
KAIST

EE209: Programming Structures for EE

C Primitive Data Types

--

Type: int

Description: A (positive or negative) integer.

Size: System dependent. Usually either 2 or 4 bytes.

Example Variable Declarations:

int iFirst;

int iSecond, iThird;

signed int iFourth;

Example Literals (assuming size is 4 bytes):

C Literal Binary Representation Note

123 00000000 00000000 00000000 01111011 decimal form

-123 11111111 11111111 11111111 10000101 negative form

2147483647 01111111 11111111 11111111 11111111 largest

-2147483648 10000000 00000000 00000000 00000000 smallest

0173 00000000 00000000 00000000 01111011 octal form

0x7B 00000000 00000000 00000000 01111011 hexadecimal form

--

Type: unsigned int

Description: A non-negative integer.

Size: System dependent. Usually either 2 or 4 bytes. sizeof(unsigned int) == sizeof(int).

Example Variable Declarations:

unsigned int uiFirst;

unsigned int uiSecond, uiThird;

Example Literals (assuming size is 4 bytes):

C Literal Binary Representation Note

123U 00000000 00000000 00000000 01111011 decimal form

4294967295U 11111111 11111111 11111111 11111111 largest

0U 00000000 00000000 00000000 00000000 smallest

0173U 00000000 00000000 00000000 01111011 octal form

0x7BU 00000000 00000000 00000000 01111011 hexadecimal form

--

Type: long

Description: A (positive or negative) integer.

Size: System dependent. Usually 4 bytes. sizeof(long) >= sizeof(int).

Example Variable Declarations:

long lFirst;

long lSecond, lThird;

long int lFourth;

signed long lFifth;

signed long int lSixth;

Example Literals (assuming size is 4 bytes):

C Literal Binary Representation Note

123L 00000000 00000000 00000000 01111011 decimal form

-123L 11111111 11111111 11111111 10000101 negative form

2147483647L 01111111 11111111 11111111 11111111 largest

-2147483648L 10000000 00000000 00000000 00000000 smallest

0173L 00000000 00000000 00000000 01111011 octal form

0x7BL 00000000 00000000 00000000 01111011 hexadecimal form

--

Type: unsigned long

Description: A non-negative integer.

Size: System dependent. Usually 4 bytes. sizeof(unsigned long) == sizeof(long).

Example Variable Declarations:

unsigned long ulFirst;

unsigned long ulSecond, ulThird;

unsigned long int ulFourth;

Example Literals (assuming size is 4 bytes):

C Literal Binary Representation Note

123UL 00000000 00000000 00000000 01111011 decimal form

4294967295UL 11111111 11111111 11111111 11111111 largest

0UL 00000000 00000000 00000000 00000000 smallest

0173UL 00000000 00000000 00000000 01111011 octal form

0x7BUL 00000000 00000000 00000000 01111011 hexadecimal form

--

Type: char

Description: A (positive or negative) integer. Usually represents a character according to a

character code (e.g., ASCII).

Size: 1 byte.

Example Variable Declarations:

char cFirst;

char cSecond, cThird;

signed char cFourth;

Example Literals (assuming the ASCII code is used):

C Literal Binary Representation Note

'a' 01100001 character form

(char)97 01100001 decimal form

(char)0141 01100001 octal form

(char)0x61 01100001 hexadecimal form

'\o141' 01100001 octal character form

'\x61' 01100001 hexadecimal character form

(char)123 01111011 decimal form

(char)-123 10000101 negative form

(char)127 01111111 largest

(char)-128 10000000 smallest

'\0' 00000000 the null character

'\a' 00000111 bell

'\b' 00001000 backspace

'\f' 00001100 formfeed

'\n' 00001010 newline

'\r' 00001101 carriage return

'\t' 00001001 horizontal tab

'\v' 00001011 vertical tab

'\\' 01011100 backslash

'\'' 00100111 single quote

--

Type: unsigned char

Description: A non-negative integer. Usually represents a character according to a character

code (e.g., ASCII).

Size: 1 byte.

Example Variable Declarations:

unsigned char ucFirst;

unsigned char ucSecond, ucThird;

Example Literals (assuming the ASCII code is used):

C Literal Binary Representation Note

(unsigned char)'a' 01100001 character form

(unsigned char)97 01100001 decimal form

(unsigned char)255 11111111 largest

(unsigned char)0 00000000 smallest

--

Note: On most systems, "char" is the same as "signed char".

On some systems, "char" is the same as "unsigned char".

--

Type: short

Description: A (positive or negative) integer.

Size: System dependent. Usually 2 bytes. sizeof(short) <= sizeof(int).

Example Variable Declarations:

short sFirst;

short sSecond, sThird;

short int sFourth;

signed short sFifth;

signed short int sSixth;

Example Literals (assuming size is 2 bytes):

C Literal Binary Representation Note

(short)123 00000000 01111011 decimal form

(short)-123 11111111 10000101 negative form

(short)32767 01111111 11111111 largest

(short)-32768 10000000 00000000 smallest

(short)0173 00000000 01111011 octal form

(short)0x7B 00000000 01111011 hexadecimal form

--

Type: unsigned short

Description: A non-negative integer.

Size: System dependent. Usually 2 bytes. sizeof(unsigned short) == sizeof(short).

Example Variable Declarations:

unsigned short usFirst;

unsigned short usSecond, usThird;

unsigned short int usFourth;

Example Literals (assuming size is 2 bytes):

C Literal Binary Representation Note

(unsigned short)123 00000000 01111011 decimal form

(unsigned short)65535 11111111 11111111 largest

(unsigned short)0 00000000 00000000 smallest

(unsigned short)0173 00000000 01111011 octal form

(unsigned short)0x7B 00000000 01111011 hexadecimal form

--

Type: double

Description: A (positive or negative) double-precision floating point number.

Size: System dependent. Often 8 bytes.

Example Variable Declarations:

double dFirst;

double dSecond, dThird;

Example Literals (assuming size is 8 bytes):

C Literal Note

123.456 fixed-point notation

1.23456E2 scientific notation

.0123456 fixed-point notation

1.234546E-2 scientific notation with negative exponent

-123.456 fixed-point notation

-1.23456E2 scientific notation with negative mantissa

-.0123456 fixed-point notation

-1.23456E-2 scientific notation with negative mantissa and negative exponent

1.797693E308 largest (approximate)

-1.797693E308 smallest (approximate)

2.225074E-308 closest to 0 (approximate)

--

Type: float

Description: A (positive or negative) single-precision floating point number.

Size: System dependent. Often 4 bytes. sizeof(float) <= sizeof(double).

Example Variable Declarations:

float fFirst;

float fSecond, fThird;

Example Literals (assuming size is 4 bytes):

C Literal Note

123.456F fixed-point notation

1.23456E2F scientific notation

.0123456F fixed-point notation

1.234546E-2F scientific notation with negative exponent

-123.456F fixed-point notation

-1.23456E2F scientific notation with negative mantissa

-.0123456F fixed-point notation

-1.23456E-2F scientific notation with negative mantissa and negative exponent

3.402823E38F largest (approximate)

-3.402823E38F smallest (approximate)

1.175494E-38F closest to 0 (approximate)

--

Type: long double

Description: A (positive or negative) extended-precision floating point number.

Size: System dependent. Often 12 bytes. sizeof(long double) >= sizeof(double).

Example Variable Declarations:

long double ldFirst;

long double ldSecond, ldThird;

Example Literals (assuming size is 12 bytes):

C Literal Note

123.456L fixed-point notation

1.23456E2L scientific notation

.0123456L fixed-point notation

1.234546E-2L scientific notation with negative exponent

-123.456L fixed-point notation

-1.23456E2L scientific notation with negative mantissa

-.0123456L fixed-point notation

-1.23456E-2L scientific notation with negative mantissa and negative exponent

1.189731E4932L largest (approximate)

-1.189731E4932L smallest (approximate)

3.362103E-4932L closest to 0 (approximate)

--

Differences between C and Java:

Java only:

boolean, byte

C only:

unsigned char, unsigned short, unsigned int, unsigned long

long double

Java: Sizes of all types are specified

C: Sizes of all types except char are system dependent

Java: char comprises 2 bytes

C: char comprises 1 byte

Original Copyright ⓒ 2007 by Robert M. Dondero, Jr. Modified by Asim

KAIST

EE 209: Programming Structures for EE

C Symbolic Constants

Method 1: #define

Example

int main(void)

{

#define START_STATE 0

#define POSSIBLE_COMMENT_STATE 1

#define COMMENT_STATE 2

...

int iState;

...

iState = START_STATE;

...

}

Strengths

Preprocessor does substitutions only for tokens.

int iSTART_STATE; /* No substitution. */

Preprocessor does not do substitutions within string constants.

printf("What is the START_STATE?\n"); /* No substitution. */

Simple textual substitution; works for any type of data.

#define PI 3.14159

Weaknesses

Preprocessor does not respect context.

int START_STATE;

After preprocessing, becomes:
int 0; /* Compiletime error. */

Convention: Use all uppercase letters to reduce probability of unintended

replacement.

Preprocessor does not respect scope.

Preprocessor replaces START_STATE with 0 from point of #define to end of

file, not to end of function. Could affect subsequent functions unintentionally.

Convention: Place #defines at beginning of file, not within function definitions

Method 2: Constant Variables

Example

int main(void)

{

const int START_STATE = 0;

const int POSSIBLE_COMMENT_STATE = 1;

const int COMMENT_STATE = 2;

...

...

int iState;

...

iState = START_STATE;

...

iState = COMMENT_STATE;

...

}

Strengths

Works for any type of data.

const double PI = 3.14159;

Handled by compiler; compiler respects context and scope.

Weaknesses

Does not work for array lengths (unlike C++).

const int ARRAY_LENGTH = 10;

...

int a[ARRAY_LENGTH]; /* Compiletime error */

Method 3: Enumerations

Example

int main(void)

{

/* Define a type named "enum State". */

enum State {START_STATE, POSSIBLE_COMMENT_STATE, COMMENT_STATE, ...};

/* Declare "eState" to be a variable of type "enum State".

enum State eState;

...

eState = START_STATE;

...

eState = COMMENT_STATE;

...

}

Notes

Interchangeable with type int.

eState = 0; /* Can assign int to enum. */

i = START_STATE; /* Can assign enum to int. START_STATE is an alias for

0 , POSSIBLE_COMMENT_STATE is an alias for 1, etc. */

Strengths

Can explicitly specify values for names.

enum State {START_STATE = 5,

POSSIBLE_COMMENT_STATE = 3,

COMMENT_STATE = 4,

...};

Can omit type name, thus effectively giving symbolic names to int literals.

enum {MAX_VALUE = 9999};

...

int i;

...

i = MAX_VALUE;

...

Works when specifying array lengths.

enum {ARRAY_LENGTH = 10};

...

int a[ARRAY_LENGTH];

...

Weakness

Does not work for non-integral data types.

enum {PI = 3.14159}; /* Compile-time error */

Style Rules (see Kernighan and Pike Chapter 1)

(1) Use enumerations to give symbolic names to integral literals.

(2) Use const variables to give symbolic names to non-integral literals.

(3) Avoid using #define.

Original Copyright ⓒ 2009 by Robert M. Dondero, Jr. Modified by Asim

KAIST

EE209: Programming Structures for EE

C Statements

Statement Type Statement Syntax Examples

Expression

Statement

expression; i = 5;

printf(“Hello”);

5; /* valid, but nonsensical */

Declaration

Statement

modifiers datatype variable [=
initialvalue][,variable [=
initialvalue]]...;

int i;

int i, j;

int i = 5, j = 6;

const int i;

static int i;

extern int i;

Compound

Statement

(alias Block)

{statement statement ... } {

int i;

i = 5;

...

}

If

Statement

if (integralexpr) statement;
if (pointerexpr) statement;

if (i == 5)

{

statement;
statement;

}

Switch Statement switch (integralexpr)

{

case integralconstant: statements
case integralconstant: statements
default: statements
}

switch (i)

{

case 1: statement; break;

case 2: statement; break;

default: statement;
}

While

Statement

while (integralexpr) statement while (i < 5)

{

statement;
statement;

}

DoWhile

Statement

do statement while (integralexpr); do

{

statement;
statement;

} while (i < 5);

For

Statement

for (initexpr; integralexpr; increxpr)
statement

for (i = 0; i < 5; i++)

{

statement;
statement;

}

Return Statement return;

return expr;

return;

return i + 5;

Break

Statement

break; while (i < 5)

{

statement;
if (j == 6)

break;

statement;
}

Continue

Statement

continue; while (i < 5)

{

statement;
if (j == 6)

continue;

statement;
}

Goto

Statement

goto label; mylabel:

...

goto mylabel;

...

Differences between C and Java:

Expression Statement:

Java: Only expressions that have a side effect can be made into expression statements

C: Any expression can be made into an expression statement

Java: Has “final” variables

C: Has “const” variables

Declaration Statement:

Java: Compiletime error to use a local variable before specifying its value

C: Runtime error to use a local variable before specifying its value

Compound Statement:

Java: Declarations statements can be placed anywhere within compound statement

C: Declaration statements must appear before any other type of statement within

compound statement

If Statement

Java: Controlling expr must be of type boolean

C: Controlling expr must be of some integral type or a pointer (0 => FALSE, non-0 =>

TRUE)

While Statement

Java: Controlling expr must be of type boolean

C: Controlling expr must be of some integral type or a pointer (0 => FALSE, non-0 =>

TRUE)

DoWhile Statement

Java: Controlling expr must be of type boolean

C: Controlling expr must be of some integral type or a pointer (0 => FALSE, non-0 =>

TRUE)

For Statement

Java: Controlling expr must be of type boolean

C: Controlling expr must be of some integral type or a pointer (0 => FALSE,

non-0 => TRUE)

Java: Can declare loop control variable in initexpr

C: Cannot declare loop control variable in initexpr

Break Statement

Java: Also has “labeled break” statement

C: Does not have “labeled break” statement

Continue Statement

Java: Also has “labeled continue” statement

C: Does not have “labeled continue” statement

Goto Statement

Java: Not provided

C: Provided (but don’t use it!)

Original Copyright ⓒ 2003 by Robert M. Dondero, Jr. Modified by Asim

KAIST
EE209: Programming Structures for EE

Building Multi-File C Programs

testintmath.c

(C lang. with

preprocessor

directives)

intmath.h

(C lang. with

preprocessor

directives)

intmath.c

(C lang. with

preprocessor

directives)

[testintmath.i]

(C lang. with preprocessor

directives)

[intmath.i]

(C lang. with preprocessor

directives)

[testintmath.s]

(assembly lang.)
[intmath.s]

(assembly lang.)

[testintmath.o]

(machine lang.

with unresolved

references)

[intmath.o]

(machine lang.

with unresolved

references)

testintmath

(machine lang. executable)

Preprocessor Preprocessor

Compile Compile

Assembler
Assembler

Linker

libc.a

Shortcut:

gcc209 testintmath.c intmath.c –o testintmath

Original Copyright ⓒ 2009 by Robert M. Dondero, Jr. Modified by Asim

gcc209 –E testintmath.c > testintmath.i

gcc209 –E intmath.c > intmath.i

gcc209 –S testintmath.i

gcc209 –S intmath.i

gcc209 –c testintmath.s

gcc209 –S intmath.s

gcc209 testintmath.o intmath.o –lc –o testintmath

KAIST
EE209: Programming Structures for EE

GDB Tutorial

This tutorial describes how to use a minimal subset of the GDB debugger. See the
summary sheet distributed in precept for more information. Also see Chapter 6 of our
Programming with GNU Software (Loukides & Oram) textbook.

The tutorial assumes that you have created files named testintmath.c, intmath.h, and
intmath.c in your working directory, containing the (version 4) program recently
discussed in precepts. Those files are available through the course "Schedule" Web
page.

Introduction

Suppose you are developing the testintmath (version 4) program. Further suppose
that the program preprocesses, compiles, assembles, and links cleanly, but is
producing incorrect results at runtime. What can you do to debug the program?

One approach is temporarily to insert calls to printf(...) or fprintf(stderr, ...) throughout
the code to get a sense of the flow of control and the values of variables at critical
points. That's fine, but often is inconvenient.

An alternative is to use GDB. GDB is a powerful debugger. It allows you to set
breakpoints in your code, step through your executing program one line at a time,
examine the values of variables at breakpoints, examine the function call stack, etc.

Building for GDB

To prepare to use GDB, build your program with the -g option:

$ gcc209 -g testintmath.c intmath.c -o testintmath

Doing so places extra information into the testintmath file that GDB uses.

Running GDB

The next step is to run GDB. You can run GDB directly from the shell, but it's much
handier to run it from within Emacs. So launch Emacs, with no command-line
arguments:

$ emacs

Now call the Emacs "gdb" function via these keystrokes:

<Esc key> x gdb <Enter key> testintmath <Enter key>

At this point you are executing GDB from within Emacs. GDB is displaying its (gdb)

prompt.

Running your Program

Issue the "run" command to run the program:

(gdb) run

Enter 8 as the first integer, and 12 as the second integer. GDB runs the program to
completion, indicating that the "Program exited normally." Incidentally, file redirection
is specified as part of the "run" command. For example, the command "run <
somefile" runs the program, redirecting standard input to somefile.

Using Breakpoints

Set a breakpoint at the beginnings of some functions using the "break" command:

(gdb) break main
(gdb) break IntMath_gcd

(Incidentally, another way to set a breakpoint is by specifying a file name and line
number separated by a colon, for example, "break intmath.c:20".) Run the program:

(gdb) run

GDB pauses execution near the beginning of main(). It opens a second window in
which it displays your source code, with the about-to-be-executed line of code
highlighted.

Issue the "continue" command to tell command GDB to continue execution past the
breakpoint:

(gdb) continue

GDB continues past the breakpoint at the beginning of main(), and execution is
paused at a scanf(). Enter 8 as the first number. Execution is paused at the second
scanf(). Enter 12 as the second number. GDB is paused at the beginning of
IntMath_gcd().

Then issue another "continue" command:

(gdb) continue

Note that GDB is paused, again, at the beginning of IntMath_gcd(). (Recall the
IntMath_gcd() is called twice: once by main(), and once by IntMath_lcm().)

While paused at a breakpoint, issue the "kill" command to stop execution:

(gdb) kill

Type "y" to confirm that you want GDB to stop execution.

Issue the "clear" command to get rid of a breakpoint:

(gdb) clear IntMath_gcd

At this point only one breakpoint remains: the one at the beginning of main().

Stepping through the Program

Run the program again:

(gdb) run

Execution pauses at the beginning of main(). Issue the "next" command to execute
the next line of your program:

(gdb) next

Continue issuing the "next" command repeatedly until the program ends.
Run the program again:

(gdb) run

Execution pauses at the beginning of main(). Issue the "step" command to execute
the next line of your program:

(gdb) step

Continue issuing the "step" command repeatedly until the program ends. Is the
difference between "next" and "step" clear? The "next" command tells GDB to
execute the next line, while staying at the same function call level. In contrast, the
"step" command tells GDB to step into a called function.

Examining Variables

Set a breakpoint at the beginning of IntMath_gcd():

(gdb) break IntMath_gcd

Run the program until execution reaches that breakpoint:

(gdb) run
(gdb) continue

Now issue the "print" command to examine the values of the parameters of
IntMath_gcd():

(gdb) print iFirst

(gdb) print iSecond

In general, when paused at a breakpoint you can issue the "print" command to
examine the value of any expression containing variables that are in scope.

Examining the Call Stack

While paused at IntMath_gcd(), issue the "where" command:

(gdb) where

In response, GDB displays a call stack trace. Reading the output from bottom to top
gives you a trace from a specific line of the main() function, through specific lines of
intermediate functions, to the about-to-be-executed line.

The "where" command is particularly useful when your program is crashing via a
"segmentation fault" error at runtime. When that occurs, try to make the error occur
within GDB. Then, after the program has crashed, issue the "where" command.
Doing so will give you a good idea of which line of your code is causing the error.

Quitting GDB

Issue the "quit" command to quit GDB:

(gdb) quit

Then, as usual, type:

<Ctrl-x> <Ctrl-c>

to exit Emacs.

Command Abbreviations

The most commonly used GDB commands have one-letter abbreviations (r, b, c, n, s,
p). Also, pressing the Enter key without typing a command tells GDB to reissue the
previous command.

Original Copyright ⓒ 2008 by Robert M. Dondero, Jr. Modified by Asim

KAIST
EE209: Programming Structures for EE

The GDB Debugger for C Programs

gcc209 –g … -o program Build with debugging information
gdb [-d sourcefiledir] [-d sourcefiledir] … program [corefile] Run GDB from a shell
ESC x gdb gdb [-d sourcefiledir] [-d sourcefiledir] … program [corefile] Run GDB within Emacs

Miscellaneous

quit Exit GDB.

directory [dir1] [dir2] ... Add directories dir1, dir2, ... to the list of directories searched for source files,

or clear the directory list.

help [cmd] Print a description of command cmd.

Listing the Source Code (or run within Emacs)

list [[file:]linenum1[-linenum2]] Print the source code lines numbered linenum1 to linenum2 in file file.

list [[file:]fn:][linenum1[-linenum2]] Print the source code lines numbered linenum1 to linenum2 in function fn in

file file.

Running the Program

run [arg1],[arg2] … Run the program with command-line arguments arg1, arg2, ...

set args arg1 arg2 ... Set the program's command-line arguments to arg1, arg2, ...

show args Print the program's command-line arguments.

Using Breakpoints

info breakpoints Print a list of all breakpoints.

break [file:]linenum Set a breakpoint at line linenum in file file.

break [file:]fn Set a breakpoint at the beginning of function fn in file file.

condition bpnum expr Break at breakpoint bpnum only if expression expr is non-zero (TRUE).

commands [bpnum] cmds Execute commands cmds whenever breakpoint bpnum is hit.

continue Continue executing the program.

kill Stop executing the program.

delete [bpnum1][,bpnum2]... Delete breakpoints bpnum1, bpnum2, ..., or all breakpoints.

clear [[file:]linenum] Clear the breakpoint at linenum in file file, or the current breakpoint.

clear [[file:]fn] Clear the breakpoint at the beginning of function fn in file file, or the current

breakpoint.

disable [bpnum1][,bpnum2]... Disable breakpoints bpnum1, bpnum2, ..., or all breakpoints.

enable [bpnum1][,bpnum2]... Enable breakpoints bpnum1, bpnum2, ..., or all breakpoints.

Stepping through the Program

next "Step over" the next line of the program.

step "Step into" the next line of the program.

finish "Step out" of the current function.

Examining Variables

print expr Print the value of expression expr.

print ['file'::]var Print the value of variable var as defined in file file. (File is used to resolve

static variables.)

print [function::]var Print the value of variable var as defined in function function. (Function is

used to resolve static variables.)

printf format, expr1, expr2, … Print the values expressions expr1, expr2, ... using the specified format string.

whatis var Print the type of variable var.

ptype t Print the definition of type t.

info display Print the display list.

display expr At each break, print the value of expression expr.

undisplay displaynum Remove displaynum from the display list.

Examining the Call Stack

where Print the call stack.

backtrace Print the call stack.

frame Print the top of the call stack.

up Move the context toward the bottom of the call stack.

down Move the context toward the top of the call stack.

Working with Signals

info signals Print a list of all signals that the operating system makes available.

handle sig action1 [action2 ...] When GDB receives signal sig, it should perform actions action1, action2, ...

Valid actions are nostop, stop, print, noprint, pass, and nopass.

signal sig Send the program signal sig.

Original Copyright ⓒ 2008 by Robert M. Dondero, Jr. Modified by Asim

	datatypes.pdf
	symbolicconstants
	statements
	buildingmultifile
	gdbtutorial
	gdb4c

