
Name: COS 217 Midterm
Spring 2006

Mar 15, 2006

Pledge:

Directions:

• Please answer each question in the space provided. The amount of space should be sufficient
for a correct answer. If you need more space, please use the backs of pages, and make a note
to that effect. If you run out of space, exam books are provided at the front of the room.

• This exam is open-book, open-notes, and is covered by the Honor Code. Please write and
sign the pledge after you finish your exam.

• There are a total of five sections, with the number of points for each shown by the question.
While it is not the intent for the exam to be a race, spending too much time on a single
question may preclude finishing the exam. Budget your time wisely.

• To be fair, I will try to avoid answering content-related questions during the exam, unless
it’s to correct a mistake on my part.

• If you feel that a question requires additional assumptions or information to answer, please
state them. Your guiding principle should be Occam’s razor, which loosely translated states
that you should allow as few assumptions as necessary to explain the situation.

• Answers should assume C/Unix unless otherwise stated or implied

• Please first read over the entire exam and then begin to answer questions. I will wait outside
the exam room for the first five minutes, and then will be available in my office (room 322).

• Please write legibly

Name Points Available Score
1 True or False 10
2 Short answer 15
3 Code reading 20
4 Code writing 30
5 Bug hunt 25

Total 100

1

1. True or False (10pts) For each statement, write “true” if the statement evaluates to true,
or “false” if the statement evaluates false. If you believe the statement does not have a clear
answer, give whichever choice is more appropriate and explain why.

• 1 & 2 & 3 & 4

• 0x2B | | (!0x2B)

• 0100 – 64

• 3 >> 2

• 3 < 2

2

2. Short Answer (15pts) Answer each item well in no more than 3 sentences.

• What is a memory leak?

• What does this mean: int (*blah)(const void *, const void *);

• What does this mean: float *blah[25][25];

3

• What does the following code segment do:
char *p = NULL;

∗p = 1;

• Why might a compiler legitimately place data in the text segment?

4

3. Code reading (20pts)
Consider the following piece of code:

#include <stdio.h>

static void f(unsigned int a)

{

if (a & (~7))

f(a>>3);

putchar(’0’ + (a & 7));

}

int main(int argc, char *argv[])

{

unsigned int a = 225;

f(a);

putchar(’\n’);

return(0);

}

• What is the output of the above program?

• Give a one-sentence explanation of what the program does for different values to the
function f.

• Write a simpler implementation of function f that achieves the same result

• If you inserted printf("%d\n", a); before the return in main, what would it print?

5

4. Code Writing (30pts)
You are given the task of writing a program that reads lowercase words from the input,

and which outputs a list of the different words and their counts. So, if the input was
happy happy joy joy

your program would output

2 happy

2 joy

or
2 joy

2 happy

and Paris in the the spring would produce

1 Paris

1 in

2 the

1 spring

or any permutation of the 4 lines.
Devise a program that is correct, concise, reasonably designed, and reasonably efficient

in both memory consumption and running time. You may assume an input of no more
than 2 billion total words, and at most roughly 1 million distinct words. You are given two
functions which you can use freely:

• unsigned int Hash(char *str) – given an input string, produces a hash value in the
range of 0 to 231-1, which is roughly 2 billion.

• char *ReadWord(void) – returns a pointer to the next word, or NULL if no more
input exists. The pointer points to a NUL-terminated string, but no other guarantees
are provided.

Hint: the next power of 2 above 1 million is 1048576, which is 1024*1024

6

this page left intentionally blank to answer the previous question

7

5. Bug hunt! (25pts)
The following code is supposed to read as much data as possible from the input, store

it into a giant buffer, and then print it all out. However, it’s full of bugs. Identify and
briefly explain as many bugs, possible bugs, and design flaws as you can. Suggest fixes
where appropriate. Five right gets full credit.

int main(int argc, char *argv[])

{

int used;

int alloc = 2;

char *buf; /* the giant buffer */

char *str; /* the new line */

/* read until we run out of input */

while (scanf("%s\n", str) == 1) {

int i;

/* grow the buffer if needed */

if (used + strlen(str) > alloc) {

alloc *= 2;

buf = realloc(buf, alloc)

}

/* add the new line to end of buffer */

for (i = 0; i < strlen(str); i++, used++)

buf[used] = str[i];

/* print out the buffer, and we’re done */

printf(buf);

return(0);

}

8

this page left intentionally blank to answer the previous question

9

