
Dynamic Memory Management 

 
 
 

•1 



Goals of this Lecture 

• Help you learn about: 
– Dynamic memory management techniques 

• Garbage collection by the run-time system (Java) 

• Manual deallocation by the programmer (C, C++) 

– Design decisions for the “K&R” heap manager 
implementation 

• Circular linked-list of free blocks with a “first 
fit” allocation 

• Coalescing of adjacent blocks to create larger 
blocks 

•2 



 

 

Part 1: 

What do malloc() and free() do? 

•3 



Memory Layout: Heap 

•4 

char* string = "hello"; 

int iSize; 

 

char* f() 

{ 

    char* p; 

    scanf("%d", &iSize); 

    p = malloc(iSize); 

    return p; 

} 

Text 

BSS 

Stack 

Heap 

Needed when required memory size is not 

known before the program runs 

RoData 

Data 



Allocating & Deallocating Memory 

• Dynamically allocating memory 
– Programmer explicitly requests space in memory 

– Space is allocated dynamically on the heap 

– E.g., using “malloc” in C, and “new” in Java/C++ 

• Dynamically deallocating memory 
– Must reclaim or recycle memory that is never used again 

– To avoid (eventually) running out of memory 

• “Garbage” 
– Allocated block in heap that will not be accessed again  

– Can be reclaimed for later use by the program 

•5 



Option #1: Garbage Collection 
• Run-time system does garbage collection (Java) 

– Automatically determines objects that can’t be accessed 

– And then reclaims the resources used by these objects 

•6 

Object x = new Foo(); 

Object y = new Bar(); 

x = new Quux(); 

 

if (x.check_something()) { 

  x.do_something(y); 

} 

System.exit(0); 

Object Foo() 

is never used 

again! 



Challenges of Garbage Collection 

• Detecting the garbage is not always easy 
– “if (complex_function(y))  x = Quux();” 
– Run-time system cannot collect all of the garbage 

• Detecting the garbage introduces overhead 
– Keeping track of references to objects (e.g., counter) 
– Scanning through accessible objects to identify garbage 
– Sometimes walking through a large amount of memory 

• Cleaning the garbage leads to bursty delays 
– E.g., periodic scans of the objects to hunt for garbage 
– Leading to unpredictable “freeze” of the running program 
– Very problematic for real-time applications 
– … though good run-time systems avoid long freezes 

•7 



Option #2: Manual Deallocation 

• Programmer deallocates the memory (C and C++) 
– Manually determines which objects can’t be accessed 
– And then explicitly returns the resources to the heap 
– E.g., using “free” in C or “delete” in C++ 

• Advantages 
– Lower overhead 
– No unexpected “pauses”  
– More efficient use of memory 

• Disadvantages 
– More complex for the programmer 
– Subtle memory-related bugs 
– Security vulnerabilities in the (buggy) code 

•8 



Manual Deallocation Can Lead to Bugs 

• Dangling pointers 
– Programmer frees a region of memory  

– … but still has a pointer to it 

– Dereferencing pointer reads or writes nonsense 
values 

•9 

int main(void) { 
    char *p; 
    p = malloc(10); 
    … 
    free(p);  
    … 
    putchar(*p); 
} 

May print 

nonsense 

character. 



Manual Deallocation Can Lead to Bugs 

• Memory leak 
– Programmer neglects to free unused region of memory 
– So, the space can never be allocated again 
– Eventually may consume all of the available memory 

•10 

void f(void) { 
    char *s; 
    s = malloc(50); 
    return; 
} 
 
int main(void) { 
    while (1) f(); 
    return 0; 
} 

Eventually, 

malloc() returns 

NULL 



Manual Deallocation Can Lead to Bugs 

• Double free 
– Programmer mistakenly frees a region more than once 
– Leading to corruption of the heap data structure 
– … or premature destruction of a different object 

 

•11 

int main(void) { 

    char *p, *q; 

    p = malloc(10); 

    … 

    free(p);  

    q = malloc(10); 

    free(p); 

    … 

} 

Might free the 

space allocated 

to q! 



malloc() and free() Challenges 
• malloc() may ask for arbitrary number of bytes 
• Memory may be allocated & freed in different 

order 
• Cannot reorder requests to improve performance 

•12 

char *p1 = malloc(3); 

char *p2 = malloc(1); 

char *p3 = malloc(4); 

free(p2); 

char *p4 = malloc(6); 

free(p3); 

char *p5 = malloc(2); 

free(p1); 

free(p4); 

free(p5); 



Heap: Dynamic Memory 

   #include <stdlib.h> 
void *malloc(size_t size); 

void free(void *ptr); 

•13 

0 

0xffffffff 

Stack 

} 

Heap 

Heap 

char *p1 = malloc(3); 

char *p2 = malloc(1); 

char *p3 = malloc(4); 

free(p2); 

char *p4 = malloc(6); 

free(p3); 

char *p5 = malloc(2); 

free(p1); 

free(p4); 

free(p5); 

p1 



Heap: Dynamic Memory 

   #include <stdlib.h> 
void *malloc(size_t size); 

void free(void *ptr); 

•14 

0 

0xffffffff 

Stack 

} 

Heap 

Heap 

char *p1 = malloc(3); 

char *p2 = malloc(1); 

char *p3 = malloc(4); 

free(p2); 

char *p4 = malloc(6); 

free(p3); 

char *p5 = malloc(2); 

free(p1); 

free(p4); 

free(p5); 

p1 

p2 



Heap: Dynamic Memory 

   #include <stdlib.h> 
void *malloc(size_t size); 

void free(void *ptr); 

•15 

0 

0xffffffff 

Stack 

} 

Heap 

Heap 

char *p1 = malloc(3); 

char *p2 = malloc(1); 

char *p3 = malloc(4); 

free(p2); 

char *p4 = malloc(6); 

free(p3); 

char *p5 = malloc(2); 

free(p1); 

free(p4); 

free(p5); 

p1 

p2 
p3 



Heap: Dynamic Memory 

   #include <stdlib.h> 
void *malloc(size_t size); 

void free(void *ptr); 

•16 

0 

0xffffffff 

Stack 

} 

Heap 

Heap 

char *p1 = malloc(3); 

char *p2 = malloc(1); 

char *p3 = malloc(4); 

free(p2); 

char *p4 = malloc(6); 

free(p3); 

char *p5 = malloc(2); 

free(p1); 

free(p4); 

free(p5); 

p1 

p2 
p3 



Heap: Dynamic Memory 

   #include <stdlib.h> 
void *malloc(size_t size); 

void free(void *ptr); 

•17 

0 

0xffffffff 

Stack 

} 

Heap 

Heap 

char *p1 = malloc(3); 

char *p2 = malloc(1); 

char *p3 = malloc(4); 

free(p2); 

char *p4 = malloc(6); 

free(p3); 

char *p5 = malloc(2); 

free(p1); 

free(p4); 

free(p5); 

p1 

p2 
p3 

p4 



Heap: Dynamic Memory 

   #include <stdlib.h> 
void *malloc(size_t size); 

void free(void *ptr); 

•18 

0 

0xffffffff 

Stack 

} 

Heap 

Heap 

char *p1 = malloc(3); 

char *p2 = malloc(1); 

char *p3 = malloc(4); 

free(p2); 

char *p4 = malloc(6); 

free(p3); 

char *p5 = malloc(2); 

free(p1); 

free(p4); 

free(p5); 

p1 

p2 
p3 

p4 



Heap: Dynamic Memory 

   #include <stdlib.h> 
void *malloc(size_t size); 

void free(void *ptr); 

•19 

0 

0xffffffff 

Stack 

} 

Heap 

Heap 

char *p1 = malloc(3); 

char *p2 = malloc(1); 

char *p3 = malloc(4); 

free(p2); 

char *p4 = malloc(6); 

free(p3); 

char *p5 = malloc(2); 

free(p1); 

free(p4); 

free(p5); 

p1 

p5, p2 
p3 

p4 



Heap: Dynamic Memory 

   #include <stdlib.h> 
void *malloc(size_t size); 

void free(void *ptr); 

•20 

0 

0xffffffff 

Stack 

} 

Heap 

Heap 

char *p1 = malloc(3); 

char *p2 = malloc(1); 

char *p3 = malloc(4); 

free(p2); 

char *p4 = malloc(6); 

free(p3); 

char *p5 = malloc(2); 

free(p1); 

free(p4); 

free(p5); 

p1 

p5, p2 
p3 

p4 



Heap: Dynamic Memory 

   #include <stdlib.h> 
void *malloc(size_t size); 

void free(void *ptr); 

•21 

0 

0xffffffff 

Stack 

} 

Heap 

Heap 

char *p1 = malloc(3); 

char *p2 = malloc(1); 

char *p3 = malloc(4); 

free(p2); 

char *p4 = malloc(6); 

free(p3); 

char *p5 = malloc(2); 

free(p1); 

free(p4); 

free(p5); 

p1 

p5, p2 
p3 

p4 



Heap: Dynamic Memory 

   #include <stdlib.h> 
void *malloc(size_t size); 
void free(void *ptr); 

•22 

0 

0xffffffff 

Stack 

} 

Heap 

Heap 

char *p1 = malloc(3); 

char *p2 = malloc(1); 

char *p3 = malloc(4); 

free(p2); 

char *p4 = malloc(6); 

free(p3); 

char *p5 = malloc(2); 

free(p1); 

free(p4); 

free(p5); 

p1 

p5, p2 
p3 

p4 



 

 

Part 2: 

How do malloc() and free() work? 

•23 



The Program Break 

The program break marks the boundary 
between heap and stack 

 

 

 

 

Initially, stack has maximum size 

•24 

00000000 

Stack 

Heap 

FFFFFFFF 

program break 

00000000 

Stack 
FFFFFFFF 

program break 



Acquiring Heap Memory 

Q:  How does malloc() acquire heap 
memory? 

A:  Moves the program break downward via 
sbrk() or brk()system call 

void *sbrk(intptr_t increment); 
• Increment the program break by the specified amount. Calling the 

function with an increment of 0 returns the current location of  the 
program break.  Return the ptr to the previous program break if 
successful and -1 otherwise. 

int brk(void *newBreak); 
• Move the program break to the specified address.  Return 0 if 

successful and -1 otherwise. 

•25 



Using Heap Memory 

 

Q:  Having acquired heap memory, how do 
malloc() and free() manipulate it? 

A:  Topic of much research; an 
introduction… 

 

•26 



Goals for malloc() and free() 

• Maximizing throughput 
– Maximize number of requests completed per unit time 
– Need both malloc() and free() to be fast 

• Maximizing memory utilization 
– Minimize the amount of wasted memory 
– Need to minimize size of data structures 

 

• Strawman #1: free() does nothing 
– Good throughput, but poor memory utilization 

• Strawman #2: malloc() finds the “best fit” 
– Good memory utilization, but poor throughput 

•27 



Keeping Track of Free Blocks 

• Maintain a list of free blocks of memory 
– Allocate memory from one of the blocks in the free list 
– Deallocate memory by returning the block to the free 

list 
– When necessary, call sbrk() to ask OS for additional 

memory, and create a new large block 

• Design questions 
– How to keep track of the free blocks in memory? 
– How to choose an appropriate free block to allocate? 
– What to do with the left-over space in a free block? 
– What to do with a block that has just been freed? 

•28 

free free free 



Need to Minimize Fragmentation 

• Internal fragmentation 
– Allocated block is larger than malloc() requested 

– E.g., malloc() imposes a minimum size (e.g., 64 bytes) 

 

 

 

• External fragmentation 
– Enough free memory exists, but no block is big enough 

– E.g., malloc() asks for 128 contiguous bytes 

 

 
•29 

64 64 64 

33 



Simple “K&R-Like” Approach 

• Memory allocated in multiples of a base size 
– E.g., 16 bytes, 32 bytes, 48 bytes, … 

• Linked list of free blocks 
– malloc() and free() walk through the list to allocate 

and deallocate 
• malloc() allocates the first big-enough block 

– To avoid sequencing further through the list 
• malloc() splits the free block 

– To allocate what is needed, and leave the rest available 
• Linked list is circular 

– To be able to continue where you left off 
• Linked list in the order the blocks appear in 

memory 
– To be able to “coalesce” neighboring free blocks 

•30 



Allocate Memory in Multiples of Base Size 

• Allocate memory in multiples of a base size 
– Avoid maintaining very tiny free blocks 

– Align memory on size of largest data type (e.g., double)  

• Requested size is “rounded up” 
– Allocation in units of base_size 

– Round:(nbytes+base_size–1)/base_size 

• Example: 
– Suppose nbytes is 37 

– And base_size is 16 bytes 

– Then (37 + 16 – 1)/16 is 52/16 which rounds down to 3 

•31 
16 16 5 



Linked List of Free Blocks 

• Linked list of free blocks 

 

 
• malloc() allocates a big-enough block 

 

 

• free() adds newly-freed block to the list 

•32 

Allocated 

Newly 
freed 



“First-Fit” Allocation 
• Handling a request for memory (e.g., malloc()) 

– Find a free block that satisfies the request 
– Must have a “size” that is big enough, or bigger 

• Simplest approach: first fit 
– Sequence through the linked list 
– Stop upon encountering a “big enough” free block 

• Example: request for 64 bytes 
– First-fit algorithm stops at the 128-byte block 

 

•33 

48 32 128 64 256 

 



Splitting an Oversized Free Block 

• Simple case: perfect fit 
– malloc() asks for 128 bytes, free block has 128 bytes 

– Simply remove the free block from the list 

 

 

 

• Complex case: splitting the block 
– malloc() asks for 64 bytes, free block has 128 bytes 

•34 

48 32 128 64 256 

48 32 64 256 64 

64 



Circular Linked List of Free Blocks 

• Advantages of making free list a circular list 
– Any element in the list can be the beginning 

– Don’t have to handle the “end” of the list as special 

• Performance optimization 
– Make the head be where last block was found 

– More likely to find “big enough” blocks later in the 
list 

 

•35 

48 32 64 256 64 

new head 



Maintaining Free Blocks in Order 

• Keep list in order of increasing addresses 
– Makes it easier to coalesce adjacent free blocks 

• Though, makes calls to free() more expensive 
– Need to insert the newly-freed block in the right 

place 

•36 

In 

use 

In 

use 

In 

use 

Free list 



Coalescing Adjacent Free Blocks 

• When inserting a block in the free list 
– “Look left” and “look right” for neighboring free 

blocks 

•37 

In 

use 

In 

use 

In 

use 

In 

use 

In 

use 

“Left” “Right” 



Conclusion 

• Elegant simplicity of K&R malloc() and free() 
– Simple header with pointer and size in each free block 

– Simple circular linked list of free blocks 

– Relatively small amount of code (~25 lines each) 

• Limitations of K&R functions in terms of 
efficiency 
– malloc() requires scanning the free list 

• To find the first free block that is big enough 

– free() requires scanning the free list 

• To find the location to insert the to-be-freed block 

•38 


