
COS 217 Final Exam

Princeton University, Fall 2002

January 23, 2002

Your name:

Unix login:

Precept number: 1 2 3

Score Possible

1 13

2 15

3 12

4 20

5 20

6 20

Total 100

Write and sign the honor pledge:

1

1 Assembly language

Translate the following function from C to Sparc assembly language.

int f (int *a) {
int i;
int s=0;
for (i=0; a[i]!=0; i++) {
s += a[i];

}
return s;

}

2

2 Data structures for syntax trees

A. Write tagged union data structure definitions in C to represent abstract
syntax trees for the following grammar. Assume that func is a function name
(char*) and that value is a double-precision floating point value.

exp ::= func(exp)
exp ::= exp+exp
exp ::= value

The first rule means that one kind of “exp” has two subcomponents, a
function-name and another exp.

3

B. Write three allocation/initialization functions for your data structure. It
is not necessary to make copies of strings. Do something to help defend against
a brain-damaged client program.

4

3 Machine language

Write a function that examines a seqence of N Sparc machine instructions and
returns 1 iff register d is the destination of any addcc instruction.

addcc
10 rd 010000 rs1 i=0 ignored rs2

30 25 19 14 13 5 0
10 rd 010000 rs1 i=1 simm13

int anydest(unsigned int code[], int N, int d) {

}

5

4 Abstract Data Types

The following program reads matrix entries (i,j) from the standard input and
adds them to a data structure. Then it calculates the sum of each row and of
each column, and adds the squares of all those sums together.

#include <stdio.h>

#define N 100
int matrix[N][N];

int main(int argc, char **argv) {
int i,j,sum,total=0;
while (2==scanf("%d %d",&i,&j)) {
matrix[i][j]+=1;

}
for(i=0;i<N;i++) {
sum=0;
for(j=0;j<N;j++)

sum+=matrix[i][j];
total += sum*sum;

}
for(j=0;j<N;j++) {
sum=0;
for(i=0;i<N;i++)

sum+=matrix[i][j];
total += sum*sum;

}
printf("%d\n", total);
return 0;

}

A. Rewrite this program so that it’s divided into three files: an ADT header,
and ADT implementation, and a client implementation. The new client should
not have nested loops. Other than your division into modules, preserve as much
as possible of the structure and detail of the program.

You may write a “first-class ADT” or a “second-class ADT” (what King
calls an “abstract object”). You may assume N is a constant (defined by the
ADT, not by the client). Do what you can to protect your ADT implementation
against brain-damaged clients.

B. Provide a fourth file, an alternate ADT implementation, that’s a lot more
efficient but not a lot more complicated. Hints: Use incremental evaluation, and
don’t keep track of information that’s not explicitly needed by the client.

6

ADT’s, continued...

7

5 Circuits

You are familiar with 7-segment displays seen on calculators, etc. In circuit
design, the segments are labeled a–g as at left:

bf

a

g

ce

d

For example, applying voltages (1,1,1,1,1,1,0) will light up a “0” symbol, as
at right.

A. Construct a truth table for a 7-segment decoder circuit. It should take
as input a 3-digit binary number s2s1s0 representing a number from 0 to 7, and
produce 7 bits of output representing the segments a–g.

B. Construct a sum-of-products circuit implementing just the a,b,c outputs
of this truth table. Don’t implement the e, f, g, h outputs.

8

C. On three successive clock cycles, the inputs to the following circuit are:

Time I2 I1 I0

1 1 1 1
2 0 0 1
3 0 1 0

Fill in the pattern on the 7-segment displays after the third clock tick. (Each
box labeled “7-segment decoder” is the circuit you constructed in part B.)

7-segment
decoder

abcdefg

s2s1s0

D Q

D Q

D Q

7-segment
decoder

abcdefg

s2s1s0

D Q

D Q

D Q

7-segment
decoder

abcdefg

s2s1s0

D Q

D Q

D Q

I2

I1

I0

9

6 Interprocess communication

The program below tests whether two trees have the same inorder traversal,
using the following quaint method. First, it forks two processes; one child uses
putleaves to spit the inorder traversal of tree t1 into a pipe, and the other
child uses putleaves to spit the inorder traversal of tree t2 into a different
pipe. The parent process reads from the pipes and uses compare to compare
them.

Please fill in the implementation of the sameinorder function to do the pipes
and forks as necessary. Here are some hints. You can get substantial partial
credit even if you don’t manage to use hints 6 and 7.

1. You will need pipe and fork, but not exec.

2. The read system call indicates end of file by returning 0 as the number of
bytes read.

3. When a child process gets to the end of its tree, it should indicate end of
file by closing its “writing end” of its pipe.

4. When reading from a pipe, end of file is indicated only if no process has
the “writing end” of the pipe open; otherwise, the read will block waiting
for input.

5. Your program should work no matter what (well formed) trees are used
for t1 and t2.

6. If t1 is much longer than t2, or if the trees are both long but quickly
discovered to be unequal, then one or both child processes will try to keep
running even when the compare function is no longer interested in reading.
Therefore, the parent should probably kill the children when it knows the
answer.

7. After your children are dead, you should wait for them so that the process
table does not fill up with zombies.

You may assume all system calls succeed (if given reasonable arguments) so you
don’t need to check for errors.

10

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <signal.h>
#include <unistd.h>
#include <assert.h>

typedef struct tree *Tree;
struct tree {char key; Tree l, r;};

Tree tree (Tree l, char key, Tree r) {
Tree t = malloc (sizeof *t);
assert(t);
t->l=l; t->key=key; t->r=r;
return t;

}

void putleaves(int fd, Tree t) {
if (t) {
putleaves(fd, t->l);
write(fd, &(t->key), 1);
putleaves(fd, t->r);

}
}

int sameinorder(Tree t1, Tree t2);

main() {
Tree t1 = tree(NULL, ’a’, tree(NULL, ’b’, NULL));
Tree t2 = tree(tree(NULL, ’a’, NULL), ’b’, NULL);
if (sameinorder(t1,t2))
printf("same inorders\n");

else printf ("different inorders\n");
}

int compare(int fd1, int fd2) {
int n1, n2;
char c1, c2;
for(;;) {
n1 = read(fd1,&c1,1);
n2 = read(fd2,&c2,1);
if (n1==0 && n2 == 0)

return 1;
else if (c1!=c2)

return 0;
}

}

11

int sameinorder(Tree t1, Tree t2) {

}

12

NAME
pipe - create an interprocess channel

SYNOPSIS
#include <unistd.h>

int pipe(int fildes[2]);

DESCRIPTION
The pipe() function creates an I/O mechanism called a pipe
and returns two file descriptors, fildes[0] and fildes[1].
The files associated with fildes[0] and fildes[1] are
streams and are both opened for reading and writing.
The O_NDELAY and O_NONBLOCK flags are cleared.

A read from fildes[0] accesses the data written to fildes[1]
on a first-in-first-out (FIFO) basis and a read from
fildes[1] accesses the data written to fildes[0] also on a
FIFO basis. ...

NAME
wait - wait for child process to stop or terminate

SYNOPSIS
#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *stat_loc);

DESCRIPTION
The wait() function will suspend execution of the calling
thread until status information for one of its terminated
child processes is available ...

If wait() returns because the status of a child process is
available, it returns the process ID of the child process.
If the calling process specified a non-zero value for
stat_loc, the status of the child process is stored in the
location pointed to by stat_loc. ...

NAME
kill - send a signal to a process or a group of processes

SYNOPSIS
#include <sys/types.h>
#include <signal.h>

int kill(pid_t pid, int sig);

DESCRIPTION
The kill() function sends a signal to a process ...
The process ... to which the signal is to be sent is specified by pid.
The signal that is to be sent is specified by sig ... [for example,
SIGKILL].

13

