
NAME: 
 
Login name:                                                   
 
 
Computer Science 217 
Final Exam 
May 15, 2009 
1:30pm-4:30pm  
 
 
 
This test has eight (8) questions and thirteen (13) pages.  Put your name (or login-id) on every 
page, and write out and sign the Honor Code pledge before turning in the test.  
 

``I pledge my honor that I have not violated the Honor Code during this examination.''  

 
 
 
 
 

 
Question Score 

1 (8 pts)   

2 (10 pts)   

3 (12 pts)   

4 (20 pts)  

5 (10 pts)   

6 (10 pts)   

7 (10 pts)   

8 (20 pts)   

Total   

 1



QUESTION 1 Building a Program (8 POINTS, 1 point each) 
 
This question concerns the steps involved in creating a binary executable a.out for the 
following program: 
 

#include <stdio.h> 
 
/* This is my cool program */  
int main(void) { 

int i; 
 
scanf(“%d”, &i); 
while (i--) 
  printf(“i=%d\n”, i); 

  return 0; 
} 

 
 
The four main stages of creating a.out are pre-processing, compiling, assembling, and linking.  
For each operation, circle which component performs the task, where P stands for pre-processor, 
C for compiler, A for assembler, and L for linker. 
 
 
P   C   A   L      Inserts the contents of /usr/include/stdio.h 
 
 
P   C   A   L      Includes the code that implements scanf() 
 
 
P   C   A   L      Ensures that the first argument of printf() is of type “char *” 
 
 
P   C   A   L      Removes the comment “This is my cool program” 
 
 
P   C   A   L      Checks that “return 0” returns an integer 
 
 
P   C   A   L      Translates ‘i--‘ into the “decl” instruction  
 
 
P   C   A   L      Determines the argument for the “jmp” instruction to determine how far to jump 
                          to get the start of the while loop 
 
 
P   C   A   L      Determines the address to call to invoke the scanf() function 

 2



QUESTION 2: Memory Management (10 POINTS) 
 
2a)  Consider a computer system that has virtual memory with 32-bit addresses and a 16 KB 
page size.  How many bits are used to identify the byte offset in a page?  How many virtual 
pages can a process have? (2 points) 
 
 
 
 
 
 
2b) Which component is responsible for the following tasks, the underlying hardware (H) or the 
operating system (O)?  Please circle either “H” or “O” for each item. (4 points) 
 
 
H     O      Mapping virtual address into a physical address for pages already in physical memory 
 
H     O      Deciding which virtual page to “swap out” of physical memory on a “miss” 
 
H     O      Updating the page tables with new virtual-to-physical page mappings 
 
H     O      Preventing one user process from accessing the pages of another user process 
 
 
2c) For caching in a memory hierarchy, what is the motivation for a larger cache block size?  
Please check one answer.  (1 point) 
 
   ___ Temporal locality  
 
   ___ Spatial locality 
 
 
2d) For caching disk pages in main memory, what overhead is amortized by using large pages?  
Please check one answer.  (1 point) 
 
___  Slow disk seek time 
 
___  Low disk throughput 
 
 

2e) Why does implementing malloc() and free() with a single free list (with free blocks of 
different sizes) lead to a lot of virtual-memory page faults? (2 points) 
 
 
 

 3



QUESTION 3: Deterministic Finite Automata (12 POINTS) 
 
In this question, you will draw a deterministic finite automata (DFA) that accepts particular 
strings.  Please draw your DFA diagrams with a start state (marked with an incoming arrow) and 
success states (circled twice).  As an example, consider a DFA that reports “success” for an input 
that repeats the characters “ab” one or more times and reports “failure” otherwise.  The inputs 
“ab”, “abab”, and “ababab” would lead to success, whereas “a”, “aba”, “abc”, “789”, or “cabab” 
would not.  That DFA would be drawn as: 

a b 

a 
 

 
Draw a DFA that accepts only strings of a’s and b’s that have an even number of each character.  
For example, the DFA would accept the empty string, “aa”, “bb”, “aabb”, “abab”, and “ababbb”, 
but not “aab” or “aaaba”.  Ensure that your DFA has the minimum possible number of states. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 4



QUESTION 4: Reduced Instructions for Silly C (20 POINTS) 
 
The instruction set of a computer defines the basic operations it can perform, and all other 
operations must be performed by combining these operations together.  This question explores 
the challenges of “making do” with an instruction set with less functionality.  Rather than writing 
assembly-language programs, we envision a reduced version of C with limited functionality, and 
build functions that implement the missing operations. 
 
4a) Suppose C does not support the multiplication operation (e.g., “4 * 5”).  Write a function 
multiply() that performs multiplication of two unsigned integers, and returns the unsigned 
integer result.  Do not use multiplication, division, bit-wise operations, or any functions from 
libraries.  Make your code as short as possible. (6 points) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b) Suppose C does not have a left shift operator (e.g., “k << 3”).  Write a function lefty() that 
performs left shift on an unsigned integer, shifting an unsigned integer number of times.  Do not 
use multiplication, division, or bit-wise operations, or any functions from libraries.  Do not use 
the multiply() function from question 4a.  Make your code as short as possible.  (6 points) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 5



4c) Suppose C only supports one size of unsigned integers (unsigned) but you want to 
perform arithmetic on larger integers.  Define a big_unsigned data structure that consists of 
two unsigned integers corresponding to the upper and lower bits of a big_unsigned number.  
Implement a function that performs addition on two big_unsigned numbers and returns the 
big_unsigned result.  Use only comparison operations and unsigned arithmetic.  (8 points) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 6



QUESTION 5: Process Control (10 POINTS) 
 
5a) Consider the similarities and differences between calling a function and performing a context 
switch.  Circle whether the following statements are true for a function call (F), a context switch 
(C), or both (B).  (3 points) 
 
F   C   B    Values stored in registers are saved so they can be restored later 
 
 
F   C   B     Control of the computer transfers to the operating system 
 
 
F   C   B    The instruction pointer (EIP) changes to execute instructions in a new location 
 
 
5b) A call to fork() creates a child process that inherits a copy of the parent’s virtual address 
space.  The virtual address space is quite large, so copying every byte would be quite time 
consuming.  How is this overhead avoided? (3 points) 
 
 
 
 
 
 
5c) Give two examples of why a process might leave the “running” state. (2 points)  
 
 
 
 
 
 
 
5d) Suppose a user types 
 
            echo foobar | wc –l  
 
at the UNIX prompt.  What are stdin and stdout for the echo and wc processes? (2 points)  
 
 
 
 
 
 
 

 7



QUESTION 6: Review (10 POINTS) 
 
6a) If the character ‘/0’ can be used to signify the end of a string, why can’t it be used as a way 
to signify the end of a file (instead of using the integer EOF)? (2 points) 
 
 
 
 
 
6b) Consider the following code, where i and j are unsigned integers: 
 
          i = 7; 
    printf(“%d\n”, (i=j) ? 0 : j); 
 
where j has already been assigned a value.  Give a concise description of what the code prints to 
standard output.  (2 points) 
 
 
 
 
 
6c) Consider the following operations in C where i and k are unsigned integers:  
 
        i = ((((k/4) * 4) >> 2) << 2); 
 
Rewrite to compute the same result as succinctly as possible. (2 points) 
 

 
 
 
6d) Give an example of a programming error that is caught by the preprocessor, and another that 
is caught by the compiler. (2 points) 
 
 
 
 
6e) What does 
 
         printf(“%x %x\n”, 0xfad – 0xcab, 0xfad & 0xdff); 
 
print to standard output?  (2 points) 
 
 
 
 

 8



QUESTION 7: Reading Fork Code (10 POINTS) 
 
This question concerns the following program: 
 

#include <stdio.h> 
#include <sys/types.h> 
#include <unistd.h> 
 
void cos217(void) { 
  pid_t pid; 
 
  if (!(pid = fork())) { 
    fork(); 
    fork(); 
    fork(); 
    printf("cos217\n"); 
  } 
} 
 
int main(void) { 
  cos217(); 
  printf("cos217\n"); 
  return 0; 
} 

 
 
7a) How many times does this program print “cos217”? (4 points) 
 
 
 
 
 
7b) When running the program, sometimes parts of the output look like this: 
 
                cos217cos217 
 
                cos217 
 
Why does this happen, and how can it be prevented? (6 points) 
 
 
 
 
 
 

 9



QUESTION 8: Code Reading, and Writing (20 POINTS) 
 
8a) Consider the following code: 
 

… 
double* x; 
 
x = (double *) malloc(sizeof(double*)); 
&x = 3.145; 
… 

 
Identify two bugs in the code, and rewrite the code to be correct. (2 points) 
 
 
 
 
 
 
 
 
8b) Consider the following code: 
  

char a[10][20][30]; 
int i, j, k, sum = 0; 
 
… 
for (j=0; j<20; j++) 
  for (i=0; i<10; i++)  
    for (k=0; k < strlen(a[i][j]); k++) 
  sum += (a[i][j][k] == 'J'); 

 
Give a high-level description of what this code computes (i.e., what does “sum” store at the 
end)? What are two reasons why this code runs slowly?  Rewrite the code to run faster. (4 points) 
 
 
 
 
 
 
 
 
 
 
 
 

 10



8c) Consider the following code for swapping two numbers 
 

void swap(int i, int j) { 
int t; 
 
t = i; 
i = j; 
j = t; 

} 
 
int main(void) { 

int a = 5, b = 10; 
printf(”a=%d, b=%d\n”, a, b); 
swap(a,b); 
printf(“a=%d, b=%d\n”, a, b); 

} 
 
What does the program produce as output?  What is the bug?  Rewrite the code with the bug 
fixed.  Show the modification of main() to call your new version of swap(). (3 points) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 11



8d) This question follows up on question 8c.   Rewrite the swap code to be “generic” (i.e., to 
work on any type of input data), and show the necessary code to call your new version of 
swap() to swap two integers.   (6 points) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 12



8e) Consider the following function foo(): 
 

int foo(unsigned num){ 
int i; 
 
for (i = 0; num; i++) 
  num &= (num-1);     
 
return i; 

} 
 
State concisely what function foo() returns.  Do not describe how the function works, just what 
it computes – your answer should be no more than 10 words long. (5 points) 
 

 13


	``I pledge my honor that I have not violated the Honor Code during this examination.'' 

