
Arrays, strings, and functions

Goals of this Lecture

• Helps you learn about:

– Arrays and strings

– Functions
• Recursive functions

– Some pointer concept, but we will defer
the details to next lecture

• Subset of what the book covers
– Important to read the book chapters

•2

The Array Data Type

• Definition
– Data structure containing a number of data values

– Data values = elements

• Array declaration (one-dimensional array)

• Examples

•3

TYPE Array-name[size];

#define N 20

int a[10]; /* array of 10 integers a[0]…a[9] */

int a[N]; /* array of N integers: a[0]…a[N-1] */

char msg[10]; /* array of 10 chars */

char *msg[N]; /* array of N char pointers */

Array Indexing

• The elements of an array of length n are indexed from
0 to n – 1.

• Expressions of the form a[i] are lvalues, so they can
be used in the same way as ordinary variables:
 a[0] = 1;

 printf("%d\n", a[5]);

 ++a[i];

• In general, if an array contains elements of type T, then
each element of the array is treated as if it were a
variable of type T.

•4

Initialization Examples

• int a[5] = {1, 2, 3, 4, 5};

– {1, 2, 3, 4, 5} is called array initializer
– a[0]=1, a[1]=2, a[2]=3, a[3]=4, a[4]=5

• int a[5] = {1, 2, 3};

– a[0]=1, a[1]=2, a[2]=3, a[3]=0, a[4]=0

– a[N] = {0}; /* set a[0]…a[N-1]to 0 */
– a[N] = {}; /* illegal, at least one init value needed */

• int a[] = {1,2,3,4,5};

– int a[5] = {1,2,3,4,5};

• Designated initializers (C99)

– a[50] = {[2] = 29, [9] = 7, [3] = 3*7 };

– Rest of the elements are assigned 0

•5

Type and sizeof

• int a[5];

– What is the type of a?
• The type of a is an integer array

– What is the type of a[3]?
• The type of a[3] is integer

– sizeof(array) returns # of memory bytes for array
• sizeof(a), sizeof(a[3])

•6

#define N 10

#define SIZEOFARRAY(x) (sizeof(x)/sizeof(x[0]))

…

int a[N];

for (i = 0; i < SIZEOFARRAY(x); i++)

 a[i] = 0;

Multidimensional Arrays

• An array may have any number of dimensions.

• The following declaration creates a two-dimensional
array (a matrix, in mathematical terminology):

 int m[5][9];

– m has 5 rows and 9 columns. Both rows and columns are
indexed from 0:

•7

Multidimensional Arrays

• To access the element of m in row i, column j, we
must write m[i][j].

• The expression m[i] designates row i of m, and
m[i][j] then selects element j in this row.

• Resist the temptation to write m[i,j] instead of
m[i][j].

• C treats the comma as an operator in this context,
so m[i,j] is the same as m[j].

•8

Multidimensional Arrays
• Although we visualize two-dimensional arrays as

tables, that’s not the way they’re actually stored in
computer memory.

• C stores arrays in row-major order, with row 0
first, then row 1, and so forth.

• How the m array is stored:

•9

Initializing a Multidimensional Array

• int a[2][5]={{1,2,3},{6,7,8,9,10}};

– a[0][0]=1, a[0][3]=0, a[0][4]=0, a[1][3]=9

• C99 designated initializers
– int a[2][5] = {[0][0] = 1, [1][1] = 1};

• C99 variable-length arrays

•10

int n;

…

scanf(“%d”, &n);

…

int a[n]; /* size of array depends on n */

Constant Arrays

• An array can be made “constant” by starting its
declaration with the word const:

 const char hex_chars[] =

 {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',

 'A', 'B', 'C', 'D', 'E', 'F'};

• An array that’s been declared const should
not be modified by the program.

 hex_chars[0] = ‘k’; /* compile error*/

•11

Constant Arrays

• Advantages of declaring an array to be const:
– Documents that the program won’t change the array.

– Helps the compiler catch errors.

• const isn’t limited to arrays, but it’s
particularly useful in array declarations.
– Example: ready-only table (log[x], for integer x)

•12

Character Array

• char x[4] = {‘a’, ‘b’, ‘c’, ‘\0’};

– x[0]=‘a’, x[1]=‘b’, x[2]=‘c’, x[3]=‘\0’

– char x[4] = {‘a’, ‘b’, ‘c’};

• x[3]=0 or x[3]=‘\0’

– char x[] = {‘a’, ‘b’, ‘c’, ‘\0’};

• []: compiler determines the size

– char x[4] = “abc”;

• “abc” is not a string literal when used as init value for a char
array. “abc” is abbreviation for {‘a’,‘b’,’c’,‘\0’}.

– char x[] = “abc”; /* same as char x[4]=“abc”; */

•13

String Literals

• A string literal is a sequence of characters
enclosed within double quotes:

 "When you come to a fork in the road, take it.“

• String literals may contain escape sequences.

• For example, each \n character in the string
 "Candy\nIs dandy\nBut liquor\nIs quicker.\n --Ogden

Nash\n"

 causes the cursor to advance to the next line:
 Candy
 Is dandy
 But liquor
 Is quicker.
 --Ogden Nash

•14

How String Literals are Stored

• When a C compiler encounters a string literal
of length n in a program, it sets aside n + 1
bytes of memory for the string.

– This memory will contain the characters in the

string, plus one extra character—the null
character—to mark the end of the string.

– The null character is a byte whose bits are all
zero, so it’s represented by the \0 escape
sequence.

•15

How String Literals are Stored

• The string literal "abc" is stored as an array
of four characters:

• The string "" is stored as a single null

character:

• What about “abc\0”?
– sizeof(“abc\0”)?
– strlen(“abc\0”)?

•16

Operations on String Literals

• We can use a string literal wherever C allows
a char * pointer:

 char *p;
 p = "abc";

• This assignment makes p point to the first
character of the string.
– “abc” evaluates to the address of the first

character of the string

•17

Operations on String Literals

• String literals can be subscripted:
 char ch;

 ch = "abc"[1];

 The new value of ch will be the letter b.
 char *p = “abc”;
ch = p[1]; /* ch = *(p+1); */

• A function that converts a number between 0

and 15 into the equivalent hex digit:
 char digit_to_hex_char(int digit)
 {
 return "0123456789ABCDEF"[digit];
 }

•18

Initializing a String Variable

• A string variable can be initialized at the same time it’s
declared:

 char date1[8] = "June 14";

• The compiler will automatically add a null character so that
date1 can be used as a string:

• "June 14" is not a string literal in this context.
• Instead, C views it as an abbreviation for an array

initializer. (slide 13)

•19

Initializing a String Variable

• If the initializer is too short to fill the
string variable, the compiler adds extra
null characters:

 char date2[9] = "June 14";

 Appearance of date2:

•20

Initializing a String Variable

• An initializer for a string variable can’t
be longer than the variable, but it can
be the same length:

 char date3[7] = "June 14";

• There’s no room for the null character,
so the compiler makes no attempt to
store one:

•21

Initializing a String Variable

• The declaration of a string variable may omit its
length, in which case the compiler computes it:

 char date4[] = "June 14";

• The compiler sets aside eight characters for
date4, enough to store the characters in "June
14" plus a null character.

• Omitting the length of a string variable is
especially useful if the initializer is long, since
computing the length by hand is error-prone.

•22

Character Arrays versus Character Pointers

• The declaration char date[] = "June 14";
 declares date to be an array,

• The similar-looking char *date = "June 14";
 declares date to be a pointer.

• Thanks to the close relationship between

arrays and pointers, either version can be
used as a string.

•23

Character Arrays versus Character Pointers

• However, there are significant
differences between the two versions
of date.
– In the array version, the characters stored

in date can be modified. In the pointer
version, date points to a string literal that
shouldn’t be modified.

– In the array version, date is an array name.
In the pointer version, date is a variable
that can point to other strings.

•24

Character Arrays versus Character Pointers

• The declaration char *p; does not allocate space for
a string.

• Before we can use p as a string, it must point to an

array of characters.

• One possibility is to make p point to a string variable:
 char str[STR_LEN+1], *p;

 p = str;

• Another possibility is to make p point to a dynamically
allocated string.

•25

Functions

• Function: a series of statements that have been
grouped together and given a name.
– Each function is a small program
– Building blocks of larger C program

• Function definition

– Function may not return arrays, but can return others.
– void return type indicates it does not return a value.
– If the return type is omitted in C89, the function is

assumed to return a value of type int.
– In C99, omitting the return type is illegal.

 •26

return-type function-name (parameters)
{

 declarations

 statements

}

Examples

• Calculating the average of two double values

• See if n is a prime number

•27

double average(double a, double b)

{

 return (a + b) / 2;

}

int is_prime(int n)

{

 int divisor;

 if (n <= 1) return FALSE;

 for (divisor = 2; divisor * divisor <= n; divisor++)

 if (n % divisor == 0)

 return FALSE;

 return TRUE;

}

Function Calls

• Function name followed by a list of arguments in
parentheses

• What happens under the hood?
– Before executing the function body, parameters are assigned

with the passed arguments

– a = x; b = y; /* executed before executing other statements */

•28

double average(double a, double b)

{

 return (a + b) / 2;

}

…

double avg = average(x, y);

Function declarations

• Before function call, the compiler needs to know
the type of the function

•29

return-type function-name (params);

double average(double a, double b); /* declaration */

int main(void)

{

 double x, y;

 scanf(“%lf %lf”, &x, &y);

 printf(“Average of %g and %g: %g\n”, x, y, average(x,y));

 return 0;

}

double average(double a, double b)

{

 return (a + b) / 2;

}

Recursive Function

• Function that calls itself in its body
• Example: factorial of n (or n!)

• fact(3);
– return 3 * fact(2)
– return 3 * (2 * fact(1))
– return 3 * (2 * 1)

•30

int fact(int n)

{

 if (n <= 1)

 return 1;

 return n * fact(n-1);

}

Not correct
for large or
negative n

Recursive Function

• Useful in divide-and-conquer
– Divide the work into smaller pieces
– Smaller pieces are handled with the same algorithm

• Examples
– factorial of n: fact(n) = n * fact(n-1)

• fact(n-1) is solved in the same way

– Quicksort of n values
• Pick e among n values
• Partition the values into two groups, A and B
• All values in A are less than or equal to e
• All values in B are larger than or equal to e
• Run Quicksort for A and Quicksort for B

•31

Summary

•32

• Array: a collection of elements

– Initialization, sizeof(), multi-dimensional

– const array, char array

• Function

– Building block of a program

– Declaration needed before function call

– Recursive function: calls itself in the body

