
NAME:

Login name:

Computer Science 217
Final Exam
Saturday May 24, 2008
9am-12:00pm

This test has six (6) questions, with points ranging from 10 to 20. Put your name on every page,
and write out and sign the Honor Code pledge before turning in the test.

``I pledge my honor that I have not violated the Honor Code during this examination.''

Question Score

1 (20 pts)

2 (20 pts)

3 (10 pts)

4 (20 pts)

5 (15 pts)

6 (15 pts)

Total

 1

QUESTION 1: Good Bug Hunting (20 POINTS)

1a) This C code should print “Equal” when the two integers are equal, and “Not equal”
otherwise. Indicate all cases where the wrong answer is printed, and then fix the bug. Assume
variables i and j are integers that have already been set to some value. (5 points)

if (i = j)
 printf(“Equal\n”);
else

printf(“Not equal\n”);

1b) To support generic implementations of functions like sort(), we need comparison
functions for different data types. The function should return a positive integer if the first
argument is larger than the second, a zero when the two numbers are equal, and a negative
integer otherwise. The function CompareFloats(), which compares two float numbers, has
a bug. When does the function produce the wrong answer? Fix the bug by providing a correct
implementation. You need only rewrite the part of the code that is in error. (5 points)

int CompareFloats(void *p1, void *p2) {
 float *fp1 = (float *) p1;
 float *fp2 = (float *) p2;
 return (int) (*fp1 - *fp2);
}

 2

1c) The function oddeven() counts the number of times two adjacent bits (odd and even bits)
have different values. For example, the number “00 11 01 00” should produce a 1 because of the
single occurrence of “01”, whereas the number “01 10 01 10” should produce a 4 because every
pair of bits has the odd and even bit disagree. The function is nearly correct but has a bug. What
is it? Fix the bug by making a small modification to the existing code. Do not introduce any “if”
statements – everything should be implemented using bit-wise operations. (5 points)

int oddeven(unsigned int x) {
 int b;

 for (b=0; x!=0; x>>=2)
 b += ((x & 1) ^ (x & 2));

 return b;
}

1d) This C code should remove the last character of a string str[]. Assume the string is
already allocated enough space in memory (and ends properly with a ‘\0’). Identify the bug and
fix both the specification of what the code does and the code itself accordingly. (5 points)

int i=0;

while (str[i] != ‘\0’)
 i = i + 1;

str[--i] = ‘\0’;

 3

QUESTION 2: Short and Sweet (20 POINTS)

2a) The getchar() function returns an int instead of a char to have enough space to
encode the End Of File (EOF). Why can’t this be handled more elegantly by reserving one
of the encodings of a character (e.g., an ASCII code, in the case of ASCII) for EOF? (3 points)

2b) Virtual memory divides the address space into pages of a certain size (e.g., 4 KB). What is
the advantage of a large page size over a small page size? What is the disadvantage? (2 points)

2c) Why are the page tables kept in the operating system’s virtual address space? Why are the
pages that store the page tables non-swappable (i.e., “pinned” in physical memory)? (4 points)

2d) In machine language, a jump instruction (such as jle or jge in the IA32 language) often
expresses the new address as a displacement from the current Instruction Pointer, rather than an
absolute address. What is an advantage of representing the address as a displacement? (2 points)

 4

2e) Function calls and system calls, while conceptually similar, are implemented somewhat
differently. List one similarity and one difference in how they are executed, and why. (4 points)

2f) What are two kinds of references in a “.o” file (generated by the assembler) that may
remain unresolved, and hence need to be resolved by the linker. (2 points)

2g) In implementing malloc() why is a “good fit” strategy better than a “first fit” strategy,
even though it may require sequencing through a larger collection of free blocks before selecting
the block to use? Why is a “good fit” strategy preferable over a “best fit” strategy that finds the
free block that wastes the least amount of space? (3 points)

 5

QUESTION 3: Put a Fork in It (10 POINTS)

This question concerns the following program named cos217.c.

#include <stdio.h>
#include <unistd.h>

void cos217(void) {
 pid_t pid;

 fflush(NULL);
 if (!(pid = fork())) {
 fflush(NULL);
 fork();
 printf("cos217\n");
 }
}

int main(void) {
 cos217();
 printf("cos217\n");
 return 0;
}

3a) How many times does the program print “cos217”? Explain your answer. (4 points)

3b) The UNIX “cat” command concatenates files and prints to standard out. The UNIX “wc”
command prints the number of lines, words, and bytes in a file; the “-l” option prints only the
number of lines. What is the output of “cat cos217.c cos217.c | wc –l”? Note that
the argument to “cat” is the cos217.c file, not the output produced in question 3a. (3 points)

3c) What is the output of “cat cos217.c cos217.c | wc –l | wc –l”? (3 points)

 6

QUESTION 4: Can’t Stop This Program We Started (20 POINTS)

Write a program that, every time the user enters “control-C”, prints a line of `*’ characters,
where the number of asterisks correspond to the number of seconds in wallclock time since the
last time “control-C” was entered. (For the first “control-C”, print asterisks corresponding to the
number of seconds since the program began executing.) The program should terminate, without
printing a line of asterisks, when a “control-C” is entered after 80 or more seconds have elapsed
without the user entering a “control-C”. Round all time measurements up to the nearest integer
number of seconds (e.g., 79.2 to 80, and 36.8 to 37). The following function and data structure
are provided as reference:

#include <sys/time.h>

int gettimeofday(struct timeval *tp);

The gettimeofday() function gets the system’s notion of the current time,
expressed in elapsed seconds and microseconds since 00:00 Universal Coordinated Time,
January 1, 1970. The tp argument points to a timeval structure, which includes the
following members:

long tv_sec; /* seconds since January 1, 1970 */
long tv_usec; /* and microseconds */

which are assigned by the function. In practice, the gettimeofday() function has a
second argument that is typically ignored; we have omitted that argument in the interest
of simplicity. Upon successful completion, 0 is returned. Otherwise, -1 is returned.

4a) Write a function “int timediff(struct timeval t1, struct timeval
t2)” that returns the time difference between t2 and t1 in seconds, rounded up. You may
assume that t2 corresponds to a time larger than t1. Please implement the “rounding up”
yourself, rather than calling the ceil() function from the math library. (6 points)

 7

4b) Write the rest of the program, assuming the timediff() function is available. To keep
the code simpler, feel free to use global variables and to assume that a “control-C” does not
occur while the signal handler is handling an earlier control-C. (14 points)

 8

QUESTION 5: RISCy Business (15 POINTS)

The Intel Architecture has hundreds of assembly-language instructions and numerous registers
and addressing modes. Consider instead a simple computer with 8-bit addresses, an 8-bit-wide
memory, ten two-byte instructions, and two registers (the program counter PC and an
accumulator A). Rather having a keyboard and monitor, input comes from eight binary switches
and output goes to eight Light Emitting Diodes (LEDs). For example, the IN command loads the
register A with the value of the input switches, and the OUT command displays the contents of
register A on the LEDs (e.g., if the rightmost bit of A is a one, the rightmost LED is lit;
otherwise, the LED is not lit). The ten instructions are listed below. Some of the instructions
have an operand (referred to as “n” below) stored in the second byte of the instruction. For more
readable code, the “jump not zero” instruction JNZ and the “load instruction” LDI can refer to a
label (e.g., “JNZ FOO” or “LDI FOO”) instead of a hexadecimal number. You may use labels
such as “FOO:” to refer to the address of a particular instruction in memory.

IN: Load A with the value of the input switches
OUT: Display the contents of A on the output LEDs
LDI n: Load A with the value n
STORE (n): Store the contents of A in Memory[n]
READ (n): Read the contents of Memory[n] into A
JMP: Load the contents of A into the program counter PC
JNZ n: If A is not 0, then load PC with the value n
SHR: Right shift A by one bit, putting a 0 in the top bit
SHL: Left shift A by one bit, putting a 0 in the bottom bit
NANDM (n): Compute the bit-wise AND of A and Memory[n], and
 store the one’s complement of the result back in A

(Note that the two shift instructions differ from a related question on the fall 2005 final exam.)
For example, the short program

FOO: IN
 STORE (0x85)
 IN
 OUT
 READ (0x85)
 OUT
 LDI FOO
 JMP

reads two values from the switches and displays them on the LEDs in reverse order (temporarily
storing the first value in Memory[0x85], where 0x85 is in hexadecimal notation), and repeats
forever. The questions below relate to the assembly-language instructions defined for this ten-
instruction machine.

 9

5a) Write a program to display (on the output LEDs) the inverse of the bits entered at the input
switches. For example, the input at the switches were “10101100”, the output should be
“01010011” on the LEDs. (5 points)

5b) Write a program that reads an 8-bit input from the switches and displays one bit at a time in
the last bit position of the output LEDs, starting from the rightmost input bit and stopping once
all remaining bits are zeroes. For example, an input of “00010101” would be displayed as six
consecutive outputs “00000001”, “00000000”, “00000001”, “00000000”, “00000001”, and
ending with “00000000” since the leftmost three bits are zeroes. The input “00000000” would be
displayed simply as “00000000” since all eight bits are zeroes. Please explain/document your
code. Use a loop (and a jump instruction to return to the beginning of the loop) to sequence
through the input bits, rather than writing separate code to handle each bit. (10 points)

 10

Continue your answer to question #5b.

 11

QUESTION 6: Even Steven (15 POINTS)

A DFA cannot be designed to accept any string. For example, you cannot design a DFA to
recognize a string with an equal number of zeroes and ones. However, you can design a DFA
that accepts strings with an equal number of occurrences of 01 and 10. Draw a DFA that accepts
such strings, assuming each character is either a 0 or a 1. For example, the DFA should report
success for: the empty string (which has no occurrence of either 01 or 10), 010 (which has one
instance of 01 and one of 10), 0111111110 (which has one of each), 1000000001 (which has one
of each), and 10101 (which has two of each). The DFA should report failure for 01111, 10000,
01111101, and 11111111000000. Please draw neatly.

Draw neatly and use as few states as possible. Your DFA diagram should include a start state
(marked with an incoming arrow) and success states (circled twice). As an example, consider a
DFA that reports “success” for an input that repeats the characters “ab” one or more times and
reports “failure” otherwise. That DFA would be drawn as:

a b

a

The inputs “ab”, “abab”, and “ababab” would lead to success, whereas “a”, “aba”, “abc”, “789”,
or “cabab” would not. On the next page, draw your DFA to report success for a string with an
equal number of occurrences of 01 and 10, where each character is either a 1 or a 0.

 12

Put your answer to question #6 here:

 13

	``I pledge my honor that I have not violated the Honor Code during this examination.''
	Question
	Score
	1 (20 pts)
	
	2 (20 pts)
	
	3 (10 pts)
	
	4 (20 pts)
	
	5 (15 pts)
	
	6 (15 pts)
	
	Total
	
	QUESTION 1: Good Bug Hunting (20 POINTS)
	QUESTION 3: Put a Fork in It (10 POINTS)
	QUESTION 4: Can’t Stop This Program We Started (20 POINTS)

