
Princeton University
COS 217: Introduction to Programming Systems

Spring 2008 Midterm Exam Answers

The exam was a 50-minute, open-book, open-notes exam.

Question 1 Part A

The decimal number 38 = 32 + 4 + 2, which is represented in binary as 00100110.
The one's complement flips all of the bits, resulting in 11011001.
The two's complement adds 1 to the one's complement, resulting in 11011010.

Question 1 Part B

The output is: 18,2,1,0,2

74/4 is 18 remainder 2, which rounds down to 18.
74%4 is the remainder of 2.
74&&4 is "true and true", which is true, i.e., 1.
74&4 is, in binary, 01001010 & 00000100, which is 00000000, which is 0.
74&3 is, in binary, 01001010 & 00000011, which is 00000010, which is 2.

Question 1 Part C

The "k >> 2" shifts out the last two bits, and the "<< 2" shifts back in two 0 bits in
their place. As such, "((k >> 2) << 2)" replaces the last two bits of k's binary
representation with 00. Subtracting that number from k produces the last two bits of k's
binary representation, which is more concisely expressed as "k & 3". This is equivalent
to "k % 4", though the "k & 3" is a more efficient way to achieve the same result.

Question 1 Part D

The code produces a string of the unsigned integer n's binary representation.

The variable numbits is the number of bits needed to represent an unsigned int (i.e., the
number of bytes multiplied by 8 bits/byte). The malloc() allocates enough space to store
one character for each bit, plus room for the '\0' to terminate the string. The for loop
starts at the position for the last character and proceeds up to and including the 1st
character, assigning the ith character to the ith bit in the unsigned int. The assignment
to ret[i] extracts the last bit of the current value of n (which is shifting out the
rightmost bit on each iteration of the for loop), and assigns a '0' if the value is 0,
and a '1' if the value is 1. Then, the string is terminated with '\0' and the function
returns the pointer to the string.

A common mistake was to assume the code reversed the order of the bits, because the loop
counts backwards. The "counting backwards" is necessary because the "n & 1" extracts the
last bit, rather than the first, and this bit should appear at the end of the string.

Question 2 Part A

The variable retbuf is a local variable, which is stored (temporarily) on the stack. As
such, the "return" statement returns a pointer to memory that is no longer allocated
after the function ends. In addition, the definition of retbuf[5] does not necessarily
dd enough space to store the string, depending on the size of the integer. a

Question 2 Part B

char *itoa(int n) {
 int size = 0;
 int temp = n;
 char *retbuf;

 /* Count number of decimal digits in n */

Page 1 of 5

 while (temp /= 10)
 size++;
 size++;

 /* If n is negative, add room for the "-" sign */
 if (n < 0)
 size++;

 retbuf = (char *) malloc(size + 1);
 assert(retbuf != NULL);
 sprintf(retbuf, "%d", n);
 return retbuf;
}

A common mistake was to mishandle the case where n is 0, which requires 1 character
(rather than 0 characters).

Another common mistake was to assume that n is an unsigned int, and not allocated space
for the minus sign.

Another common mistake was to omit the "assert(retbuf)" after the call to malloc, though
no points were taken off for this.

Another mistake a few students made was to use "sizeof(n)" to compute the length; this is
incorrect because it returns the number of bytes in a "int", not the number of digits in
the decimal representation of n.

Some students extracted each of the decimal digits of n, using code similar to question
1b (though modified to manipulate n in base 10 rather than base 2). This is perfectly
valid (and, as such, no points were taken off), though using "sprintf" is simpler.

An interesting, and clever, answer was to create a large array of characters as a local
variable, use sprintf to place the string representation of n in the array, use strlen()
to compute the length of the string, use malloc() to allocate the appropriate amount of
space to retbuff, and then copy the string from the local variable to retbuf.

Question 3 Part A

(1) Prevent client code from accessing or modifying the data structure.
(2) Allow implementation to change without requiring client code to be recompiled.

Done in C by placing the structure type definition in the ADT's implementation (.c file)
rather than in the ADT's interface (.h file); the interface contains only an opaque
pointer.

Question 3 Part B

argv[0][2] is the 2nd character of the 0th argument ("a.out"), i.e., 'o'.
argv[2][0] is the 0th character of the 2nd argument ("rules"), i.e., 'r'

A common mistake was forgetting that argv[0] is the name of the program ("a.out" in this
case), not the first command-line argument ("cs217").

Question 3 Part C

Because the size of the corresponding data is unknown.

Question 3 Part C

The five bytes of "jrex" (four letters, plus the '\0') are stored in the rodata section
(in our system), and the text section in some other systems. (Either answer was
cceptable.) a

Question 3 Part D

The variable myname (a pointer) is stored in the data section, for initialized global
variables. Initially the variable is equal to the address where the constant "jrex" is
stored in the text/rodata section. Later, the "myname = yourname" changes the variable
myname to the address where the constant "dondero" is stored. Since changing the value
of (non-constant) variables is allowed, the "myname = yourname" line is valid.

Page 2 of 5

Question 3 Part E

Because the "getchar() != EOF" has precedence over the "c =", the variable c is assigned
the boolean result of comparing the output of getchar() to EOF. As such, this code
prints the character associated with ASCII code 1 until the EOF is reached.

A common error was not realizing that the "!=" operator has higher precedence than the
"=" operator. Thus a common incorrect answer was "The code copies all characters from
stdin to stdout."

Question 4 Part A

For problem 4a, the most common error was not handling the strings 'a' and 'b' correctly.
These strings begin and end with the same character, and thus should be accepted. Some
students also forgot one or more of the self arcs. A couple students tried to unify the
accepting states on the A and B paths. These approaches ended up accepting strings that
should be rejected like 'ababb'.

a
b

a b

a

a

b
b

b

a

Page 3 of 5

Question 4 Part B

 The common errors were forgetting the arc
om C to B or B to A or the self arc C.

verall people did very well on this problem.O

fr on

#

Question 5 Part A

No, the assert() statements are still necessary, since the client code could have a
emory leak that exhausts the available memory, or a bug that corrupts the m heap, causing

llocate space in the functions implementing the ADT. malloc() to fail to a

Question 5 Part B

The malloc() call is allocating space for the list structure, which has the size
hing pointed to by the pointer newnode" (i.e., "struct list"). A mall

 of "the
oc() of

ld only allocate space of the size of a pointer.
t
"sizeof(newnode)" wou

Question 5 Part C

ue->head == NULL) if (que
 queue->head = newnode;

 walk->next; walk=walk->next)

walk->next = newnode;

g the last node (which that has a "next" pointer of NULL), and add the node

ated that
eue_remove() will be redesigned to remove a node from the tail of the list.

else {
t list *walk; struc

 for (walk = queue->head;
 ;

}

If the queue is empty, add the new node at the head. Otherwise, walk through the list
ntil reachinu

to the end.

A common mistake was to add the new node at the head of the list even when the list is
on-empty. Doing so would be reasonable if and only if the question also indicn

Qu

2 1

2

7

2

2

1 6
#

#

Page 4 of 5

uestion 5 Part DQ

e, void *item, int (*compare)(void *, void *)) { void Queue_add(Queue_T queu
 struct list *newnode ;

 assert(queue != NULL);

alloc(sizeof(*newnode)); newnode = (struct list*) m
; assert(newnode != NULL)

 newnode->item = item;
 newnode->next = NULL;

 if (queue->head == NULL)
 queue->head = newnode;
 else if ((*compare)(queue->head->item, item) > 0) {

o beginning of list */ /* Smallest element is added t
ead; newnode->next = queue->h

e->head = newnode; queu
 }
 else {
 /* Add element after "walk" */
 struct list *walk;

xt) { for (walk = queue->head; walk->next; walk=walk->ne
 item) > 0) { if ((*compare)(walk->next->item,

>next = walk->next; newnode-
 break;

 }
 }

walk->next = newnode;
}

}

There were a few common mistakes:

 callback function is required. • Failure to realize that a "compare"
• Failure to handle the empty list.
• Failure to handle the situation where the new node should appear at the beginning

of the list.
• Splicing the new node into the list one spot beyond the proper place.

uestion 6Q

The program produces its own source code as output. The printf() in the main function
prints the string "char*s=%c%s%c;main(){printf(s,34,s,34);}", filling in (i) the doubl
quote character (ASCII code 34) for the first %c, (ii) the string
"char*s=%c%s%c;main(){printf(s,34,s,34);}" for the %s, and (iii) another double-quote

aracter (ASCII code 34) for the last %c.

e-

Copyright © 2008 by Jennifer Rexford

ch

Page 5 of 5

