
Midterm Examination
COS 217, Fall 2004

Your name: _________________________

Your NetID: _________________________

Your preceptor: ______________________

There are 5 problems on this examination, worth a total of 100 points. You have 50
minutes to complete this examination.

You are not required to comment your code in this exam unless what you have written is
difficult to understand.

This examination is open book and open notes, but no calculators or other electronic
devices are permitted.

For some of the problems, partial credit will be given if you can show your work in
arriving at solutions. But be brief.

Good luck!

Write out and sign the Honor Code pledge before turning in the test.

“I pledge my honor that I have not violated the Honor Code during this examination.

Problem Worth Earned
1 14
2 16
3 15
4 20
5 35

Total 100

1. Multiple choice questions. (14 points)

For each of the following questions, enumerate all applicable answers. (No explanation
is necessary.)

(a)

1 int i = 0;
2 int *p = &i;
3 /* insert printf() or scanf() statement here */

Suppose we insert one of the following statements on line 3, and compile the
resulting program (ignoring any compile time warnings, if any). Which of these
lines will result in either a fatal compile time error or a fatal run time error?

A. printf(“%d”, &i);

B. printf(“%d”, *i);

C. printf(“%d”, p);

D. printf(“%d”, &p);

E. printf(“%d”, *p);

F. scanf(“%d”, i);

G. scanf(“%d”, p);

H. scanf(“%d”, &p);

I. scanf(“%d”, *p);

(b) Which of the following type of files are guaranteed to continue to work when
they are copied from a Sun machine to an Intel PC?

A. *.java
B. *.class
C. *.c
D. *.s
E. *.o
F. a.out

(c) Which of the following statements are true?
A. It is a good idea to remove all the assert() statements (by

either deleting them or commenting them out in an editor) when
we are ready to release “production-quality” software to customers,
so that these assert() statements do not unnecessarily slow
down the released program.

B. It is a good practice to profile and optimize code as you write it, so
you can isolate performance problems early on.

C. A “stack trace” allows you to examine the values of the local
variables in the active procedure calls at the time the program is
stopped or terminated.

D. If you modify only a single .c file, it is always the case that none
of the other .c files that contribute to the same program would
need to be recompiled.

(d) If a user provides wrong input, which ones of the following are acceptable
behaviors of a “working” program.

A. Prints an error message and calls exit().
B. Prints an error message and calls abort().
C. Triggers an assert() statement, which provides a meaningful

feedback on what’s wrong, and then asks the user to try again.
D. Provides a core dump so the user can find out which parts of the

code are responsible for rejecting the input.

2. Scoping. (16 points)

Give the output of the following program (which is broken down into two files: f1.c
and f2.c).

 f1.c f2.c

#include <stdio.h>

extern int x;
static int y;

void s() {
 printf("s: %d %d\n",
 x, y);
}

main() {
 g(0);
 f();
 g(1);
 p();
 s();
}

#include <stdio.h>

int x;
static int y;

void f() {
 x = 2;
 y = 3;
}

void g(int a) {
 int x = 1;
 static int y;

 if (a == 0) {
 y = 0;
 } else {
 y += x;
 }
 printf("g: %d %d\n",
 x, y);
}

void p() {
 printf("p: %d %d\n",
 x, y);
}

3. Arrays and pointers. (15 points)

Suppose the above file is named f.c, and we type the following commands into a
Unix shell:

#include <stdio.h>

void f(void *p[]) {
 void *q;
 q = *p;
 *p = *(p+1);
 *(p+1) = q;
}

main(int argc, char **argv) {
 f((void **)argv);
 printf("%s\n", argv[0]);
}

% gcc f.c
% a.out 23 45

(a) Say with a single English sentence what function f() does.

(b) What’s the output produced by this program?

4. Dynamic memory. (20 points)

(Code continues on the next page.)

01 #include <stdio.h>
02 #include <stdlib.h>
03 #include <string.h>
04
05 #define MAX 100
06
07 static char *read_next_line(FILE *fp) {
08 char *p;
09
10 p = (char *) malloc(MAX);
11 if (p == NULL)
12 return NULL;
13
14 p = fgets(p, MAX, fp);
15 /* char *fgets(char *s, int size, FILE *stream);
16 fgets() reads in at most one less than size characters from
17 stream and stores them into the buffer pointed to by s.
18 Reading stops after an EOF or a newline. A '\0' is stored
19 after the last character in the buffer. fgets() return s on
20 success, and NULL on error or when end of file occurs while no
31 characters have been read. */
32 return p;
33 }
34
35 static char *find_max(char *s, char *t) {
36 char *max;
37
38 if (strcmp(s, t) >= 0)
39 max = s;
40 else
41 max = t;
42
43 return max;
44 }
45

46 void print_max_string_from_file (FILE *fp) {
47 char *p, *q, *r, *max1, *max2;
48
49 p = read_next_line(fp);
50 q = read_next_line(fp);
51 r = read_next_line(fp);
52
53 if (p == NULL || q == NULL || r == NULL)
54 return;
55
56 max1 = find_max(p, q);
57 free(p);
58 free(q);
59
60 max2 = find_max(max1, r);
61 free(max1);
62 free(r);
63
64 printf("The max of the 3 strings is <%s>\n", max2);
65
66 free (max2);
67 }

(a) Explain succinctly two ways that calling print_max_string_from_file()
can leak memory. (Give line numbers of the leaks.)

(b) Explain succinctly two ways dangling pointers can be referenced when
print_max_string_from_file() is called. (Give line numbers of the
dangling references.)

5. ADTs. (35 points)

You’re given the following interface of a symbol table ADT in a symtable.h file. (This
is the same interface as the one discussed in lectures.)

typedef struct SymTable *SymTable_T;

/* create a new, empty table. */
SymTable_T SymTable_new(void);

/* enter (key,value) binding in the table; else return 0 if already there */
int SymTable_put(SymTable_T table, char *key, void *value);

/* look up key in the table, return value (if present) or else NULL */
void *SymTable_get(SymTable_T table, char *key);

/* apply f() to every binding in the table ... */
void SymTable_map(SymTable_T table,
 void (*f)(char *key, void *value, void *extra),
 void *extra);

/* Return the number of bindings in table.
It is a checked runtime error for table to be NULL. */
int SymTable_getLength(SymTable_T table);

/* Remove from table the binding whose key is key. Return 1 if successful, 0 otherwise.
 It is a checked runtime error for table or key to be NULL. */
int SymTable_remove(SymTable_T table, char *key);

You are to add a new function to the symbol table interface:

SymTable_T SymTable_copy(SymTable_T table, ...);

This function makes a copy of the input symbol table and returns this new copy. The two
resulting symbol tables should be completely independent of each other, so for example,
the client could free all the memory associated in any way with the first table, or alter the
values stored in the first table, without affecting the second table in any way. (This is
called a “deep copy.”)

(a) Give the complete prototype (interface) of the SymTable_copy function.

(Hint: you may need extra arguments in addition to the old symbol table.)

(b) Give an implementation of the SymTable_copy function. Note that you
may not assume knowledge of how the existing symbol table ADT is
implemented (in terms of, for example, whether it is implemented as a linked
list or a hash table). (A correct answer could take less than 20 lines of code,
although we won’t penalize you if you use a few more.)

	Midterm Examination
	COS 217, Fall 2004

	Your name: _________________________
	Your NetID: _________________________
	Your preceptor: ______________________

