
 
 

 

KAIST 

EE209: Programming Structures for EE 

A Minimal EE 209 Computing Environment 

 

1. Your Account in LabMachine  

 
One time only…  

 

Notes:  

 

• LabMachine is a cluster of computers that is administered by TA.  

 

• The LabMachine consists of 13 (143.248.141.52~143.248.141.64) computers which have Fedora 

12.  

 

• The local computer communicates with LabMachine via a terminal emulation program that can use 

the SSH protocol. Two such programs are PuTTY (for MS Windows) and Terminal (for Mac OS X).  

 

1.1. Your student id number is your account ID.  

 

1.2 Password of your account ID was mentioned in your ee209 lecture. All students have the same 

password. Make sure to change the password on all 13 (143.248.141.52~143.248.141.64) machines.  

 

Password Change Command is “passwd”  

If you issue the command “passwd”,  

In response to the “(current) UNIX password: “, type current password 

In response to the “New password: “, type your new password.  

In response to the “Retype new password: “, type your new password again.  

Note: The change of password is limited to the computer you logged in. You have to change 

the password on all 13 machines. 

 

1.3 Each machine has an independent file system; i.e. if you create/update a file in one machine, that 

change will not appear in any other sibling machine. This also means that in case a machine crashes 

or goes offline (although that rarely occurs), you will potentially lose your files from the system. We 

recommend you to regularly back up all program files in your local machine. You should preferably 

develop your programs in local machines and use the lab machines for testing. 

 

2. LabMachine Terminal Session  
 

2.1. Using a Lab Computer Running Microsoft Windows  
 

2.1.1. Launch PuTTY1. 

From the "Start | All Programs | PuTTY" menu, click on PuTTY.  



1
If you want to install Putty, use a web browser to visit the page http://www.putty.org/. Click on the "You can 

download PuTTY here" anchor. On the new page, click on the "putty.exe" anchor. In the "File Downloading" dialog 

box, click on the "Save" button. In the "Save As" dialog box, choose some appropriate location in your local file 

system. Then launch PuTTY by double-clicking on the putty.exe file via Windows Explorer. 

 

 

2.1.2. Log into LabMachine.  

In PuTTY: 

Click on the "Window | Colours" Category, and make sure the "Use system colours" checkbox is 

checked. Click on the "Session" Category. In the "Host Name (or IP address)" text box, type any 

LabMachine IP (143.248.141.52 ~ 143.248.141.64). Make sure that the "Port" text box contains "22". 

Make sure the "Connection type" radio button panel is set to "SSH". Make sure the "Close window 

on exit" radio button panel is set to "Only on clean exit". Click on the "Open" button. 

  

In the resulting PuTTY window: 

If you log into LabMachine for the first time, you will see a “PuTTY Security Alert” warning 

message. If you click “Yes”, this message is never shown again. In response to the "login as:" 

prompt, type your user id followed by the Enter key. In response to the "password:" prompt, type 

your password followed by the Enter key. (The password will not echo as you type.) A successful 

log-in will show you a Unix shell prompt. 

  

2.1.3. Log out of LabMachine.  

In PuTTY, issue the "logout" (or "exit") command to disconnect the client from LabMachine 

(PuTTY will exit automatically). 

  

2.2. Using a Lab Computer Running Mac OS X:  
2.2.1. Open a Terminal window.  

Click on the "Terminal" button at the bottom of the screen; its icon is a video display with a cursor. 

  

2.2.2. Log into LabMachine.  

In the terminal window: 

Issue the command "ssh yourUserId@143.248.141.52"; the available IPs are: 143.248.141.52 ~ 

143.248.141.64  

If an SSH-related message appears, type "Yes". Type your password, followed by the Enter key. 

  

2.2.3. Log out of LabMachine.  

In the terminal window:  

Issue the "exit" or "logout" command.  

 

2.2.4. Close the Terminal window.  

Issue the "exit" or "logout" command. 

mailto:yourUserId@143.248.141.52


KAIST 

EE 209: Programming Structures for EE 

Unix and Bash  

 

 
 

Shell  

(e.g. Bash) 

 

C Application 

Programs 

 

 Standard C Functions 

 

 

Unix System Functions 

 

Unix Kernel 

 

Hardware 

 

Original Copyright ⓒ 2007 by Robert M. Dondero, Jr.                Modified by Asim 



KAIST  

EE 209: Programming Structures for EE  

Unix and Bash  

 

 
Filenames and Directorynames  

/dir1/.../dirN  Absolute dname  

dir1/.../dirN  Relative dname  

/dir1/.../file  Absolute fname  

dir1/.../file  Relative fname  

 
 

Special Filename and Directoryname Characters  

fnameord*name  * matches 0 or more characters  

fnameord?name  ? matches any single character  

"fname or dname"  " allows whitespace in a dname or fname  

'fname or dname'  ' allows whitespace in a dname or fname  

fnameord\'name  Backslash (escape) character allows special characters in a dname or fname  

~loginid  Home directory of loginid  

~  Your home directory  

..  Parent of working directory  

.  Working directory  

 
 

Special Command Characters  

command 0< fname  
command < fname  

Redirect stdin to fname  

command 1> fname  
command > fname  

Redirect stdout to fname  

command 2> fname  Redirect stderr to fname  

command 1> fname 2>&1  Redirect stdout and stderr to fname  

command1 | command2  Pipe from command1 to command2  

^d  End of file  

command &  Run command as a background process  

^z  Turn my foreground process into a stopped background process  

^c  Send a SIGINT signal  

↑  Scroll backward through the command history list  

↓  Scroll forward through the command history list  

!prefix  Reissue the most recently issued command that begins with prefix  

!commandnum  Reissue the command whose number is commandnum (see the “history” 
command)  

 

 

 

 

 

 



 

Commands  

 
Commands marked with “(Bash)” are shell built-in commands. Commands marked with “(bin)” are executable 
binary files. 
 
  

Command for Getting Help  

man [section] pagename  (bin) Print to stdout the Unix manual page (from section) whose name is 
pagename. Section 1 describes commands and utilities (e.g. cat, ls). Section 
2 describes Unix system calls (e.g. fork, dup). Section 3 describes library 
functions (e.g. printf(), strlen()).  

 
Configuration Commands  

source fname  (Bash) Execute the shell script in fname  

export variable=value  (Bash) Set environment variable to value  

export 
PATH=dname1:dname2:...  

(Bash) Set the PATH environment variable indicating that Bash should 
search dname1, dname2, ... to find commands that are specified as 
relative fnames  

export 
MANPATH=dname1:dname2:... 

(Bash) Set the MANPATH environment variable indicating that the man 
command should search dname1, dname2, ... to find man pages  

variable=value  (Bash) Set shell variable to value  

PS1="\h:\w\$ "  (Bash) Set the PS1 shell variable to indicate that the command prompt 
should contain the name of the host computer, a colon, the name of the 
working directory, a dollar sign, and a space  

set –o shelloption  (Bash) Turn on shelloption  

set +o shelloption  (Bash) Turn off shelloption  

set –o ignoreeof  (Bash) Turn on the ignoreeof shell option to indicate that ^D entered at 
the Bash prompt should not terminate Bash  

set –o noclobber  (Bash) Turn on the noclobber shell option to indicate that Bash should not 
overwrite files via redirection  

alias aliasname=string  (Bash) Create an alias definition such that aliasname as an abbreviation 
for string  

unalias aliasname  (Bash) Destroy the alias definition that defines aliasname  

 
Directory-Related Commands  

pwd  (Bash, bin) Print the name of the working directory to stdout  

cd [dname]  (Bash) Make dname the working directory  

ls [-la] [dname]  (bin) List the contents of dname to stdout  

ls [-la] [fname]  (bin) List the attributes of fname to stdout  

mkdir dname  (bin) Create dname  

rmdir dname  (bin) Destroy the empty directory dname  

 
File-Related Commands  

cat  (bin) Concatenate (print) stdin to stdout  

cat fname ...  (bin) Concatenate (print) fname ... to stdout  

more fname ...  (bin) Print fname ... to stdout one screen at a time  

less fname ...  (bin) Print fname, ... to stdout one screen at a time  
The man command pipes its output through less  

xxd fname  (bin) Hexdecimal dump fname to stdout  

cp [-i] sourcefname 
targetfname  

(bin) Copy sourcefname to targetfname  

cp [-i] sourcefname 
targetdname  

(bin) Copy sourcefname to targetdname  

cp –r sourcedname 
targetdname  

(bin) Copy (recursively) sourcedname to targetdname  



mv [-i] sourcefname 
targetfname  

(bin) Rename sourcefname to targetfname  

mv [-i] 
sourcefname ... 
targetdname  

(bin) Move sourcefname ... to targetdname  

rm [-i] fname ...  (bin) Remove fname ...  

rm –r [-i] dname 
[fname ...]  

(bin) Remove dname (recursively) and fname ...  

 
File and Directory Permission Commands  

chmod mask 
fnameordname ...  

(bin) Set the permissions of fnameordname ... as indicated by mask  

umask mask  (Bash) Set the default permissions used when creating new files and directories as 
indicated by mask  

 
Software Development Commands  

emacs  (bin) Create or edit a text file using the Emacs editor  

gcc209  (bin) Preprocess, compile, assemble, and link a program using options appropriate for EE 
209; a variant of gcc  

gdb  (bin) Debug a program  

make  (bin) Build a program  

ar  (bin) Create an archive file containing object code  

gprof  (bin) Analyze the performance of a program  

 
Miscellaneous Commands  

history  (Bash) Print a numbered command history list to stdout  

passwd oldpassword  (bin) Change my password from oldpassword  

wc [fname ...]  (bin) Print a count of characters, words, and lines in fname ... (or stdin) to stdout  

date  (bin) Print the date and time to stdout  

printenv [variable]  (bin) Print the definition of environment variable (or of all environment variables) to 
stdout  

echo [arg ...]  (Bash, bin) Print arg ... to stdout  

who  (bin) Print information about current users to stdout  

grep pattern fname ...  (bin) Print each line of fname that contains pattern to stdout  

sort [fname]  (bin) Print each line of fname (or stdin) in lexicographic order to stdout  

diff fname1 fname2  (bin) Print an indication of the differences between the contents of fname1 and 
fname2 to stdout  

which command  (bin) Search PATH for command, and print the dname where it was found to 
stdout  

 
Process Control Commands  

jobs  (Bash) List the names and jobnums of my background processes to stdout  

fg [%jobnum]  (Bash) Move my background process with the given jobnum to the foreground  

bg [%jobnum]  (Bash) Turn my stopped background process into a running background process  

kill [–signal] %jobnum  (Bash) Send signal to my background process with the given jobnum  

ps  (bin) Display a list of my processes  

kill [–signal] pid  (bin) Send signal to the process whose id is pid  

exit  (Bash) Exit Bash  

logout  (Bash) Exit Bash and the terminal session  

 

Original Copyright ⓒ 2009 by Robert M. Dondero, Jr.                Modified by Asim 



KAIST 

EE 209: Programming Structures for EE 

Emacs Tutorial 

 
This tutorial describes how to use a minimal subset of the Emacs editor. See the Emacs summary 

sheet distributed in precept for more information. Also see Chapter 3 of our Programming with 

GNU Software (Loukides & Oram) textbook, and http://www.gnu.org/software/emacs/.  

 

The tutorial assumes that you have copied the necessary files from 

http://www.ndsl.kaist.edu/~kyoungsoo/ee209/precepts/01/src/. Specifically, we assume you have 

copied files named hello.c and circle.c into your working directory. You can download them 

using wget:  
 

wget http://www.ndsl.kaist.edu/~kyoungsoo/ee209/precepts/01/src/filename 

 

to your working directory.  
 

Throughout the tutorial text in boldface indicates hands-on activities.  

 

Background  
Emacs was created in the mid-1970s by Richard Stallman. Originally it was a set of "editing 

macros" for an editor that now is extinct. Emacs is popular, for a few reasons. Emacs is free and 

it is a component of the GNU tool set from the Free Software Foundation. It is highly 

customizable: Emacs is written in the LISP programming language, and is easy to configure via 

that language. Emacs is integrated with other GNU software. In particular, Emacs is integrated 

with the Bash history mechanism. Essentially you can think of the Bash history list as a "file"; 

you can use Emacs commands to scroll through and edit that file, and thereby easily reissue 

previous commands or variants thereof. Emacs also is integrated with the GCC compiler driver, 

as this tutorial describes. Finally, and probably most importantly, Emacs is integrated with GDB 

debugger. A future precept will describe that integration.  

 

Emacs is a "modal" editor. That is, at any given time, Emacs is in one of several modes. In the 

EE 209 course you will use "C mode," "Assembler mode," and "Text mode." Emacs determines 

its mode based upon filename extensions. If the current file has a name whose extension is ".c", 

then Emacs will be in "C mode." If the current file has a name whose extension is ".s", then 

Emacs will be in "Assembler mode." By default, Emacs is in "Text mode."  

 

Launching Emacs  
To launch Emacs, issue the emacs command followed by the name of the file that you wish to 

create or edit. For example, issue this command at the Bash prompt:  
emacs circle.c  

 



Emacs loads the contents of the circle.c into a buffer in memory, and displays that buffer in the 

window. It places the point over the first character in the first line of the buffer.  

Note the Emacs terminology: A buffer is an area of memory. A window is a graphical entity that 

displays the contents of a specified buffer. The point is a small black box which overlays a 

character, thus indicating which character is the "current" character.  

 

Notation  
Throughout this document:  

• "Esc somechar" means "type the Esc key followed by the somechar key."  

 

• "Ctrl-somechar" means "type the somechar key while holding down the Ctrl key."  

 

for any character somechar.  

Incidentally, "Alt-somechar" (that is, type the somechar key while holding down the Alt 

key) has the same effect in Emacs as "ESC somechar" does.  
 

Calling Functions  
In Emacs, all work is accomplished by calling functions. The syntax for calling a function is:  
Esc x function  

 

For example, the forward-char function moves the point forward one character:  
Esc x forward-char  

 

Emacs moves the point forward one character within the buffer each time you call the 

forward-char function. Call forward-char a few times.  

Clearly there must be a better way to move the point! More generally, there must be a better way 

to call often-used functions.  

 

Key Bindings  
There indeed is a better way. The most often-used functions are bound to keystrokes.  

For example, the forward-char function is bound to the keystroke Ctrl-f. Type Ctrl-f 

a few times. The forward-char function also is bound to the right-arrow key. Type the 

right-arrow key a few times.  
 

Many keystrokes are bound by default. You also can bind your own, typically by placing a 

function call of this form in your .emacs file:  
(global-set-key keystrokes 'function)  

 

But few new Emacs users create their own keystroke bindings.  
 

Moving the Point  



The simplest way to move the point is via the forward-char, backward-char, next-

line and previous-line functions, each of which is bound to an arrow key. Type the 

arrow keys to move the point right, left, down, and up several times.  
 

The beginning-of-line and end-of-line functions have intuitive meanings. They 

are bound to the Ctrl-a and Ctrl-e keystrokes, respectively. They may also be bound to 

the Home and End keys, respectively; but Home and End may or may not work with your 

terminal emulation software. Type Ctrl-a, Ctrl-e, Home, and End several times.  

 

Perhaps counter-intuitively, the scroll-up function moves the window downward in the 

buffer; equivalently, it moves the buffer upward in the window. The scroll-up function is 

bound to Ctrl-v, and also may be bound to the PageDn key. The scroll-down function 

moves the window upward in the buffer. That is, it moves the buffer downward in the window. 

The scroll-down function is bound to ESC v, and also may be bound to the PageUp key. 

Type Ctrl-v, PageDn, ESC v, and PageUp several times.  

 

The end-of-buffer function moves the point to the end of the buffer; it is bound to Esc >. 

The beginning-of-buffer function moves the point to the beginning of the buffer; it is 

bound to the Esc <. Type Esc > and Esc < several times.  

 

The goto-line function allows you to specify, by number, the line to which the point should 

be moved. It is bound to the Ctrl-x l (that's Ctrl-x followed by the "ell" key) keystroke 

sequence. Type Ctrl-x l, followed by some reasonable line number, followed by the 

Enter key.  

 

Inserting and Deleting  
To insert a character, move the point to the character before which the insertion should occur, 

and then type the character. Move the point to some arbitrary spot in the buffer, and type 

some characters.  
 

The c-electric-backspace function (bound to the Backspace key) deletes the 

character before the point. Move the point to some arbitrary spot in the buffer, and type 

Backspace several times. The c-electric-delete-forward function (bound to 

Ctrl-d) deletes the character at the point. Move the point to some arbitrary spot in the 

buffer, and type Ctrl-d several times.  

 

To delete a line, move the point to the beginning of the line and then call the kill-line 

function (bound to Ctrl-k). Calling the function once kills the characters comprising the line, 

but not the line's end-of-line mark. Calling the function a second time also kills the end-of-line 

mark. Move the point to the beginning of some arbitrary line, and type Ctrl-k several 

times.  

Actually, the kill-line function doesn't completely discard the line that it kills; instead it 

moves the line to the Emacs clipboard. The yank function (bound to Ctrl-y) copies 

("yanks") the line from the Emacs clipboard into the buffer at the point. The combination of the 



kill-line and yank functions provides a single-line cut-and-paste functionality, as this 

sequence illustrates:  

 

• Move the point to the beginning of some non-empty line that you wish to move.  

• Type Ctrl-k twice.  

• Move the point.  

• Type Ctrl-y.  

 

For multiple-line cut-and-paste, you must know about Emacs regions. A region is an area of text 

that is bounded by the point and the mark. The set-mark-command function (bound to 

Ctrl-Space) sets the mark. The kill-region function (bound to Ctrl-w) moves the 

region to the Emacs clipboard; effectively it wipes out the region. This sequence illustrates 

moving multiple contiguous lines from one place to another in the buffer:  

• Move the point to the beginning of the first line that you wish to move.  

• Type Ctrl-Space to set the mark.  

• Move the point to the end of the last line that you wish to move. Note that Emacs 

highlights the region thus bounded by the point and the mark.  

• Type Ctrl-w to "wipeout" the region. Emacs moves the region to its clipboard.  

• Move the point to some spot in the buffer  

• Type Ctrl-y to yank (that is, copy) the text from the clipboard to the buffer at the point.  

 

(Note that the "minimal computing environment" described in our first precept is completely 

mouseless. To use the mouse, you can install an X Window System Server on your computer.)  

 

Saving and Exiting  
The save-buffer function (bound to Ctrl-x Ctrl-s) saves the buffer, that is, copies the 

contents of the buffer to its file on disk. Type Ctrl-x Ctrl-s to save the buffer to the 

circle.c file. As its name implies, the save-buffers-kill-emacs function (bound to 

Ctrl-x Ctrl-c) saves all Emacs buffers to their respective files on disk, and exits Emacs. 

(The section of this tutorial entitled "Managing Windows and Buffers" describes how you can 

use more than one Emacs buffer simultaneously.) Type Ctrl-x Ctrl-c to exit Emacs, thus 

returning to the Bash prompt.  

 

Indenting  
At this point circle.c probably is seriously mangled. So recopy the circle.c file from the above 

URLs to your working directory. Then issue the command emacs circle.c to 

relaunch Emacs to edit the circle.c file.  
Emacs automatically indents C code as you type it, according to the indentation style that you 

specified in your .emacs file.  

The c-indent-command function (bound to the Tab key) indents the current line according 

to the chosen indentation style. Note that the Tab key does not insert a tab character into your 

file; rather it indents the current line. Intentionally mal-indent a line, move the point to any 

spot within that line, and type the Tab key.  



The indent-all function (bound to Ctrl-x p because it indents your code perfectly) 

indents all lines of the buffer according to the chosen indentation style. Intentionally mal-

indent multiple lines scattered throughout the buffer, and then type Ctrl-x p.  

 

Searching and Replacing  
The isearch-forward function (bound to Ctrl-s) incrementally searches forward 

through the buffer for the text that you specify. This sequence illustrates:  

• Move the point to the beginning of the buffer.  

• Type Ctrl-s, followed by the text "i1"  

• Type Ctrl-s repeatedly.  

• Move the point, thereby ending the search.  

 

The similar isearch-backward function (bound to Ctrl-r) incrementally searches 

backward through the buffer.  

The query-replace function (bound to Esc %) incrementally replaces the "old" text that 

you specify with the "new" text that you specify. During execution of the function, typing "y" 

commands Emacs to perform the replacement and continue executing the function, "n" 

commands Emacs to skip the replacement and continue executing the function, "!" command 

Emacs to perform all replacements and stop executing the function, and "q" commands Emacs to 

stop (quit) executing the function. For example:  

• Move the point to the beginning of the buffer.  

• Type Esc %, followed by "i1", followed by "xxx".  

• Type "y" and "n" a few times.  

• Type "q".  

• Move the point to the beginning of the buffer.  

• Type Esc %, followed by "xxx", followed by "i1".  

• Type "!".  
 

Managing Windows and Buffers  
Recall that, in Emacs jargon, a buffer is a region of memory, and a window is a graphical area 

which displays the contents of a buffer. So far in this tutorial you've used only one buffer and 

one window. More generally, at any given time, Emacs will be managing multiple buffers and 

will be displaying some (but not necessarily all) of them in windows.  

 

To "find" a file means to load it into a buffer. The find-file function (bound to Ctrl-x 

Ctrl-f) finds the file whose name you provide. Type Ctrl-x Ctrl-f hello.c 

followed by the Enter key to load the hello.c file into a buffer. Then type Ctrl-x Ctrl-f 

circle.c followed by the Enter key to load the circle.c file into a buffer. At this point 

Emacs is managing two buffers; one of them is displayed in a window.  

The split-window-vertically function (bound to Ctrl-x 2) splits the current 

window into two windows, each of which displays the same buffer. Type Ctrl-x 2 to split 

the current window into two windows. The other-window function (bound to Ctrl-x 

o) moves the point to the other window. Type Ctrl-x o a few times to move the point back-

and-forth between the two windows. Now type Ctrl-x Ctrl-f hello.c to find the 



hello.c file. At this point Emacs is managing two buffers; two of them are displayed in Emacs 

windows.  

 

The delete-other-window function (bound to Ctrl-x 1) deletes the other window (that 

is, the window in which the point does not reside), thus returning Emacs to its default one-

window state. Type Ctrl-x o as necessary to move the point to the window that displays 

the hello.c buffer. Type Ctrl-x 1 to delete the window that displays the circle.c buffer, 

leaving only the window that displays the hello.c buffer. At this point Emacs is managing two 

buffers; only one of them – the hello.c buffer – is displayed in a window.  

With today's windowing operating systems, the ability of Emacs to manage multiple windows is 

less important than it used to be. However, you must know about Emacs windows to (1) use 

GDB within Emacs, as will be described in an upcoming precept, and (2) build within Emacs, as 

described in the next section of this tutorial.  

 

Building  
Most EE 209 students build (that is, preprocess, compile, assemble, and link) C programs by 

issuing the gcc209 command at the shell prompt. An alternative is to build C programs by 

issuing the gcc209 command from within Emacs. The alternative approach is optional in the 

EE 209 course.  

The compile function (no keystroke binding) builds a C program from within Emacs using 

whatever command you specify. This sequence illustrates:  

• Type Esc x compile. Emacs assumes that you wish to use the "make –k" command to 

build. At this point in the course, that's incorrect. So type the Backspace key repeatedly to 

delete that command. Then type: gcc209 circle.c –o circle.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Original Copyright ⓒ 2009 by Robert M. Dondero, Jr.    Modified by Asim 



KAIST  
EE 209: Programming Structures for EE 

 
 
This reference sheet assumes that Emacs is configured using the .emacs file provided to EE 209 students.  
 
To type "Ctrl-somechar" (for any character somechar), type the somechar key while holding down the Ctrl key. To type "Esc 
somechar" (for any character somechar), type the Esc key followed by the somechar key. Typing "Alt- somechar " has the 
same effect as typing "Esc somechar".  
 
In Emacs all work is accomplished by calling functions. To call a function, type "Esc x function".  
 
Many functions are bound to keystrokes.  
 
Commonly used functions are in boldace.  
 
 
Moving the Point 
  

Binding  Function  Description  

→  forward-char  Move the point forward one character  

←  backward-char  Move the point backward one character  

↓  next-line  Move the point to the next line  

↑  previous-line  Move the point to the previous line  

Ctrl-f  forward-char  Move the point forward one character  

Ctrl-b  backward-char  Move the point backward one character  

Ctrl-n  next-line  Move the point to next line  

Ctrl-p  previous-line  Move the point to previous line  

Esc f  forward-word  Move the point to next word  

Esc b  backward-word  Move the point to previous word  

Home  beginning-of-line  Move the point to beginning of line (but not with some terminal apps)  

End  end-of-line  Move the point to end of line (but not with some terminal apps)  

Ctrl-a  beginning-of-line  Move the point to beginning of line  

Ctrl-e  end-of-line  Move the point to end of line  

Esc a  c-beginning-of-statement  Move the point to the beginning of C statement  

Esc e  c-end-of-statement  Move the point to the end of C statement  

PageDn  scroll-up  Move the point to next page (but not with some terminal apps)  

PageUp  scroll-down  Move the point to previous page (but not with some terminal apps)  

Ctrl-v  scroll-up  Move the point to next page  

Esc v  scroll-down  Move the point to previous page  

Esc <  beginning-of-buffer  Move the point to beginning of the buffer  

Esc >  end-of-buffer  Move the point to end of the buffer  

Esc Ctrl-a  beginning-of-defun  Move the point to beginning of the C function  

Esc Ctrl-e  end-of-defun  Move the point to end of the C function  

Ctrl-x l line  goto-line  Move the point to line whose number is line  

 
 
Inserting and Deleting  
 

Binding  Function  Description  

Bsp  c-electric-backspace  Delete the character before the point  

Esc Bsp  backward-kill-word  Delete the characters from the point to the beginning of the word  

Ctrl-d  c-electric-delete-forward  Delete the character at the point  

Ctrl-k  kill-line  Cut the current line  

Ctrl-Sp  set-mark-command  Set the mark at the point  

Ctrl-x Ctrl-x  exchange-point-and-mark  Exchange the mark and the point  

Ctrl-x h  mark-whole-buffer  Set the point at the beginning and the mark at the end of the buffer  

Ctrl-w  kill-region  Cut the region denoted by the mark and the point  

Esc w  kill-ring-save  Copy the region denoted by the mark and the point  

Ctrl-y  yank  Paste the previously cut/copied region at the point  

 
Saving and Exiting 



 

Binding  Function  Description  

Ctrl-x Ctrl-s  save-buffer  Save the current buffer to its file  

Ctrl-x Ctrl-w file  write-file  Write the current buffer to file  

Ctrl-x Ctrl-q  vc-toggle-read-only  Toggle the current buffer between read-only and read/write  

Ctrl-x Ctrl-c  save-buffers-kill-emacs  Save all buffers and exit Emacs  

 
 
Indenting  
 

Binding  Function  Description  

Ctrl-c .  c-set-style  Set the C indentation style to the specified one  

TAB  c-indent-command  Indent the current line of the C program  

Esc Ctrl-\  indent-region  Indent the region of the C program denoted by the mark and the point  

Ctrl-x p  indent-all  Indent all lines of the C program (i.e. indent the program perfectly)  

 
 
Searching and Replacing  
 

Binding  Function  Description  

Ctrl-s string  isearch-forward  Search forward for string  

Ctrl-r string  isearch-backward  Search backward for string  

Esc % old new  query-replace  Replace the old string with the new one  
y => replace  
n => skip  
! => replace all  
q => quit  

 
 
Managing Windows and Buffers  
 

Binding  Function  Description  

Ctrl-x Ctrl-f file  find-file  Load file into a buffer  

Ctrl-x Ctrl-r file  find-file-read-only  Load file into a buffer for read only  

Ctrl-x 2  split-window-vertically  Split the current window into two windows arranged vertically  

Ctrl-x o  other-window  Move the point to the other window  

Ctrl-x 3  split-window-horizontally  Split the current window into two windows arranged horizontally  

Ctrl-x 0  delete-window  “Undisplay” the current window  

Ctrl-x 1  delete-other-windows  “Undisplay” all windows except the current one  

Ctrl-x Ctrl-b  list-buffers  Display a new window listing all buffers  

Ctrl-x b file  switch-to-buffer  Load file into a buffer if necessary, and then display that buffer in the 
current window  

 
 
Building and Debugging  
 

Binding  Function  Description  

 compile command Build the program using command  

 gdb executablefile Launch the GDB debugger to debug executablefile  

 
 
Miscellaneous  
 

Binding  Function   

Ctrl-x u  undo  Undo the previous change  

Ctrl-_  undo  Undo the previous change  

Ctrl-g  keyboard-quit  Abort the multi-keystroke command  

Ctrl-h  help-command  Access the Emacs help system  

Esc `  tmm-menubar  Access the Emacs menu  

Ctrl-x n  linum  Display/undisplay a line number before each line  

 

Original Copyright ⓒ 2009 by Robert M. Dondero, Jr.                Modified by Asim 



KAIST 

EE209: Programming Structures for EE 

“Hello World” Program in Java, C & Python 
In Java:  

//------------------------------------------------------------------------------------------------------------  

// Hello.java  

//------------------------------------------------------------------------------------------------------------  

public class Hello  

{  

public static void main(String[] args)  

// Write “hello, world” to stdout.  

{  

System.out.println(“hello, world”);  

}  

}  

 

In C:  

/*----------------------------------------------------------------------------------------------------------*/  

/* hello.c */  

/*----------------------------------------------------------------------------------------------------------*/  

#include<stdio.h>  

int main(int argc, char **argv)  

/* Write “hello, world\n” to stdout. Return 0. */  

{  

printf(“hello, world\n”);  

return 0;  

} 

In Python: 

#----------------------------------------------------------------------------------------------------------# 

# hello.py #  

#----------------------------------------------------------------------------------------------------------# 

print “hello, world” 

Original Copyright ⓒ 2006 by Robert M. Dondero, Jr.   Modified by Asim 



KAIST 

EE209: Programming Structures for EE 

Building C Programs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

#include<stdio.h> 

int main(void) 

/* Print “hello, world\n” to stdout. */ 

{ 

 printf(“hello, world\n”); 

 return 0; 

} 

hello.c 

Source code 

C language 

Contains preprocessor directives 

… 

int printf(char *format, …); 

… 

int main(void) 

{ 

 printf(“hello, world\n”); 

 return 0; 

} 

hello.i 

Source code 

C language 

Contains declaration of printf() function 

Missing definition of printf() function 

Preprocess 

gcc209 –E hello.c > hello.i 

 

Compile 

gcc209 –S hello.i 

Continued on next page 

C Compiler 

C Preprocessor 



 

 

 

 

 

 

 

 

 

   .section  .rodata 

cGreeting: 

   .asciz “hello, world\n” 

   .section .text 

   .global main 

   .type main, @function 

main: 

   puchl %ebp 

   movl %esp, %ebp 

   pushl %cGreeting 

   call printf 

   addl $4, $esp 

   movl $0, %eax 

   movl %ebp, %esp 

   popl %ebp 

   ret 

Assembler 

hello.s 

Source code 

Assembly language 

Missing definition of printf() function 

   .100101000110100100100… 

Linker 

   001010000101000000111110… 

Assemble 

gcc209 –c hello.s 

libc.a 

Library containing machine 

language definition of printf() 

function(and many others) 

Link 

gcc209 hello.o –lc -o hello 

hello 

Exchange code 

Machine language 

hello.o 

Object code 

Machine language 

Missing definition of printf() function 

   11110010000010100100110… 

 Shortcut: 

gcc209 hello.c –o hello 

gcc209 

is an abbreviation for 

gcc –Wall –ansi –pedantic –m32 –march=i386 

Original Copyright ⓒ 2008 by Robert M. Dondero, Jr.                  Modified by Asim 


	1st.pdf
	unixandbashdiagram
	unix
	4th
	emacs
	6th
	Building

