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EE 209: Introduction to Programming Systems  

Pointer-Related Operators  

 
Key  
 

p, p1, p2  Pointer variables  

 

i   An integral expression  

 

 

Operators Meaningful for Any Pointer Variable  

 

Dereference Operator  
 

*p The contents of the memory referenced by p.  

 

Equality and Inequality Relational Operators  
 

p1 == p2 1 if p1 is equal to p2, and 0 otherwise.  

p1 != p2 1 if p1 is unequal to p2, and 0 otherwise.  

 

Assignment Operator  
 

p1 = p2 Side effect: Assign p2 to p1. The new value of p1.  

 

 

Operators Meaningful for Pointers that Reference Array Elements  

 

Arithmetic Operators  
 

p + i   The address of the ith element after the one referenced by p.  

i + p   The address of the ith element after the one referenced by p.  

p – i   The address of the ith element before the one referenced by p.  

p++   Side effect: Increment p to point to the next element.  

The previous value of p.  

++p   Side effect: Increment p to point to the next element.  

The new value of p.  

p--   Side effect: Decrement p to point to the previous element.  

The previous value of p.  

--p   Side effect: Decrement p to point to the previous element.  

The new value of p.  

 

Arithmetic Operators  
 

p1 - p2 The "span" of p1 and p2.  

 

Relational Operators  
 

p1 < p2 1 if p1 is less than p2, and 0 otherwise.  

p1 <= p2 1 if p1 is less than or equal to p2, and 0 otherwise.  

p1 > p2 1 if p1 is greater than p2, and 0 otherwise.  

p1 >= p2 1 if p1 is greater than or equal to p2, and 0 otherwise. 

 

 

 

 



Assignment Operators  
 

p += i   Side effect: Increment p so its value is the address of  

the ith element after the one referenced by p.  

The new value of p.  

p -= i   Side effect: Decrement p so its value is the address of  

the ith element before the one referenced by p.  

The new value of p.  

 

Disallowed  
 

p1 + p2  

i – p  

i += p  

i -= p  

p == i  

 

Array Subscripting Operator  
 

p[i]   *(p + i), that is, the contents of memory at the address  

that is i elements after the address referenced by p. 
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Kinds of Function Parameters rd 

  

 

 
Kind of 

Parameter  

Example  Implementation  C Construct  

 

in  

 

IntMath_gcd() (both params) 

  

 

call by value  

 

ordinary parameter  

 

out  

 

quorem() (3
rd 

param) 
 

scanf() (2
nd

 param)  

 

 

call by reference  

 

pointer parameter  

 

inout  

 

swap() (both params)  

 

 

call by reference  

 

pointer parameter  
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The "const" Keyword with Pointers  

 
Pointer to Constant  
 

1: const int i1 = 100;  

2: const int i2 = 200;  

3: const int *pi = &i1;   /* pi is a "pointer to a constant." */  

4: i1 = 300;    /* Error. Cannot change i1. */  

5: i2 = 400;    /* Error. Cannot change i2. */  

6: pi = &i2;    /* OK. */  

7: *pi = 500;    /* Error. Cannot change *pi. */  

 

Constant Pointer  
 

1: int i1 = 100;  

2: int i2 = 200;  

3: int *const pi = &i1;   /* pi is a "constant pointer." */  

4: i1 = 300;    /* OK. */  

5: i2 = 400;    /* OK. */  

6: pi = &i2;    /* Error. Cannot change pi. */  

7: *pi = 500;    /* OK. */  

 

Constant Pointer to Constant  
 

1: const int i1 = 100;  

2: const int i2 = 200;  

3: const int *const pi = &i1;  /* pi is a "constant pointer to a constant." */  

4: i1 = 300;    /* Error. Cannot change i1. */  

5: i2 = 400;    /* Error. Cannot change i2. */  

6: pi = &i2;    /* Error. Cannot change pi. */  

7: *pi = 500;    /* Error. Cannot change *pi. */ 

 

Disallowed Mismatch  
 

1: const int i1 = 100;  

2: const int i2 = 200;  

3: int *pi = &i1;  /* Error. Subversive. Subsequently changing *pi would change i1. */  

 

Disallowed Mismatch in Function Calls  
 

1: void f(int *pi)  

2: {  

3: ...  

4: }  

...  

5: const int i1 = 5;  

6: const int *pi2 = &i1;  

7: f(pi2);  /* Error. Subversive. If f() changes *pi, then *pi2 also would change. */  

 

Allowed Mismatch  
 

1: int i1 = 100;  

2: int i2 = 200;  

3: const int *pi = &i1;  /* OK, even though subsequently changing i1 would change *pi. */  

4: i1 = 300;   /* OK. Also changes *pi. */  

5: i2 = 400;   /* OK. */  

6: pi = &i2;   /* OK, even though subsequently changing i2 would change *pi. */  

7: *pi = 500;   /* Error. Cannot change *pi. */  

 

 

 

 



Allowed Mismatch in Function Calls  
 

1: void f(const int *pi)  

2: {  

3: ...  

4: }  

...  

5: int i1 = 5;  

6: int *pi2 = &i1;  

7: f(pi2);   /* OK. *pi2 is protected against accidental change by f(). */ 
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Manipulating C Strings 

  
String 

Operation  

String in  

Stack  

String in  

Rodata Section  

Allocating 

memory for a 

string  

{  

char acStr[5];  

...  

}  

{  

...  

...  

...  

}  

Initializing a 

string  

{  

char acStr1[3] = {'h', 'i', '\0'};  

char acStr2[] = {'h', 'i', '\0'};  

char acStr3[3] = "hi";  

char acStr4[] = "hi";  

char acStr5[2] = "hi"; /* truncation */  

char acStr6[10] = "hi";  

...  

}  

{  

...  

..."hi"...  

...  

}  

Computing 

the length of a 

string  

{  

char acStr[10] = "hello"; 

  

... strlen(acStr) ...  

/* Evaluates to 5 */  

 

... sizeof(acStr) ...  

/* Evaluates to 10 */  

}  

{  

char *pcStr = "hello";  

... strlen(pcStr) ...  

/* Evaluates to 5 */  

... sizeof(pcStr) ...  

/* Evaluates to 4 */  

}  

Changing the 

characters of 

a string  

{  

char acStr[10] = "hi";  

 

acStr = "bye"; /* compiletime error */ 

  

acStr[0] = 'b';  

acStr[1] = 'y';  

acStr[2] = 'e';  

acStr[3] = '\0'; 

  

strcpy(acStr, "bye");  

/* Danger of memory corruption. */  

}  

(Runtime error to attempt to 

change the characters of a 

string that resides in the 

rodata section)  

Concatenatin

g characters 

onto a string  

{  

char acStr[10] = "hi"; 

  

acStr += "bye"; /* compiletime error */  

 

acStr[2] = 'b';  

acStr[3] = 'y';  

acStr[4] = 'e';  

acStr[5] = '\0';  

strcat(acStr, "bye");  

/* Danger of memory corruption. */  

}  

(Runtime error to attempt to 

change the characters of a 

string that resides in the 

rodata section)  

 

 

 

 

 



 

Comparing 

one string 

with another  

{  

char acStr1[] = "hi";  

char acStr2[] = "bye"; 

  

if (acStr1 < acStr2) ...  

/* Legal, but compares addresses!!! */  

 

if (strcmp(acStr1, acStr2) < 0) ...  

/* Compares strings */  

}  

(Same as string in stack)  

Reading a 

string  

{  

char acStr[10]; 

  

iConvCount = scanf("%s", acStr);  

/* Reads a word as a string.  

Grave danger of memory corruption. */  

 

iRet = gets(acStr);  

/* Reads a line as a string,  

removing the \n character.  

Grave danger of memory corruption. */  

 

iRet = fgets(acStr, 10, stdin);  

/* Reads a line as a string,  

retaining the \n character. */  

}  

(Runtime error to attempt to 

change the characters of a 

string that resides in the 

rodata section)  

Writing a 

string  

{  

char acStr[] = "hi";  

 

iCharCount = printf("%s", acStr);  

/* Writes a string. */  

 

iSuccessful = puts(acStr);  

/* Writes a string, appending a \n  

character. */  

 

iSuccessful = fputs(acStr, stdout);  

/* Writes a string. */  

}  

(Same as string in stack)  

Converting a 

string to 

another type  

{  

char acStr[] = "123";  

int i;  

long l;  

double d;  

iConvCount = sscanf(acStr, "%d", &i);  

i = atoi(acStr);  

l = atol(acStr);  

d = atof(acStr);  

}  

(Same as string in stack)  

Converting 

another type 

to a string  

{  

char acStr[10];  

int i = 123; 

  

iCharCount = sprintf(acStr, "%d", i);  

/* Danger of memory corruption. */  

}  

(Runtime error to attempt to 

change the characters of a 

string that resides in the 

rodata section)  
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