
NAME:

Login name:

Computer Science 217
Final Exam
January 25, 2006
1:30-4:30pm

This test has six (6) questions. Put your name on every page, and write out and sign the Honor
Code pledge before turning in the test.

Please look through all of the questions at the beginning to help in pacing yourself for the exam.
The exam has 100 points and lasts for 180 minutes, so the time spent per question should be less
than twice its point value.

``I pledge my honor that I have not violated the Honor Code during this examination.''

1 (25 pts)

2 (20 pts)

3 (20 pts)

4 (10 pts)

5 (10 pts)

Question Score

6 (15 pts)

Total

 1

QUESTION 1: Short Answer (25 POINTS)

1a) Identify two syntax errors and one semantic error in the function foo() below, which tries
to print an integer, along with its square and cube. Clearly identify which errors are syntax
errors, and which one is the semantic error, and show the corrections that should be made. (2
points)

int foo(int n) {
 int n2, int n3;
 /* This function is busted
 n2 = n * n;
 n3 = n2 * n2;
 printf(“n=%d, n^2 = %d, n^3 = %d\n”, n, n2, n3);
 return 0;
}

1b) What output does this fragment of code produce? (2 points)

#define FORMAT “%s is a string”
printf(FORMAT, FORMAT);

1c) Suppose that you call scanf(“%f%d%f”, &x, &i, &y) where x and y are float
variables and i is an int. If the user enters 12.3 45.6 789, what will be the values of x, i,
and y after the call? (2 points)

1d) What does the following code print to stdout? (3 points)

 2

printf(“%d\n”, ((~3) ^ (~1)) + (4 >> 1));

1e) What does mystery(6) print to the stdout? (3 points)

void mystery(int i) {
 if (i) {
 mystery(i/2);
 putchar(‘0’ + (i % 2));
 }
}

1f) Give a short, high-level description of what the mystery() function does. (2 points)

1g) Compute the result of “65-14” in eight-bit binary arithmetic, using 2’s complement
arithmetic, and translate the result back into decimal form. Show your work. (3 points)

1h) Explain how a virtual address is mapped to a physical address. Assume the page has already
been brought into main memory. (2 points)

 3

1i) What is the difference between a function and a system call? (2 points)

1j) Why do the functions in <stdio.h> do buffering? When should a programmer call
fflush()? (2 points)

1k) What is the difference between the SIGALRM and SIGPROF signals? (2 points)

 4

QUESTION 2: Signals (20 POINTS)

Write a program that enthusiastically prints the following output:

 10… 9… 8… 7… 6… 5… 4… 3… 2… 1… Happy New Year!
 10… 9… 8… 7… 6… 5… 4… 3… 2… 1… Happy New Year!
 10… 9… 8… 7… 6… 5… 4… 3… 2… 1… Happy New Year!
 …

over and over again, even if the user types Cntl-C to try to make it stop. After printing “10… ”,
the program should print each element (a number with three dots, or the phrase “Happy new
year!”) one second (in wall-clock time) after printing the previous item, and then immediately
print “10…” and so on. The user should be able to stop the program only if Cntl-C is typed
twice within the same countdown, i.e., twice between the print of “10…” and “Happy New
Year!” on the same line. Please modularize your code and use #defines and comments where
relevant for more a more readable and extensible; comments make it easier to achieve partial
credit. Rather than using the sleep() system call, implement the one-second countdowns using a
signal handler. You may want to write pseudocode on a separate sheet of paper before writing
your final answer.

 5

 6

QUESTION 3: Assembly Language (20 POINTS)

The Intel Architecture has hundreds of assembly-language instructions and numerous registers
and addressing modes. Consider instead a simple computer with 8-bit addresses, an 8-bit-wide
memory, ten two-byte instructions, and two registers (the program counter PC and an
accumulator A). Rather having a keyboard and monitor, input comes from eight binary switches
and output goes to eight LEDs. For example, the IN command loads the register A with the value
of the input switches, and the OUT command displays the contents of register A on the LEDs
(e.g., if the rightmost bit of A is a one, the rightmost LED is lit; otherwise, the LED is not lit).
The ten instructions are listed below. Some of the instructions have an operand (referred to as
“n” below) stored in the second byte of the instruction. For more readable code, the “jump not
zero” instruction JNZ and the “load instruction” LDI can refer to a label (e.g., “JNZ FOO” or
“LDI FOO”) instead of a hexadecimal number.

IN: Load A with the value of the input switches
OUT: Display the contents of A on the output LEDs
LDI n: Load A with the value n
STORE (n): Store the contents of A in Memory[n]
READ (n): Read the contents of Memory[n] into A
JMP: Load the contents of A into the program counter PC
JNZ n: If A is not 0, then load PC with the value n
SHR: Right shift A by one bit, replicating the sign bit
SHL: Left shift A by one bit, putting a 0 in the bottom bit
NANDM (n): Compute the bit-wise AND of A and Memory[n], and
 store the one’s complement of the result back in
 Memory[n] [this is equivalent to
 “Memory[n] = ~(A & Memory[n])” in C]

For example, the short program

FOO: IN
 STORE (0x85)
 IN
 OUT
 READ (0x85)
 OUT
 LDI FOO
 JMP

reads two values from the switches and displays them on the LEDs in reverse order (temporarily
storing the first value in Memory[0x85], where 0x85 is in hexadecimal notation), and repeats
forever. The questions below relate to the assembly-language instructions defined for this ten-
instruction machine.

 7

3a) What addressing mode does LDI and JNZ use? What addressing mode does STORE,
READ, and NANDM use? (3 points)

3b) The SHR instruction does an arithmetic shift, in that it replicates the sign bit. For example,
the SHR instruction would convert the binary number “0000 1110” (0x0E) to “0000 0111”
(0x07), but would convert the binary number “1111 0000” (0xF0) to “1111 1000” (0xF8) to
implement signed arithmetic. In contrast, a logical shift would convert “1111 0000” (0xF0) to
“0111 1000” (0x78). Since this machine does not have a logical-right-shift instruction, an
assembly language programmer (or a compiler) would need to implement it using multiple
assembly-language instructions. Write the assembly-language code for a logical right-shift
operation on the contents of Memory[0x80] and storing the result back in Memory[0x80]. You
may assume that any memory locations (other than 0x80) may be used for reading and writing
temporary values. Hint: your program should not need more than ten lines of assembly-language
code and may need to use NANDM more than once to manipulate the bits. (7 points)

 8

3c) Write a program that lights a single LED in each step, starting with the rightmost LED,
moving to the left one LED at a time, and then returning back to the right, repeating indefinitely.
That is, the program should first illuminate only the rightmost LED, and then illuminate only the
second-to-last LED, and so on, continuing all the way to the left and then returning all the way to
the right, and so on. For example, the lights should cycles as follows:

 00000001
 00000010
 00000100
 00001000
 00010000
 00100000
 01000000
 10000000
 00000000
 10000000
 01000000
 00100000
 00010000
 00001000
 00000100
 00000010
 00000001
 00000000
 00000001
 00000010
 ….

You may use labels such as “FOO:” to refer to the address of a particular instruction in memory,
and refer to that label in other instructions (e.g., “LDI FOO”). For this question, assume the
language does have a logical shift right command (called LSHR) that operates on the register A.
The program can be written on the next page. (10 points)

 9

Write your answer to question #3c here:

 10

QUESTION 4: Deterministic Finite Automata (10 points + 2 extra credit)

You have been asked to write a program that inspects an ASCII string (input via stdin) for the
occurrence of the string “nano” anywhere in the string. For example, the inputs “banano” and
“banananonano” have the string “nano” at least once, but the string “bananananashanana” does
not. Draw a deterministic finite automaton that recognizes the substring “nano”, showing and
labeling all transitions (using the word “other” to label the transitions for any characters not
otherwise specified, and “all” to label transitions taken for all characters) and clearly indicating
the initial state with S (start) and accepting state(s) as F (finish). Please draw neatly. (Extra
credit of two points: Draw the DFA with no arcs intersecting each other.)

 11

QUESTION 5: Make (10 points)

Suppose you are given this makefile:

myprog: myprog.o one.o two.o three.o four.o
 gcc -o myprog myprog.o one.o two.o three.o four.o
myprog.o: myprog.c
 gcc -c myprog.c
one.o: one.c
 gcc -c one.c
two.o: two.c two.h four.h
 gcc -c two.c
three.o: three.c four.h
 gcc -c three.c
four.o: four.c four.h
 gcc -c four.c

Show the commands executed by make each time it is invoked in this sequence. Assume that
the working directory contains all .h and .c files, the makefile, and no other files. Note that the
touch command changes the date/time stamp of the given file to the current date/time, just as if
the given file had been edited. (five parts, 2 points each)

$ make

$ touch myprog.c
$ make

$ make

$ touch two.h
$ make

 12

$ touch four.h
$ make

 13

QUESTION 6: Memory Management (15 points)

UNIX has a command named tail. In its simplest form, tail reads lines from stdin until end-
of-file, and writes the last ten of the lines to stdout. Thus it prints the "tail" of stdin to stdout.

The program shown below is an attempt to implement that simple form of tail. It contains
several logic and stylistic errors. On the next page, please rewrite the program to eliminate those
errors. You may assume that no line contains more than 255 characters, including the '\n'. You
need not write comments.

Note: The program could be made more efficient by using a circular queue to avoid moving
elements within the array. Your rewritten program should not use a circular queue. Instead it
should move elements within the array as the given program does

#include <stdio.h>

int main(void)
{
 char *pcLine;
 char *ppcLines[10];
 int i;

 for (i = 0; i < 10; i++)
 ppcLines[i] = NULL;

 while (fgets(pcLine, 256, stdin) != NULL)
 {
 for (i = 0; i < 9; i++)
 ppcLines[i] = ppcLines[i+1];
 ppcLines[9] = pcLine;
 }

 for (i = 0; i < 10; i++)
 if (ppcLines[i] != NULL)
 fputs(ppcLines[i], stdout);

 return 0;
}

 14

Write your answer to question #6 here:

 15

	``I pledge my honor that I have not violated the Honor Code
	QUESTION 1: Short Answer (25 POINTS)
	QUESTION 2: Signals (20 POINTS)

