
KAIST

EE 209: Introduction to Programming Systems

Pointer-Related Operators

Key

p, p1, p2 Pointer variables

i An integral expression

Operators Meaningful for Any Pointer Variable

Dereference Operator

*p The contents of the memory referenced by p.

Equality and Inequality Relational Operators

p1 == p2 1 if p1 is equal to p2, and 0 otherwise.

p1 != p2 1 if p1 is unequal to p2, and 0 otherwise.

Assignment Operator

p1 = p2 Side effect: Assign p2 to p1. The new value of p1.

Operators Meaningful for Pointers that Reference Array Elements

Arithmetic Operators

p + i The address of the ith element after the one referenced by p.

i + p The address of the ith element after the one referenced by p.

p – i The address of the ith element before the one referenced by p.

p++ Side effect: Increment p to point to the next element.

The previous value of p.

++p Side effect: Increment p to point to the next element.

The new value of p.

p-- Side effect: Decrement p to point to the previous element.

The previous value of p.

--p Side effect: Decrement p to point to the previous element.

The new value of p.

Arithmetic Operators

p1 - p2 The "span" of p1 and p2.

Relational Operators

p1 < p2 1 if p1 is less than p2, and 0 otherwise.

p1 <= p2 1 if p1 is less than or equal to p2, and 0 otherwise.

p1 > p2 1 if p1 is greater than p2, and 0 otherwise.

p1 >= p2 1 if p1 is greater than or equal to p2, and 0 otherwise.

Assignment Operators

p += i Side effect: Increment p so its value is the address of

the ith element after the one referenced by p.

The new value of p.

p -= i Side effect: Decrement p so its value is the address of

the ith element before the one referenced by p.

The new value of p.

Disallowed

p1 + p2

i – p

i += p

i -= p

p == i

Array Subscripting Operator

p[i] *(p + i), that is, the contents of memory at the address

that is i elements after the address referenced by p.

KAIST

EE 209: Programming Structures for EE

Kinds of Function Parameters rd

Kind of

Parameter

Example Implementation C Construct

in

IntMath_gcd() (both params)

call by value

ordinary parameter

out

quorem() (3
rd

param)

scanf() (2
nd

 param)

call by reference

pointer parameter

inout

swap() (both params)

call by reference

pointer parameter

KAIST

EE 209: Programming Structures for EE

The "const" Keyword with Pointers

Pointer to Constant

1: const int i1 = 100;

2: const int i2 = 200;

3: const int *pi = &i1; /* pi is a "pointer to a constant." */

4: i1 = 300; /* Error. Cannot change i1. */

5: i2 = 400; /* Error. Cannot change i2. */

6: pi = &i2; /* OK. */

7: *pi = 500; /* Error. Cannot change *pi. */

Constant Pointer

1: int i1 = 100;

2: int i2 = 200;

3: int *const pi = &i1; /* pi is a "constant pointer." */

4: i1 = 300; /* OK. */

5: i2 = 400; /* OK. */

6: pi = &i2; /* Error. Cannot change pi. */

7: *pi = 500; /* OK. */

Constant Pointer to Constant

1: const int i1 = 100;

2: const int i2 = 200;

3: const int *const pi = &i1; /* pi is a "constant pointer to a constant." */

4: i1 = 300; /* Error. Cannot change i1. */

5: i2 = 400; /* Error. Cannot change i2. */

6: pi = &i2; /* Error. Cannot change pi. */

7: *pi = 500; /* Error. Cannot change *pi. */

Disallowed Mismatch

1: const int i1 = 100;

2: const int i2 = 200;

3: int *pi = &i1; /* Error. Subversive. Subsequently changing *pi would change i1. */

Disallowed Mismatch in Function Calls

1: void f(int *pi)

2: {

3: ...

4: }

...

5: const int i1 = 5;

6: const int *pi2 = &i1;

7: f(pi2); /* Error. Subversive. If f() changes *pi, then *pi2 also would change. */

Allowed Mismatch

1: int i1 = 100;

2: int i2 = 200;

3: const int *pi = &i1; /* OK, even though subsequently changing i1 would change *pi. */

4: i1 = 300; /* OK. Also changes *pi. */

5: i2 = 400; /* OK. */

6: pi = &i2; /* OK, even though subsequently changing i2 would change *pi. */

7: *pi = 500; /* Error. Cannot change *pi. */

Allowed Mismatch in Function Calls

1: void f(const int *pi)

2: {

3: ...

4: }

...

5: int i1 = 5;

6: int *pi2 = &i1;

7: f(pi2); /* OK. *pi2 is protected against accidental change by f(). */

KAIST

EE 209: Programming Structures for EE

Manipulating C Strings

String

Operation

String in

Stack

String in

Rodata Section

Allocating

memory for a

string

{

char acStr[5];

...

}

{

...

...

...

}

Initializing a

string

{

char acStr1[3] = {'h', 'i', '\0'};

char acStr2[] = {'h', 'i', '\0'};

char acStr3[3] = "hi";

char acStr4[] = "hi";

char acStr5[2] = "hi"; /* truncation */

char acStr6[10] = "hi";

...

}

{

...

..."hi"...

...

}

Computing

the length of a

string

{

char acStr[10] = "hello";

... strlen(acStr) ...

/* Evaluates to 5 */

... sizeof(acStr) ...

/* Evaluates to 10 */

}

{

char *pcStr = "hello";

... strlen(pcStr) ...

/* Evaluates to 5 */

... sizeof(pcStr) ...

/* Evaluates to 4 */

}

Changing the

characters of

a string

{

char acStr[10] = "hi";

acStr = "bye"; /* compiletime error */

acStr[0] = 'b';

acStr[1] = 'y';

acStr[2] = 'e';

acStr[3] = '\0';

strcpy(acStr, "bye");

/* Danger of memory corruption. */

}

(Runtime error to attempt to

change the characters of a

string that resides in the

rodata section)

Concatenatin

g characters

onto a string

{

char acStr[10] = "hi";

acStr += "bye"; /* compiletime error */

acStr[2] = 'b';

acStr[3] = 'y';

acStr[4] = 'e';

acStr[5] = '\0';

strcat(acStr, "bye");

/* Danger of memory corruption. */

}

(Runtime error to attempt to

change the characters of a

string that resides in the

rodata section)

Comparing

one string

with another

{

char acStr1[] = "hi";

char acStr2[] = "bye";

if (acStr1 < acStr2) ...

/* Legal, but compares addresses!!! */

if (strcmp(acStr1, acStr2) < 0) ...

/* Compares strings */

}

(Same as string in stack)

Reading a

string

{

char acStr[10];

iConvCount = scanf("%s", acStr);

/* Reads a word as a string.

Grave danger of memory corruption. */

iRet = gets(acStr);

/* Reads a line as a string,

removing the \n character.

Grave danger of memory corruption. */

iRet = fgets(acStr, 10, stdin);

/* Reads a line as a string,

retaining the \n character. */

}

(Runtime error to attempt to

change the characters of a

string that resides in the

rodata section)

Writing a

string

{

char acStr[] = "hi";

iCharCount = printf("%s", acStr);

/* Writes a string. */

iSuccessful = puts(acStr);

/* Writes a string, appending a \n

character. */

iSuccessful = fputs(acStr, stdout);

/* Writes a string. */

}

(Same as string in stack)

Converting a

string to

another type

{

char acStr[] = "123";

int i;

long l;

double d;

iConvCount = sscanf(acStr, "%d", &i);

i = atoi(acStr);

l = atol(acStr);

d = atof(acStr);

}

(Same as string in stack)

Converting

another type

to a string

{

char acStr[10];

int i = 123;

iCharCount = sprintf(acStr, "%d", i);

/* Danger of memory corruption. */

}

(Runtime error to attempt to

change the characters of a

string that resides in the

rodata section)

Original Copyright ⓒ 2008 by Robert M. Dondero, Jr. Modified by Shinae Woo

