
NAME:

Login name:

Computer Science 217
Midterm Exam
March 11, 2009
10am-10:50am

This test has four (4) questions. You should spend no more than 10 minutes per question (except
for the last, 30-point question) for the 50-minute exam. Put your name on every page, and write
out and sign the Honor Code pledge before turning in the test.

``I pledge my honor that I have not violated the Honor Code during this examination.''

1 (20 pts)

2 (25 pts)

3 (25 pts)

4 (30 pts)

Question Score

Total

 1

QUESTION 1: Arithmetic and Logic Operations (20 POINTS)

1a) How is the decimal number 91 represented as an eight-bit binary number? What is the
representation in hexadecimal notation of 91? What is two’s complement of 91? (3 points)

1b) What does

 printf(“%d,%d,%d,%d,%d\n”, 91/4, 91%4, 91&&4, 91&4, 91&3);

print to standard output? (5 points)

1c) Consider the following code, where k is a signed 16-bit integer:

 printf(“%d %d\n”, (0 > k > 1), (4*(83/4) – 83));

What does the code print to standard output? Briefly explain your answers. (6 points)

1d) Consider the following code, where k is an unsigned 16-bit integer:

 printf(“%u\n”,((k << 4) >> 4) – (k & 0xFFF));

What does the code print to standard out? Briefly explain your answer. (6 points)

 2

QUESTION 2: Short Answer (25 POINTS, 5 points each)

2a) Briefly, in one phrase each, explain the meaning of the three ways of using the ampersand
(‘&’) in C. That is, what is the meaning of (i) &x, (ii) x & y, and (iii) x && y?

2b) Briefly, in one phrase each, explain the difference between (i) ‘\0’, (ii) ‘0’, and (iii) “0”.

2c) Why should a data structure storing key-value pairs, like a hash table or linked list, make its
own copy of the keys? Why is this even more important for a hash table than a linked list?

2d) Why are local variables and function parameters stored on the STACK, instead of (say) in
the DATA section of memory?

2e) Give two reasons why a modular design place a data-structure definition (e.g., the “struct”
type definition) in the .c file rather than the .h file.

 3

QUESTION 3: What Do These String Functions Do? (25 POINTS)

State concisely (in one sentence) what each of these four functions do.

3a) What does function q3a(char *s) do? (6 points)

void q3a(char *s) {
 int i;

 for (i=strlen(s)-1; i>=0; i--)
 putchar(s[i]);
 putchar('\n');
}

3b) What does function q3b(char *s) do? (6 points)

int q3b(char *s) {
 int i, j, yes=1;

 for (i=0, j=strlen(s)-1; i<=j; i++, j--)
 yes &= (s[i] == s[j]);
 return yes;
}

 4

3c) What does function q3c(char *s) do? (6 points)

int q3c(char *s) {
 if (!(*s))
 return 0;

 for (; *s; s++)
 if ((*s < '0') || (*s > '9'))
 return 0;

 return 1;
}

3d) What does function q3d(char *s1, char *s2) do? (7 points)

int q3d(char *s1, char *s2) {
 int i, j, len1=strlen(s1), len2=strlen(s2);

 for (i=0; i<=len2-len1; i++) {
 for (j=0; j<len1; j++) {
 if (s1[j] != s2[i+j])
 break;
 }
 if (j == len1)
 return 1;
 }
 return 0;
}

 5

QUESTION 4: Abstract Data Types (30 POINTS)

Consider the following “expanding array” data structure that supports adding key-value pairs and
returning the value associated with a given key. The array grows dynamically as needed. Note,
in the interest of brevity, that the code does not include the typical calls to assert().

enum {INITIAL_SIZE = 2};
enum {GROWTH_FACTOR = 2};

struct Pair {
 const char *key;
 int value;
};

struct Table {
 int pairCount; /* Number of pairs in table */
 int arraySize; /* Physical size of array */
 struct Pair *array; /* Address of array */
};

struct Table *Table_create(void) {
 struct Table *t;
 t = (struct Table*) malloc(sizeof(struct Table));
 t->pairCount = 0;
 t->arraySize = INITIAL_SIZE;
 t->array = (struct Pair*) calloc(INITIAL_SIZE, sizeof(struct Pair));
 return t;
}

void Table_add(struct Table *t, const char *key, int value) {
 if (t->pairCount == t->arraySize) {
 t->arraySize *= GROWTH_FACTOR;
 t->array = (struct Pair*) realloc(t->array,
 t->arraySize * sizeof(struct Pair));
 }
 t->array[t->pairCount].key = key;
 t->array[t->pairCount].value = value;
 t->pairCount++;
}

int Table_search(struct Table *t, const char *key, int *value) {
 int i;
 for (i = 0; i < t->pairCount; i++) {
 struct Pair p = t->array[i];
 if (strcmp(p.key, key) == 0) {
 *value = p.value;
 return 1;
 }
 }
 return 0;
}

void Table_free(struct Table *t) {
 free(t->array);
 free(t);
}

 6

4a) If a client were to call Table_add() with a key that was already in the table, the Table_add()
function would store the key a second time. Write a new function Table_unique_add() that adds
a <key, value> pair only if the key is not already in the table (returning a 1 on success), and
otherwise returns a 0 and does not insert the <key, value> pair. Feel free to call any of the
existing functions listed above in your new Table_unique_add() function. (10 points)

4b) Create a Table_delete() function that, given a key, deletes the Pair associated with that key,
returning a 1 on success; the function should return a 0 if the key does not exist in the table. The
remaining key-value pairs do not have to stay in the same order. Please write the most efficient
code for updating the data structure to reflect the removed entry, and include the relevant calls to
assert(). (10 points)

 7

4c) Write additional code, to run at the end of your new Table_delete() function, that decreases
the space allocated to the array, when appropriate; assume that the “shrink factor” is the same as
the “growth factor.” (10 points)

 8

	``I pledge my honor that I have not violated the Honor Code during this examination.''
	QUESTION 1: Arithmetic and Logic Operations (20 POINTS)

