
Princeton University 
COS 217:  Introduction to Programming Systems 

Fall 2008 Final Exam Answers 
 
The exam was a 3-hour, open-book, open-notes exam. 
 
Question 1 Part A 
 
FALSE -- This would provide less flexibility than using the stack with call and return 
instructions. For example, you couldn't have one function being called from two different 
locations. 
 

Question 1 Part B 
 
TRUE -- Registers are typically the fastest kind of memory in the machine. 
 

Question 1 Part C 
 
FALSE -- Underflow, when not an attack, is a programmer error. 
 

Question 1 Part D 
 
FALSE -- The word size determines how much large a number can be used, regardless of 
which endianness is used. 
 

Question 1 Part E 
 
FALSE -- The registers are typically fixed when the processor's instruction set is 
designed. 
 

Question 1 Part F 
 
FALSE -- The wait system call harvests return values from child processes, and should be 
used as appropriate to avoid zombies. 
 

Question 1 Part G 
 
TRUE -- Memory fragmentation wastes memory, which can lead to slower programs. 
 

Question 1 Part H 
 
FALSE -- They are undefined for negative values, not for positives. 
 

Question 1 Part I 
 
FALSE -- Signals are used by the OS to inform the process about something. 
 

Question 1 Part J 
 
TRUE -- Page tables typically hold information about the page permissions, locations, 
etc. 
 

Question 2 Part A 
 
It will have several side effects: it will no longer initialize the space to zero, it 
will use a longer machine language encoding, and it will set the flags. The execution 
time may also be different, depending on circumstances, so if you said either faster or 
slower and gave a plausible rationale, it was accepted. 
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Question 2 Part B 
 
See above. 
 

Question 2 Part C 
 
Best fit could reduce the amount of fragmentation generated, which could lead to more 
efficient use of memory. 
 

Question 2 Part D 
 
Best fit may take more time to scan the free list compared to first fit, and it may be 
the case that best fit leaves too little space for reallocating the buffer in the event 
the process calls realloc often. 
 

Question 2 Part E 
 
The page faults -- disk is a few orders of magnitude slower than RAM, so this would 
dominate the program's performance. 
 

Question 2 Part F 
 
Registers that a function must save before using, and then restore before returning. 
 

Question 2 Part G 
 
The caller-saved registers allow the called function a little scratch space without 
having to push/restore them. If the function needs more registers, it can save the 
callee-saved registers and then use them. Caller-saved also allows for greater 
performance if the caller can avoid keeping needed values in them before calling another 
function. 
 

Question 3 Part A 
 
The formal parameter that is passed to the function. 
 

Question 3 Part B 
 
A local variable whose value is eventually returned. 
 

Question 3 Part C 
 
It re-enters the loop if the current value of the parameter is greater than zero. 
 

Question 3 Part D 
 
If it fails the test, that means that the low order bit was not equal to zero. In other 
words, the parameter was odd. 
 

Question 3 Part E 
 
The parameter is odd, and its value is being added to the local variable. 
 

Question 3 Part F 
 
Brute-force answer: This function returns the sum of all odd numbers between zero and the 
value passed in to it. More elegant: If you think about what happens when you sum a bunch 
of odd numbers starting at 1, you end up with squares. 
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Question 4 
 
The array commands should end with a NULL value after quota -- add it. 
 
Need to call signal() to set the signal handler. Call signal(SIGCHLD, SigChildHandler) 
before the loop entry. Given that there was a correctly-written signal handler, this 
should have been a reasonable clue that having the parent call wait after each fork was 
not the desired goal. However, even that was accepted. 
 
The fork system call does not take a parameter -- remove it. 
 
The array args should be of type (char *) instead of just char – add the asterisk. 
 
After a successful execvp, the new program is executing, so the test and printf do 
nothing -- since you can't indicate success, just get rid of the test and printf. 
 
If you said that the fork command is not checked for failure, that was accepted only if 
you could explain how to fix the bug correctly. That fix, however, required identifying 
the problem that this case was not specified. 
 
If you said that execvp was not checked for failure, you had to identify that this would 
then cause the child to also start forking processes, leading to a fork bomb. 
 
If you said that sleep should just be called once for 10 seconds, you have actually made 
the program incorrect - the sleep call them gets interrupted by SIGCHLD almost 
immediately, and almost never sleeps for 10 seconds. 
 

Question 5 Part A 
 
There were several possible scenarios that came up during class, some of which were a 
better fit for this question than others. 
 
One case is as follows: 
a) The process frees a large chunk of memory in the middle of the heap. 
b) The malloc library can't give it back to the OS, since it's not at the end of the 
heap. 
c) The OS swaps those pages out to disk due to memory pressure. 
d) The process asks for a large chunk of memory, and the library gives it the free chunk. 
e) When the process starts using the memory, the OS brings back the useless pages from 
disk.  
 
In a scenario where the library could have told the OS that those pages are useless, the 
OS could have just scrapped them, and if the process uses them again, the OS could just 
fill a page with zeros instead of reading it from disk. 
 
Another scenario, which is related but not quite on target, is to notice that storing 
free list pointers in the free blocks themselves causes those pages to be accessed 
frequently just for list traversals. When that happens, the OS thinks that memory is 
being used, which needless increases memory pressure. Worse, though, would be if those 
pages somehow got swapped out -- then the next time the free list is traversed, the 
malloc library would suffer a big performance hit as those pages got swapped back in. 
This is why modern allocators typically keep the free list in separate memory than the 
data blocks itself. Note that this explanation is not a perfect answer to the question, 
since these decisions could still be made with a system that used brk/sbrk. 
 
Another possible answer that would get partial credit is to observe that a program might 
want to read a very large file but not modify the contents of that file. If the program 
uses malloc, a lot of memory gets used to copy something from disk, and if there's memory 
pressure, the OS has no way of knowing that the data isn't modified from what's already 
on disk. Those pages then get written back to swap. Instead, with memory-mapped files, 
the OS could just give up those pages, since they can be pulled back from the file itself 
when needed. In this scenario, the bad interaction with brk/sbrk occurs because the 
address space for memory-mapped files has to come from somewhere, and it's typically 
placed between the heap and stack. While stacks are more or less expected to be 
contiguous, there's nothing that says the heap as a whole has to be in contiguous memory, 
so if a malloc library only uses brk/sbrk, it may run out of address space sooner than if 
it used 
mmap. 
 

Page 3 of 4 



Question 5 Part B 
 
Some stack-smashing attacks rely on placing instructions onto the stack, and then 
executing those instructions. So, if you were to disable instruction execution on stack 
pages, you could defeat stack-smashing attacks that used that exact mechanism. However, 
that would not be enough to defeat stack-smashing attacks in their entirety. 
 
The attacks would simply have to find another source of convenient instructions and use 
them. One possibility is the program itself – if there are already routines in the 
program that can cause damage, change passwords/permissions, or otherwise allow arbitrary 
commands, then the necessary arguments can be placed on the stack, and the relevant piece 
of code can be used as the return address. 
 
In the event that the program itself may not have the right code, the other approach is 
to use code in the C library, known as a return-to-libc attack. Of particular interest 
would be something like the system() function, which allows arbitrary commands to be 
executed. So, the command is placed on the stack, and the return address is set to the 
entry of system(). 
 

Question 5 Part C 
 
One simple approach is to place known values in the header and footer of each buffer 
allocated. These values could be fixed, or they could be calculated based on the location 
and/or size of the buffer. The idea is that these values could be checked, either 
periodically, or on calls to free or realloc. If these values have changed, it means that 
there's been an overflow/underflow. In the case that these values are checked only during 
free or realloc, the overhead is constant per call.  In the event that all of these 
values are checked periodically, the overhead grows with the number of items allocated. 
This approach does not catch all possible overflows/underflows. For example, if the 
overflow writes starting at N bytes before or after the buffer, then the header/footer 
must be more than N bytes large to catch the overflow/underflow. In general, any overflow 
or underflow that is discontiguous and larger than the size of the header or footer may 
be missed. 
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