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Goals of this Lecture 

• Help you learn about: 
– Dynamic memory management techniques 

• Garbage collection by the run-time system (Java) 

• Manual deallocation by the programmer (C, C++) 

– Design decisions for the “K&R” heap manager 
implementation 

• Circular linked-list of free blocks with a “first 
fit” allocation 

• Coalescing of adjacent blocks to create larger 
blocks 
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Part 1: 

What do malloc() and free() do? 

•3 



Memory Layout: Heap 
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char* string = "hello"; 

int iSize; 

 

char* f() 

{ 

    char* p; 

    scanf("%d", &iSize); 

    p = malloc(iSize); 

    return p; 

} 

Text 

BSS 

Stack 

Heap 

Needed when required memory size is not 

known before the program runs 

RoData 

Data 



Allocating & Deallocating Memory 

• Dynamically allocating memory 
– Programmer explicitly requests space in memory 

– Space is allocated dynamically on the heap 

– E.g., using “malloc” in C, and “new” in Java/C++ 

• Dynamically deallocating memory 
– Must reclaim or recycle memory that is never used again 

– To avoid (eventually) running out of memory 

• “Garbage” 
– Allocated block in heap that will not be accessed again  

– Can be reclaimed for later use by the program 
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Option #1: Garbage Collection 
• Run-time system does garbage collection (Java) 

– Automatically determines objects that can’t be accessed 

– And then reclaims the resources used by these objects 
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Object x = new Foo(); 

Object y = new Bar(); 

x = new Quux(); 

 

if (x.check_something()) { 

  x.do_something(y); 

} 

System.exit(0); 

Object Foo() 

is never used 

again! 



Challenges of Garbage Collection 

• Detecting the garbage is not always easy 
– “if (complex_function(y))  x = Quux();” 
– Run-time system cannot collect all of the garbage 

• Detecting the garbage introduces overhead 
– Keeping track of references to objects (e.g., counter) 
– Scanning through accessible objects to identify garbage 
– Sometimes walking through a large amount of memory 

• Cleaning the garbage leads to bursty delays 
– E.g., periodic scans of the objects to hunt for garbage 
– Leading to unpredictable “freeze” of the running program 
– Very problematic for real-time applications 
– … though good run-time systems avoid long freezes 
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Option #2: Manual Deallocation 

• Programmer deallocates the memory (C and C++) 
– Manually determines which objects can’t be accessed 
– And then explicitly returns the resources to the heap 
– E.g., using “free” in C or “delete” in C++ 

• Advantages 
– Lower overhead 
– No unexpected “pauses”  
– More efficient use of memory 

• Disadvantages 
– More complex for the programmer 
– Subtle memory-related bugs 
– Security vulnerabilities in the (buggy) code 
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Manual Deallocation Can Lead to Bugs 

• Dangling pointers 
– Programmer frees a region of memory  

– … but still has a pointer to it 

– Dereferencing pointer reads or writes nonsense 
values 
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int main(void) { 
    char *p; 
    p = malloc(10); 
    … 
    free(p);  
    … 
    putchar(*p); 
} 

May print 

nonsense 

character. 



Manual Deallocation Can Lead to Bugs 

• Memory leak 
– Programmer neglects to free unused region of memory 
– So, the space can never be allocated again 
– Eventually may consume all of the available memory 
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void f(void) { 
    char *s; 
    s = malloc(50); 
    return; 
} 
 
int main(void) { 
    while (1) f(); 
    return 0; 
} 

Eventually, 

malloc() returns 

NULL 



Manual Deallocation Can Lead to Bugs 

• Double free 
– Programmer mistakenly frees a region more than once 
– Leading to corruption of the heap data structure 
– … or premature destruction of a different object 
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int main(void) { 

    char *p, *q; 

    p = malloc(10); 

    … 

    free(p);  

    q = malloc(10); 

    free(p); 

    … 

} 

Might free the 

space allocated 

to q! 



malloc() and free() Challenges 
• malloc() may ask for arbitrary number of bytes 
• Memory may be allocated & freed in different 

order 
• Cannot reorder requests to improve performance 
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char *p1 = malloc(3); 

char *p2 = malloc(1); 

char *p3 = malloc(4); 

free(p2); 

char *p4 = malloc(6); 

free(p3); 

char *p5 = malloc(2); 

free(p1); 

free(p4); 

free(p5); 



Heap: Dynamic Memory 

   #include <stdlib.h> 
void *malloc(size_t size); 

void free(void *ptr); 
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0 

0xffffffff 

Stack 

} 

Heap 

Heap 

char *p1 = malloc(3); 

char *p2 = malloc(1); 

char *p3 = malloc(4); 

free(p2); 

char *p4 = malloc(6); 

free(p3); 

char *p5 = malloc(2); 

free(p1); 

free(p4); 

free(p5); 

p1 



Heap: Dynamic Memory 

   #include <stdlib.h> 
void *malloc(size_t size); 

void free(void *ptr); 
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0 

0xffffffff 

Stack 

} 

Heap 

Heap 

char *p1 = malloc(3); 

char *p2 = malloc(1); 

char *p3 = malloc(4); 

free(p2); 

char *p4 = malloc(6); 

free(p3); 

char *p5 = malloc(2); 

free(p1); 

free(p4); 

free(p5); 

p1 

p2 



Heap: Dynamic Memory 

   #include <stdlib.h> 
void *malloc(size_t size); 

void free(void *ptr); 
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free(p2); 
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free(p3); 

char *p5 = malloc(2); 
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Heap: Dynamic Memory 

   #include <stdlib.h> 
void *malloc(size_t size); 

void free(void *ptr); 
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Heap: Dynamic Memory 

   #include <stdlib.h> 
void *malloc(size_t size); 

void free(void *ptr); 
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Heap: Dynamic Memory 

   #include <stdlib.h> 
void *malloc(size_t size); 

void free(void *ptr); 
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Heap: Dynamic Memory 

   #include <stdlib.h> 
void *malloc(size_t size); 

void free(void *ptr); 
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Heap: Dynamic Memory 

   #include <stdlib.h> 
void *malloc(size_t size); 

void free(void *ptr); 
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Heap: Dynamic Memory 

   #include <stdlib.h> 
void *malloc(size_t size); 

void free(void *ptr); 
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Heap: Dynamic Memory 

   #include <stdlib.h> 
void *malloc(size_t size); 
void free(void *ptr); 
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Part 2: 

How do malloc() and free() work? 
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The Program Break 

The program break marks the boundary 
between heap and stack 

 

 

 

 

Initially, stack has maximum size 
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00000000 

Stack 

Heap 

FFFFFFFF 

program break 

00000000 

Stack 
FFFFFFFF 

program break 



Acquiring Heap Memory 

Q:  How does malloc() acquire heap 
memory? 

A:  Moves the program break downward via 
sbrk() or brk()system call 

void *sbrk(intptr_t increment); 
• Increment the program break by the specified amount. Calling the 

function with an increment of 0 returns the current location of  the 
program break.  Return the ptr to the previous program break if 
successful and -1 otherwise. 

int brk(void *newBreak); 
• Move the program break to the specified address.  Return 0 if 

successful and -1 otherwise. 
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Using Heap Memory 

 

Q:  Having acquired heap memory, how do 
malloc() and free() manipulate it? 

A:  Topic of much research; an 
introduction… 
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Goals for malloc() and free() 

• Maximizing throughput 
– Maximize number of requests completed per unit time 
– Need both malloc() and free() to be fast 

• Maximizing memory utilization 
– Minimize the amount of wasted memory 
– Need to minimize size of data structures 

 

• Strawman #1: free() does nothing 
– Good throughput, but poor memory utilization 

• Strawman #2: malloc() finds the “best fit” 
– Good memory utilization, but poor throughput 
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Keeping Track of Free Blocks 

• Maintain a list of free blocks of memory 
– Allocate memory from one of the blocks in the free list 
– Deallocate memory by returning the block to the free 

list 
– When necessary, call sbrk() to ask OS for additional 

memory, and create a new large block 

• Design questions 
– How to keep track of the free blocks in memory? 
– How to choose an appropriate free block to allocate? 
– What to do with the left-over space in a free block? 
– What to do with a block that has just been freed? 
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free free free 



Need to Minimize Fragmentation 

• Internal fragmentation 
– Allocated block is larger than malloc() requested 

– E.g., malloc() imposes a minimum size (e.g., 64 bytes) 

 

 

 

• External fragmentation 
– Enough free memory exists, but no block is big enough 

– E.g., malloc() asks for 128 contiguous bytes 
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Simple “K&R-Like” Approach 

• Memory allocated in multiples of a base size 
– E.g., 16 bytes, 32 bytes, 48 bytes, … 

• Linked list of free blocks 
– malloc() and free() walk through the list to allocate 

and deallocate 
• malloc() allocates the first big-enough block 

– To avoid sequencing further through the list 
• malloc() splits the free block 

– To allocate what is needed, and leave the rest available 
• Linked list is circular 

– To be able to continue where you left off 
• Linked list in the order the blocks appear in 

memory 
– To be able to “coalesce” neighboring free blocks 
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Allocate Memory in Multiples of Base Size 

• Allocate memory in multiples of a base size 
– Avoid maintaining very tiny free blocks 

– Align memory on size of largest data type (e.g., double)  

• Requested size is “rounded up” 
– Allocation in units of base_size 

– Round:(nbytes+base_size–1)/base_size 

• Example: 
– Suppose nbytes is 37 

– And base_size is 16 bytes 

– Then (37 + 16 – 1)/16 is 52/16 which rounds down to 3 
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Linked List of Free Blocks 

• Linked list of free blocks 

 

 
• malloc() allocates a big-enough block 

 

 

• free() adds newly-freed block to the list 
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Allocated 
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freed 



“First-Fit” Allocation 
• Handling a request for memory (e.g., malloc()) 

– Find a free block that satisfies the request 
– Must have a “size” that is big enough, or bigger 

• Simplest approach: first fit 
– Sequence through the linked list 
– Stop upon encountering a “big enough” free block 

• Example: request for 64 bytes 
– First-fit algorithm stops at the 128-byte block 
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48 32 128 64 256 

 



Splitting an Oversized Free Block 

• Simple case: perfect fit 
– malloc() asks for 128 bytes, free block has 128 bytes 

– Simply remove the free block from the list 

 

 

 

• Complex case: splitting the block 
– malloc() asks for 64 bytes, free block has 128 bytes 
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48 32 64 256 64 
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Circular Linked List of Free Blocks 

• Advantages of making free list a circular list 
– Any element in the list can be the beginning 

– Don’t have to handle the “end” of the list as special 

• Performance optimization 
– Make the head be where last block was found 

– More likely to find “big enough” blocks later in the 
list 
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Maintaining Free Blocks in Order 

• Keep list in order of increasing addresses 
– Makes it easier to coalesce adjacent free blocks 

• Though, makes calls to free() more expensive 
– Need to insert the newly-freed block in the right 

place 
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Coalescing Adjacent Free Blocks 

• When inserting a block in the free list 
– “Look left” and “look right” for neighboring free 

blocks 
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Conclusion 

• Elegant simplicity of K&R malloc() and free() 
– Simple header with pointer and size in each free block 

– Simple circular linked list of free blocks 

– Relatively small amount of code (~25 lines each) 

• Limitations of K&R functions in terms of 
efficiency 
– malloc() requires scanning the free list 

• To find the first free block that is big enough 

– free() requires scanning the free list 

• To find the location to insert the to-be-freed block 
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