
Scope and Blocks

•1

Goals of this Lecture

• Help you learn:
– Leftover from the last lecture

– Local vs. global variables, scope, and blocks

• Why?
– Knowing lifetime and visibility of identifiers is

crucial in writing correct code

•2

Local Variables

• A variable declared in the body of a function
is said to be local to the function:

 int sum_digits(int n)

 {
 int sum = 0; /* local variable */

 while (n > 0) {

 sum += n % 10;

 n /= 10;
 }

 return sum;
 }

 •3

Local Variables

• Default properties of local variables:
– Automatic storage duration. Storage is

“automatically” allocated when the enclosing
function is called and deallocated when the
function returns.

– Block scope. A local variable is visible from
its point of declaration to the end of the
enclosing function body.

•4

Local Variables

• Since C99 doesn’t require variable declarations to
come at the beginning of a function, it’s possible for a
local variable to have a very small scope:

•5

Static Local Variables

• Including static in the declaration of a local
variable causes it to have static storage duration.

• A variable with static storage duration has a
permanent storage location, so it retains its value
throughout the execution of the program.

• Example:
 void f(void)
 {
 static int i; /* static local variable */
 …
 }

• A static local variable still has block scope, so it’s
not visible to other functions.

•6

Function Parameters

• Parameters have the same properties—
automatic storage duration and block scope—
as local variables.

• Each parameter is initialized automatically
when a function is called (by being assigned
the value of the corresponding argument).

•7

External Variables

• Passing arguments is one way to transmit
information to a function.

• Functions can also communicate through
external variables—variables that are
declared outside the body of any function.

• External variables are sometimes known as
global variables.

•8

External Variables

• Properties of external variables:
– Static storage duration

– File scope

• Having file scope means that an external
variable is visible from its point of declaration
to the end of the enclosing file.

•9

Example: Using External Variables

to Implement a Stack

• To illustrate how external variables might be
used, let’s look at a data structure known as
a stack.

• A stack, like an array, can store multiple
data items of the same type.

• The operations on a stack are limited:
– Push an item (add it to one end—the “stack top”)
– Pop an item (remove it from the same end)

• Examining or modifying an item that’s not
at the top of the stack is forbidden.

•10

Example: Using External Variables

to Implement a Stack

• One way to implement a stack in C is to store
its items in an array, which we’ll call
contents.

• A separate integer variable named top
marks the position of the stack top.
– When the stack is empty, top has the value 0.

• To push an item: Store it in contents at the
position indicated by top, then increment
top.

• To pop an item: Decrement top, then use it
as an index into contents to fetch the item
that’s being popped.

•11

Example: Using External Variables

to Implement a Stack

• The following program fragment declares
the contents and top variables for a
stack.

• It also provides a set of functions that
represent stack operations.

• All five functions need access to the top
variable, and two functions need access to
contents, so contents and top will be
external.

•12

Example: Using External Variables

to Implement a Stack
 #include <stdbool.h> /* C99 only */

 #define STACK_SIZE 100

 /* external variables */

 int contents[STACK_SIZE];

 int top = 0;

 void make_empty(void)

 {
 top = 0;
 }

 bool is_empty(void)

 {
 return top == 0;
 }

•13

Example: Using External Variables

to Implement a Stack
 bool is_full(void)

 {
 return top == STACK_SIZE;
 }

 void push(int i)

 {
 if (is_full())

 stack_overflow();

 else

 contents[top++] = i;
 }

 int pop(void)

 {
 if (is_empty())

 stack_underflow();

 else

 return contents[--top];
 }

•14

Pros and Cons of External Variables

• External variables are convenient when many functi
ons must share a variable or when a few functions
share a large number of variables.

• In most cases, it’s better for functions to communi
cate through parameters rather than by sharing va
riables:
– If we change an external variable during program mainten

ance (by altering its type, say), we’ll need to check every f
unction in the same file to see how the change affects it.

– If an external variable is assigned an incorrect value, it m
ay be difficult to identify the guilty function.

– Functions that rely on external variables are hard to reus
e in other programs.

•15

Pros and Cons of External Variables

• Making variables external when they should be local can lead to
some rather frustrating bugs.

• Code that is supposed to display a 10 × 10 arrangement of
asterisks:

 int i;

 void print_one_row(void)
 {
 for (i = 1; i <= 10; i++)

 printf("*");
 }

 void print_all_rows(void)
 {
 for (i = 1; i <= 10; i++) {
 print_one_row();

 printf("\n");
 }
 }

• Instead of printing 10 rows, print_all_rows prints only one.

•16

Blocks

• We encountered compound statements of the
form:

 { statements }

• C allows compound statements to contain
declarations as well as statements:

 { declarations statements }

• This kind of compound statement is called a
block.

•17

Blocks

• Example of a block:
 if (i > j) {

 /* swap values of i and j */

 int temp = i;

 i = j;

 j = temp;

 }

•18

Blocks

• By default, the storage duration of a variable
declared in a block is automatic: storage for
the variable is allocated when the block is
entered and deallocated when the block is
exited.

• The variable has block scope; it can’t be
referenced outside the block.

• A variable that belongs to a block can be
declared static to give it static storage
duration.

•19

Blocks

• The body of a function is a block.
• Blocks are also useful inside a function body

when we need variables for temporary use.
• Advantages of declaring temporary variables in

blocks:
– Avoids cluttering declarations at the beginning of

the function body with variables that are used only
briefly.

– Reduces name conflicts.

• C99 allows variables to be declared anywhere
within a block.

•20

Scope

• Scope defines the visible area of a given identifier

• C’s scope rules enable the programmer (and the
compiler) to determine which meaning is relevant at a
given point in the program.

• The most important scope rule: When a declaration
inside a block names an identifier that’s already
visible, the new declaration temporarily “hides” the
old one, and the identifier takes on a new meaning.

• At the end of the block, the identifier regains its old
meaning.

•21

•22

