
NAME:

Login name:

Precept number:

Computer Science 217
Midterm Exam
March 14, 2003
2-4PM

This test is 5 questions. Put your name on every page, and write out and sign the Honor Code
pledge before turning in the test.

``I pledge my honor that I have not violated the Honor Code during this examination.''

1

2

3

4

5

Question Score

Total

QUESTION 1 (20 POINTS)
Provide the C code matching the following descriptions.

(a) Write the C definition of structure employee that has three components: name (an array of 128

characters), access codes (a pointer to an array of integers), and dept (a pointer to a not-yet-defined
department structure).

(b) Write the C definition of structure department that has three components: name (an array of 128
characters), employees (a pointer to an array of pointers to employee structures, one for each employee
in the department, where the number of employees is not known), and size (an integer that indicates
how many employees are in the department).

(c) Write a header (.h) file declaring the interface to an ADT that keeps track of employees in a
department. The ADT should be able to create and delete the data structure for a new department, add
and remove an employee (in an existing employee structure) to a department, and apply a function
provided by the client to each employee in the department. Be sure to use opaque pointers, macros for
protecting against multiple file inclusion, and good programming style.

QUESTION 1 (continued)

(d) Write an implementation for your function of part (c) that applies a function provided by the client to
each employee in the department. You should assume that the employees field in the department
structure points to an array (with size elements) of pointers to employee structures. Be sure to use good
and robust programming style.

QUESTION 2 (20 POINTS)
For each variable definition in the following program, write a few words next to it indicating its
scope, linkage, and duration. Write the output of the program in the box provided.

=== main.c ===

int a = 3;
int b = 4;

extern void f(int b);

int main()
{
int a;
for (a = 0; a < 4; a++)
f(a);

}

=== f.c ===

#include <stdio.h>

extern int a;
static int b;

void f(int b)
{
int c = 0;
static int d = 0;

printf("%d %d %d %d\n", a, b, c, d);

a++;
b++;
c++;
d++;

}

Program output:

QUESTION 3 (20 POINTS)

(a) Often programmers write their own memory allocation modules that allocate a large region of

memory (e.g., several megabytes) with the standard library function malloc, and then provide their
own mallocX and freeX functions that manage allocation of blocks of memory from that region.

Write an implementation for the fictitious library functions malloc16 and free16 that allocates and
frees blocks of 16 bytes from a region you've allocated with malloc according to the following rules.
Your code should call the standard library function malloc at most once during execution (do not
worry about calling the standard library function free). All blocks returned by malloc16 should
contain exactly 16 bytes. The maximum number of blocks that will ever be allocated by calling
malloc16 (and not yet freed) at any time is 1000. If any previously freed block of 16 bytes is
available, then malloc16 should return one of them. Otherwise, it should return the lowest address
following all previously allocated blocks. Be sure to use good and robust programming style.

Hint: you can use space in each freed block to store the address of the next available block on the list
thereby creating a singly-linked list of available blocks (this is not required).

Extra credit: add a mechanism that detects when free16 has been called for a block of memory not
allocated by malloc16 (this is not required).

/* Global variables go here */

void *malloc16(void)
{

/* Code for malloc16 goes here */

}

QUESTION 3 (continued)

void free16(void *ptr)
{

/* Code for free16 goes here */

}

(b) Provide at least two reasons why malloc16 and free16 might be advantageous for a program

that allocates/frees blocks of 16 bytes frequently and allocates/frees blocks of 1000 bytes
several times less frequently.

QUESTION 4 (20 POINTS)
Imagine that you work for a major security firm, and you are asked by your boss to build a
keypad controller that recognizes a code of digits pressed on a keypad. The keypad sensors
provide the controller with two lines of input (i0 and i1), which are:
 (i1=0, i0=0) when no key is being pressed,
 (i1=0, i0=1) when the “1” key is pressed,
 (i1=1, i0=0) when the “2” key is pressed, and
 (i1=1, i0=1) when the “3” key is pressed.
Your circuit should provide one line of output (o0), which is 1 only when the most recently
pressed sequence of digits matches the following code: 2 1 3. You can assume that the keypad
prevents anybody from pressing the same key twice in a row.

a) Draw a state diagram for the keypad controller.

b) Draw a truth table for the keypad controller.

QUESTION 4 (continued)
c) Draw a digital circuit for the keypad controller.
 You may use any gates, flip flops, or components described in class.

QUESTION 5 (20 POINTS)
a) What are the five types of errors that can occur in a C program?

(One short phrase per type)

b) The following function tries to print all lines from a file whose name is provided by user

input. Yet, although it compiles without warnings, it does not work correctly and has several
robustness problems. On the next page, rewrite the function to make it work robustly with
complete error checking and efficient use of memory. For each piece of code you add or
change, provide a brief comment to indicate what problem is being fixed and/or what type of
error is being checked/handled. Note: the manual page for gets appears on the last page of
the exam.

#include <stdio.h>

void PrintFile(void)
{

FILE *fp;
char filename[16];
char *buffer;

gets(filename);
fp = fopen(filename, “r”);
buffer = (char *) malloc(16);
while (gets(buffer)) {
printf(buffer);
free(buffer);

}
fclose(fp);

}

QUESTION 5 (continued)

#include <stdio.h>

void PrintFile(void)
{

/* Code for PrintFile goes here */

}

NAME
 gets, fgets - get a string from a stream

SYNOPSIS
 #include <stdio.h>

 char *gets (char *s);

 char *fgets (char *s, int n, FILE *stream);

DESCRIPTION
 gets reads characters from the standard input stream, stdin, into the
 array pointed to by s, until a new-line character is read or an end-of-
 file condition is encountered. The new-line character is discarded and
 the string is terminated with a null character.

 fgets reads characters from the stream into the array pointed to by s,
 until n-1 characters are read, or a new-line character is read and
 transferred to s, or an end-of-file condition is encountered. The string
 is then terminated with a null character.

SEE ALSO
 lseek(2), read(2), ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S),
 stdio(3S), ungetc(3S).

NOTES
 When using gets, if the length of an input line exceeds the size of s,
 indeterminate behavior may result.

DIAGNOSTICS
 If end-of-file is encountered and no characters have been read, no
 characters are transferred to s and a NULL pointer is returned. If a
 read error occurs, such as trying to use these functions on a file that
 has not been opened for reading, a NULL pointer is returned. Otherwise s
 is returned.

	``I pledge my honor that I have not violated the Honor Code during this examination.''
	QUESTION 1 (20 POINTS)
	QUESTION 1 (continued)
	QUESTION 2 (20 POINTS)
	QUESTION 3 (20 POINTS)
	QUESTION 3 (continued)
	QUESTION 4 (20 POINTS)
	QUESTION 4 (continued)
	QUESTION 5 (20 POINTS)
	QUESTION 5 (continued)

