
NAME:

Login name:

Computer Science 217
Midterm Exam
October 27, 2005
10am-10:50am

This test has six (6) questions – five regular and one “extra credit.” Put your name on every page,
and write out and sign the Honor Code pledge before turning in the test.

``I pledge my honor that I have not violated the Honor Code during this examination.''

 1

1 (15 pts)

2 (15 pts)

3 (15 pts)

4 (20 pts)

5 (35 pts)

Question Score

6 (5 bonus)

Total

QUESTION 1: Modulo Arithmetic and Character Output (15 POINTS)
Consider the following function:

void f(unsigned int n)
{
 do {
 putchar(‘0’ + (n % 10));
 } while (n /= 10);
 putchar(‘\n’);
}

1a) What is the output of f(837)? (5 points)

1b) Give a concise, one-sentence description of what this function does. (5 points)

1c) In which cases (if any) would the alternative implementation below produce a different
output than the original implementation? What outputs would the two versions give? (5 points)

void f(unsigned int n)
{
 for (; n; n /= 10)
 putchar(‘0’ + (n % 10));
 putchar(‘\n’);
}

 2

QUESTION 2: Pointers and Strings (15 POINTS)

Consider the following program:

#include <stdio.h>

void f(char *s) {
 char *p = s;

 while (*s)
 s++;

 for (s--; s>p; s--,p++) {
 char c = *s;
 *s = *p;
 *p = c;
 }
}

int main() {
 char a[20] = “feeling lucky”;

 f(a);
 printf(“%s\n”, a);
 return 0;
}

2a) What does the program print to standard output? (5 points)

2b) In function f(), why are p and s “char *” rather than “const char *”? (5 points)

2c) Give a concise, one-sentence description of what function f() does. (5 points)

 3

QUESTION 3: Short Answer (15 POINTS, 3 points each)

3a) What does printf(“%d, %d\n”, 5/3, 5 % 3) print to standard output?

3b) Rewrite the C declaration “float (*f)[25]” in English. For example, the declaration
“int *x” would be rewritten in English as “x is a pointer to an integer.”

3c) Rewrite the C declaration “float *(*foo[7])(int *)” in English. For example, the
declaration “int *x” would be rewritten in English as “x is a pointer to an integer.”

3d) In the memory layout of a UNIX process, what is the difference between the heap and the
stack sections? What is stored in the heap and what is stored in the stack? What is the difference
between the data and BSS sections?

3e) In the memory layout for a UNIX process, why does the heap grow from the top down and
the stack from the bottom up, instead of both growing from the top down or both growing from
the bottom up?

 4

QUESTION 4: Deterministic Finite Automata (20 POINTS)

A lexical analyzer is one of the first components of a compiler and is responsible for recognizing
the top-level elements of the program. The operations of the lexical analyzer can be represented
using a deterministic finite automaton (DFA). For this question, draw a DFA that determines
whether a string represents a floating-point number which may include a sign, an integer portion,
a fractional portion, and an exponent. The DFA analyzes one character at a time and reaches the
end of the string in a “success” state for inputs such as “-34”, “78.1”, “+298.3”, “-34.7e-1”,
“34.7E-1”, “7.”, “.7”, and “999.99e99”. The DFA ends in “failure” for inputs such as “abc”, “-
e9”, “1e”, “+”, “17.9A”, “0.38+”, “.”, and “38.38f9”.

Your DFA diagram should include a start state (labeled S) and one or more success states
(labeled F), and show only the valid transitions between states; that is, your diagram should not
include arcs to states that can never lead to a valid input. You can use the symbol “#” as a
wildcard that matches any one-digit number (e.g., ‘0’, ‘1’, …, ‘9’). As an example, consider a
DFA that reports “success” for an input that repeats the characters “ab” one or more times and
reports “failure” otherwise. That DFA would be drawn as:

The inputs “ab”, “abab”, and “ababab” would lead to a valid state, whereas “a”, “aba”, “abc”,
“789”, or “cabab” would not. On the next page, draw a DFA that recognizes floating-point
numbers. Please be neat.

S F

a b

a

 5

 6

QUESTION 5: Abstract Data Types (35 POINTS)

A queue is a first-in-first-out data structure. The Queue ADT offers a simple interface to clients
that creates a new queue, checks if a queue is empty, adds an item to the end of a queue, and
removes an item from the beginning of a queue. The queue.h file specifies the interface, and
the queue.c file has the code for implementing a Queue using a linked list, where the “head”
points to the first element in the list and the “tail” points to the last element. First, queue.h has

#ifndef QUEUE_INCLUDED
#define QUEUE_INCLUDED

typedef struct Queue_t *Queue_T;

extern Queue_T Queue_new(void);
extern int Queue_empty(Queue_T queue);
extern void Queue_add(Queue_T queue, void* item);
extern void* Queue_remove(Queue_T queue);

#endif

Then, queue.c has

#include <stdlib.h>
#include <assert.h>
#include "queue.h"

struct list {
 void* item;
 struct list *next;
};

struct Queue_t {
 struct list *head;
 struct list *tail;
};

Queue_T Queue_new(void) {
 Queue_T queue = malloc(sizeof *queue);
 assert(queue != NULL);
 queue->head = NULL;
 queue->tail = NULL;

 return queue;
}

along with the code for Queue_empty(), Queue_add(), and Queue_remove().

 7

QUESTION 5 (continued)

5a) Why is item defined as void* instead of a specific type like Item_T or int*? (5 points)

5b) Why is Queue_t declared in queue.c, rather than in queue.h? (5 points)

5c) Write the code for int Queue_empty(Queue_T queue), taking care to check using
an assert() that the input parameter is valid. The function returns 1 if the queue is empty
and 0 otherwise. (5 points)

5d) Write the code for void Queue_add(Queue_T queue) that adds the element to the
queue, allocating memory as needed. The code should include any necessary assert()
checks. (10 points)

 8

QUESTION 5 (continued)

5e) Write the code for void* Queue_remove(Queue_T queue) that removes the first
element in the queue and returns the associated item, returning memory as needed. The code
should include any necessary assert() checks. (10 points)

 9

QUESTION 6: C Puzzle (5 BONUS POINTS)

The code below was written to print twenty dash (‘-‘) characters in a row. However, the code
has a bug and prints dash characters indefinitely.

int i, n=20;

for (i=0; i < n; i--)
 printf(“-“);

Identify two ways to change just one character in the code (i.e., adding, removing, or modifying
a single character) such that the resulting code produces the correct output. Providing one
correct answer will result in half credit for the question. There are three known answers. This
question may take some time and is only worth five extra-credit points, so you should complete
the rest of the exam to your satisfaction before working on this question.

 10

	``I pledge my honor that I have not violated the Honor Code
	QUESTION 1: Modulo Arithmetic and Character Output (15 POINT
	QUESTION 2: Pointers and Strings (15 POINTS)
	QUESTION 6: C Puzzle (5 BONUS POINTS)

