With this in mind, it is worth asking to how many end-hosts this
load corresponds.

We considered two recent datasets: One from an 8,000-host net-
work at LBL [19] and one from a 22,000-host network at Stanford.
As is described in [12], the number of maximum outstanding flows

9Samples were taken every 30 seconds.

 0
 80

 160
 240
 320
 400
 480

 0 5 10 15 20

Ac
tiv

e
flo

w
s

Time (hours)

 0
 80

 160
 240
 320
 400
 480

 0 5 10 15 20

Ac
tiv

e
flo

w
s

Time (hours)
Figure 9: Active flows through two of our deployed switches

Failures 0 1 2 3 4
Completion time 26.17s 27.44s 30.45s 36.00s 43.09s

Table 1: Completion time for HTTP GETs of 275 files during
which the primary Controller fails zero or more times. Results
are averaged over 5 runs.

in the traces from LBL never exceeded 1,200 per second across all
nodes (Figure 7). The Stanford dataset has a maximum of under
9,000 new flow-requests per second (Figure 8).

Perhaps surprisingly, our results suggest that a single Controller
could comfortably manage a network with over 20,000 hosts. In-
deed flow setup latencies for continued load of up to 6,000/s are
less than .6ms, equivalent to the average latency of a DNS request
within the Stanford network. Flow setup latencies for load under
2,000 requests per second are .4ms, this is roughly equivalent to
the average RTT between hosts in different subnets on our campus
network.

Of course, in practice, the rule set would be larger and the num-
ber of physical entities greater. On the other hand, the ease with
which the Controller handles this number of flows suggests there
is room for improvement. This is not to suggest that a network
should rely on a single Controller; we expect a large network to
deploy several Controllers for fault-tolerance, using the schemes
outlined in §3.5, one of which we examine next.

6.2 Performance During Failures
Because our Controller implements cold-standby failure recov-

ery (see §3.5), a Controller failure will lead to interruption of ser-
vice for active flows and a delay while they are re-established. To
understand how long it takes to reinstall the flows, we measured
the completion time of 275 consecutive HTTP requests, retrieving
63MB in total. While the requests were ongoing, we crashed the
Controller and restarted it multiple times. Table 1 shows that there
is clearly a penalty for each failure, corresponding to a roughly 10%
increase in overall completion time. This can be largely eliminated,
of course, in a network that uses warm-standby or fully-replicated
Controllers to more quickly recover from failure (see §3.5).

Link failures in Ethane require that all outstanding flows re-contact
the Controller in order to re-establish the path. If the link is heav-
ily used, the Controller will receive a storm of requests, and its
performance will degrade. We created a topology with redundant

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.5 1 1.5 2 2.5 3 3.5

R
TT

 (m
s)

Time since link failure (s)

100 flows
200 flows
400 flows
800 flows

1600 flows

Figure 10: Round-trip latencies experienced by packets
through a diamond topology during link failure.

paths—so the network can withstand a link-failure—and measured
the latencies experienced by packets. Failures were simulated by
physically unplugging a link; our results are shown in Figure 10.
In all cases, the path reconverges in under 40ms, but a packet could
be delayed up to a second while the Controller handles the flurry of
requests.

Our network policy allows for multiple disjoint paths to be setup
by the Controller when the flow is created. This way, convergence
can occur much faster during failure, particularly if the Switches
detect a failure and failover to using the backup flow-entry. We
have not implemented this in our prototype, but plan to do so in the
future.

6.3 Flow Table Sizing
Finally, we explore how large the flow table needs to be in the

Switch. Ideally, the Switch can hold all of the currently active
flows. Figure 9 shows how many active flows we saw in our Ethane
deployment; it never exceeded 500. With a table of 8,192 entries
and a two-function hash-table, we never encountered a collision.
As described earlier in Figure 7, the LBL network did not encounter
more than 1,200 flows in their 8,000 host network.

In practice, the number of ongoing flows depends on where the
Switch is in the network. Switches closer to the edge will see a
number of flows proportional to the number of hosts they connect
to (i.e., their fanout). Our deployed Switches have a fanout of four
and saw no more than 500 flows; we might expect a Switch with
a fanout of, say, 64 to see at most a few thousand active flows. (It
should be noted that this is a very conservative estimate, given the
small number of flows in the whole LBL network.) A Switch at
the center of a network will likely see more active flows, and so we
assume it will see all active flows.

From these numbers we conclude that a Switch—for a university-
sized network—should have flow table capable of holding 8K–
16K entries. If we assume that each entry is 64B, such a table
requires about 1MB of storage, or as much as 4MB if we use a
two-way hashing scheme [9]. A typical commercial enterprise Eth-
ernet switch today holds 1 million Ethernet addresses (6MB, but
larger if hashing is used), 1 million IP addresses (4MB of TCAM),
1-2 million counters (8MB of fast SRAM), and several thousand
ACLs (more TCAM). Thus, the memory requirements of an Ethane
Switch are quite modest in comparison to today’s Ethernet switches.

To further explore the scalability of the Controller, we tested
its performance with simulated inputs in software to identify over-
heads. The Controller was configured with a policy file of 50 rules
and 100 registered principles; routes were precalculated and cached.
Under these conditions, the system could handle 650,845 bind events
per second and 16,972,600 permission checks per second. The

complexity of the bind events and permission checks is dependent
on the rules in use, which, in the worst case, grows linearly with
the number of rules.

7. ETHANE’S SHORTCOMINGS
When trying to deploy a radically new architecture into legacy

networks—without changing the end-host—we encounter some stum-
bling blocks and limitations. These are the main issues that arose:

Broadcast and Service Discovery. Broadcast discovery protocols
(ARP, OSPF neighbor discovery, etc.) wreak havoc on enterprise
networks by generating huge amounts of overhead traffic [17, 20];
on our network, these constituted over 90% of the flows. One of
the largest reasons for VLANs is to control the storms of broadcast
traffic on enterprise networks. Hosts frequently broadcast messages
to the network to try and find an address, neighbor, or service. Un-
less Ethane can interpret the protocol and respond on its behalf, it
needs to broadcast the request to all potential responders; this in-
volves creating large numbers of flow entries, and it leads to lots of
traffic which—if malicious—has access to every end-host. Broad-
cast discovery protocols could be eliminated if there was a standard
way to register a service where it can easily be found. SANE pro-
posed such a scheme [12], and in the long-term, we believe this is
the right approach.

Application-layer routing. A limitation of Ethane is that it has to
trust end-hosts not to relay traffic in violation of the network policy.
Ethane controls connectivity using the Ethernet and IP addresses of
the end-points, but Ethane’s policy can be compromised by com-
munications at a higher layer. For example, if A is allowed to talk
to B but not C, and if B can talk to C, then B can relay messages
from A to C. This could happen at any layer above the IP layer, e.g.,
a P2P application that creates an overlay at the application layer, or
multi-homed clients that connect to multiple networks. This is a
hard problem to solve, and most likely requires a change to the
operating system and any virtual machines running on the host.

Knowing what the user is doing. Ethane’s policy assumes that
the transport port numbers indicate what the user is doing: port
80 means HTTP, port 25 is SMTP, and so on. Colluding mali-
cious users or applications can fool Ethane by agreeing to use non-
standard port numbers. And it is common for “good” applications
to tunnel applications over ports (such as port 80) that are likely
to be open in firewalls. To some extent, there will always be such
problems for a mechanism like Ethane, which focuses on connec-
tivity without involvement from the end-host. In the short-term,
we can, and do, insert application proxies along the path (using
Ethane’s waypoint mechanism).

Spoofing Ethernet addresses. Ethane Switches rely on the bind-
ing between a user and Ethernet addresses to identify flows. If a
user spoofs a MAC address, it might be possible to fool Ethane
into delivering packets to an end-host. This is easily prevented in
an Ethane-only network where each Switch port is connected to
one host: The Switch can drop packets with the wrong MAC ad-
dress. If two or more end-hosts connect to the same Switch port, it
is possible for one to masquerade as another. A simple solution is to
physically prevent this; a more practical solution in larger networks
is to use 802.1X in conjunction with link-level encryption mecha-
nisms, such as 802.1AE, to more securely authenticate packets and
addresses.

8. RELATED WORK
Ethane embraces the 4D [14] philosophy of simplifying the data-

plane and centralizing the control-plane to enforce network-wide
goals [21]. Ethane diverges from 4D in that it supports a fine-
grained policy-management system. We believe that policy deci-
sions can and should be based on flows. We also believe that by
moving all flow decisions to the Controller, we can add many new
functions and features to the network by simply updating the Con-
troller in a single location. Our work also shows that it is possible—
we believe for the first time—to securely bind the entities in the net-
work to their addresses, and then to manage the whole namespace
with a single policy.

Ipsilon Networks proposed caching IP routing decisions as flows,
in order to provide a switched, multi-service fast path to traditional
IP routers [18]. Ethane also uses flows as a forwarding primitive.
However, Ethane extends forwarding to include functionality use-
ful for enforcing security, such as address swapping and enforcing
outgoing initiated flows only.

In distributed firewalls [15], policy is declared centrally in a
topology independent manner and enforced at each end-host. In
addition to the auditing and management support, Ethane differs
from this work in two major ways. First, in Ethane end-hosts can-
not be trusted to enforce filtering. This mistrust is also extended
to the first hop switch. With per-switch enforcement of each flow,
Ethane provides maximal defense in depth. Secondly, much of the
power of Ethane is to provide network level guarantees, such as
policy imposed waypoints. This is not possible to do through end-
host level filtering alone.

Pol-Eth, Ethane’s policy language, is inspired by predicate rout-
ing (PR) [22]. PR unifies routing and filtering; a set of predicates
describes all connectivity. Pol-Eth extends this model by making
users first-class objects, declaring predicates over high-level names,
and providing support for group declaration and inclusion, multiple
connectivity constraints, and arbitrary expressions.

VLANs are widely used in enterprise networks for segmenta-
tion, isolation, and to enforce coarse-grain policies; and they are
commonly used to quarantine unauthenticated hosts or hosts with-
out health “certificates” [3, 6]. VLANs are notoriously difficult to
use, requiring much hand-holding and manual configuration; we
believe Ethane can replace VLANs entirely, giving much simpler
control over isolation, connectivity, and diagnostics.

There are a number of Identity-Based Networking (IBN) cus-
tom switches available (e.g., [4]) or secure AAA servers (e.g., [5]).
These allow high-level policy to be declared, but are generally point
solutions with little or no control over the network data-path (ex-
cept as a choke-point). Several of them rely on the end-host for
enforcement, which makes them vulnerable to compromise.

9. CONCLUSIONS
One of the most interesting consequences of building a prototype

is that the lessons you learn are always different—and usually far
more—than were expected. With Ethane, this is most definitely
the case: We learned lessons about the good and bad properties of
Ethane, and fought a number of fires during our deployment.

The largest conclusion that we draw is that (once deployed) we
found it much easier to manage the Ethane network than we ex-
pected. On numerous occasions we needed to add new Switches,
new users, support new protocols, and prevent certain connectivity.
On each occasion we found it natural and fast to add new policy
rules in a single location. There is great peace of mind to knowing
that the policy is implemented at the place of entry and determines
the route that packets take (rather than being distributed as a set of
filters without knowing the paths that packets follow). By journal-
ing all registrations and bindings, we were able to identify numer-
ous network problems, errant machines, and malicious flows—and

associate them with an end-host or user. This bodes well for net-
work managers who want to hold users accountable for their traffic
or perform network audits.

We have also found it straightforward to add new features to the
network: either by extending the policy language, adding new rout-
ing algorithms (such as supporting redundant disjoint paths), or in-
troducing new application proxies as waypoints. Overall, we be-
lieve that Ethane’s most significant advantage comes from the ease
of innovation and evolution. By keeping the Switches dumb and
simple, and by allowing new features to be added in software on
the central Controller, rapid improvements are possible. This is
particularly true if the protocol between the Switch and Controller
is open and standardized, so as to allow competing Controller soft-
ware to be developed.

We are confident that the Controller can scale to support quite
large networks: Our results suggest that a single Controller could
manage over 10,000 machines, which bodes well for whoever has
to manage the Controllers. In practice, we expect Controllers to
be replicated in topologically-diverse locations on the network, yet
Ethane does not restrict how the network manager does this. Over
time, we expect innovation in how fault-tolerance is performed,
perhaps with emerging standard protocols for Controllers to com-
municate and remain consistent.

We are convinced that the Switches are best when they are dumb,
and contain little or no management software. We have experi-
ence building switches and routers—for Ethane and elsewhere—
and these are the simplest switches we’ve seen. Further, the Switches
are just as simple at the center of the network as they are at the
edge. Because the Switch consists mostly of a flow table, it is easy
to build in a variety of ways: in software for embedded devices,
in network processors, for rapid deployment, and in custom ASICs
for high volume and low-cost. Our results suggest that an Ethane
Switch will be significantly simpler, smaller, and lower-power than
current Ethernet switches and routers.

We anticipate some innovation in Switches too. For example,
while our Switches maintain a single FIFO queue, one can imagine
a “less-dumb” Switch with multiple queues, where the Controller
decides to which queue a flow belongs. This leads to many pos-
sibilities: per-class or per-flow queueing in support of priorities,
traffic isolation, and rate control. Our results suggest that even if
the Switch does per-flow queueing (which may or may not make
sense), the Switch need only maintain a few thousand queues. This
is frequently done in low-end switches today, and it is well within
reach of current technology.

Acknowledgments
We thank Tal Garfinkel, Greg Watson, Dan Boneh, Lew Glenden-
ning, John Lockwood, and Aditya Akella for their valuable in-
put. David Mazières, Nickolai Zeldovich, Jennifer Rexford, Sharon
Goldberg and Changoon Kim offered very helpful feedback on
early drafts of this paper. We would also like to thank our shep-
herd, Anja Feldman for her guidance. This paper is based upon
work supported by the National Science Foundation under Grant
No. CNS-0627112 (The 100x100 Clean Slate Program), from the
FIND program with funding from DTO. The research was also sup-
ported in part by the Stanford Clean Slate program. Martìn Casado
was funded by a DHS graduate fellowship.

References
[1] Alterpoint. http://www.alterpoint.com/.
[2] BerkeleyDB. http://www.oracle.com/database/berkeley-

db.html.

[3] Cisco network admission control. http://www.cisco.com/.
[4] Consentry. http://www.consentry.com/.
[5] Identity engines. http://www.idengines.com/.
[6] Microsoft network access protection.

http://www.microsoft.com/technet/network/nap/default.mspx.
[7] Netfpga home page. http://NetFPGA.org.
[8] Openwrt home page. http://openwrt.org/.
[9] A. Z. Broder and M. Mitzenmacher. Using multiple hash

functions to improve ip lookups. In Proc. INFOCOM, Apr.
2001.

[10] D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg, G. Hjalm-
tysson, and J. Rexford. The cutting edge of ip router configu-
ration. SIGCOMM Computer Comm. Rev., 2004.

[11] D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg, G. Hjalm-
tysson, and J. Rexford. The cutting edge of ip router con-
figuration. SIGCOMM Computer Comm. Rev., 34(1):21–26,
2004.

[12] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman,
D. Boneh, N. McKeown, and S. Shenker. SANE: A protec-
tion architecture for enterprise networks. In USENIX Security
Symposium, Aug. 2006.

[13] C. Demetrescu and G. Italiano. A new approach to dynamic
all pairs shortest paths. In Proc. STOC’03, 2003.

[14] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers,
J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang. A clean
slate 4D approach to network control and management. In
SIGCOMM Computer Comm. Rev., Oct. 2005.

[15] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M.
Smith. Implementing a distributed firewall. In ACM Confer-
ence on Computer and Communications Security, pages 190–
199, 2000.

[16] Z. Kerravala. Configuration management delivers business
resiliency. The Yankee Group, Nov. 2002.

[17] A. Myers, E. Ng, and H. Zhang. Rethinking the service
model: Scaling ethernet to a million nodes. In Proc. HotNets,
Nov. 2004.

[18] P. Newman, T. L. Lyon, and G. Minshall. Flow labelled IP: A
connectionless approach to ATM. In INFOCOM (3), 1996.

[19] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and
B. Tierney. A first look at modern enterprise traffic. In Proc.
Internet Measurement Conference, Oct. 2005.

[20] R. J. Perlman. Rbridges: Transparent routing. In Proc. IN-
FOCOM, Mar. 2004.

[21] J. Rexford, A. Greenberg, G. Hjalmtysson, D. A. Maltz,
A. Myers, G. Xie, J. Zhan, and H. Zhang. Network-wide
decision making: Toward a wafer-thin control plane. In Proc.
HotNets, Nov. 2004.

[22] T. Roscoe, S. Hand, R. Isaacs, R. Mortier, and P. Jardet-
zky. Predicate routing: Enabling controlled networking. SIG-
COMM Computer Comm. Rev., 33(1), 2003.

[23] A. Wool. The use and usability of direction-based filtering in
firewalls. Computers & Security, 26(6):459–468, 2004.

[24] A. Wool. A quantitative study of firewall configuration errors.
IEEE Computer, 37(6):62–67, 2004.

[25] G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg, and
G. Hjalmtysson. Routing design in operational networks: A
look from the inside. In Proc. SIGCOMM, Sept. 2004.

