
Name: COS 217 Midterm
Fall 2008

October 23, 2008

Pledge:

Directions:

• Please answer each question in the space provided. The amount of space should be sufficient
for a correct answer. If you need more space, please use the backs of pages, and make a note
to that effect. If you run out of space, exam books are provided at the front of the room.

• This exam is open-book, open-notes, and is covered by the Honor Code. Please write and
sign the pledge after you finish your exam.

• There are a total of four sections, with the number of points for each shown by the question.
While it is not the intent for the exam to be a race, spending too much time on a single
question may preclude finishing the exam. Budget your time wisely.

• To be fair, I will try to avoid answering content-related questions during the exam, unless
it’s to correct a mistake on my part.

• If you feel that a question requires additional assumptions or information to answer, please
state them. Your guiding principle should be Occam’s razor, which loosely translated states
that you should allow as few assumptions as necessary to explain the situation.

• Answers should assume C/Unix and a compile environment like our settings on hats unless
otherwise stated or implied

• Please first read over the entire exam and then begin to answer questions. I will be available
in the hall way in the event that you have questions. Please do not loudly ask questions in
the exam room itself.

• Please write legibly

Name Points Available Score
1 True or False 10
2 Short answer 35
3 Code read/write 30
4 Bug hunt 25

Total 100

1

1. True or False (10pts) For each statement, write “true” if the statement evaluates to true,
or “false” if the statement evaluates false. If you believe the statement does not have a clear
answer, give whichever choice is more appropriate and explain why.

• 1 && 2 && 3 && 4

• 10 > x > 5

• 0x100 – 64

• -5 >> 2

• (5 < 10) ? 0 : 1

2

2. Short Answer (35pts) Answer each item well in no more than 3 sentences.

• What is a dangling pointer? Give two example code sequences showing how it can
arise.

• What is the output of the following code sequence:

int x = 0x0a17c808;

printf("%d.%d.%d.%d\n",

(x >> 24) & 0xff,

(x >> 16) & 0xff,

(x >> 8) & 0xff,

(x >> 0) & 0xff);

3

• Assuming x is valid, what would you put in the body of the function in order to change
the field y to 5?

struct blah {int y;};

typedef struct blah *blah;

static void Func(blah *x)

{

}

• What does the following code segment do:
void *p = malloc(1);

∗p = 1;

• What is the difference between the stack and the heap?

4

• Write two function declarations as follows: the first should accept a character buffer
and maximum length from the caller, and return the number of bytes filled. The second
should accept a maximum length from the caller, returning a buffer it allocates, as well
as the number of bytes filled. Use only basic data types, not structures.

• Convert the body of Func to use a for loop (not while/do):

static void Func(int i)

{

do {

Func2();

i--;

} while (i > 3);

}

5

3. Code reading and writing (30pts)
Consider the following piece of code:

#include <stdio.h>

enum {MAX_COUNT = 5};

#ifndef TRUE

#define TRUE 1

#endif

#ifndef FALSE

#define FALSE 0

#endif

static int vals[MAX_COUNT];

static int numFound = 0;

int main(int argc, char *argv[])

{

int i;

int j;

vals[numFound++] = 2;

for (i = 3; numFound < MAX_COUNT; i++) {

int match = TRUE;

for (j = 0; j < numFound; j++) {

if ((i % vals[j]) == 0)

match = FALSE;

}

if (match)

vals[numFound++] = i;

}

for (i = 0; i < numFound; i++)

printf("%d\n", vals[i]);

return(0);

}

6

• What is the value of numFound immediately before the first loop?

• What is the final value of numFound?

• What does the final loop “for (i = 0...” do?

• What is the output of this program?

7

• Without affecting the program’s output, can you reduce the number of iterations of
the first loop “for (i = 3...”? If so, show the change in the space below.

• Without affecting the program’s output, can you reduce the number of iterations of
the second loop “for (j = 0...”? If so, show the change in the space below.

8

4. Bug hunt! (25pts)
The following code is supposed to read lines from the user, store them in a list, and write

the lines back from the last line to the first. Each line is guaranteed to be no more than
99 characters long. However, it’s full of bugs. Identify and briefly explain as many bugs,
possible bugs, and design flaws as you can. Fix the program so that it works and is good
stylistically. Five correctly-executed changes receives full credit.

#include <assert.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

enum {MAX_LINE = 99};

typedef struct LineBuf {

char lb_line[MAX_LINE];

struct LineBuf *lb_next;

} LineBuf;

static LineBuf *head = NULL;

int main(int argc, char *argv[])

{

char line[MAX_LINE];

LineBuf *walk;

while (scanf("%d", line) == 1) {

LineBuf *lb = malloc(sizeof(LineBuf *));

assert(lb != NULL);

lb->lb_line = line;

lb->lb_next = head;

}

for (walk = head; walk != NULL; walk++)

printf("%s\n", walk->lb_line);

return(0);

}

9

this page left intentionally blank to answer the previous question

10

