
1. The following code fragment is the inner-loop of a bubble sort. Translate it to SPARC assembly
language. You may assume the following: variable i is available in register %l0, variable n is
available in register %l2, variable items is an array of integers defined in the data segment (it can
be accessed as label items), and function swap is available for you to call (it swaps item[i]with
item[i+1]). To get full credit you need not optimize your code (for this problem).

for (i = 0; i < (n-1); ++i) {
if (items[i] > items[i+1]) {

swap(items,i);
}

}

2. Procedure swap in the previous question is most likely implemented as a leaf subroutine. Leaf sub-
routines are easier to implement and more efficient to execute. Explain why. What do leaf subroutines
need to ensure regarding register usage? Be precise with respect to %g, %i, %o, and %l registers.

1

3. The following C code fragment

count = 0;
total = 0;

while((value = get_int()) >= 0) {
total += value;
++count;

}

compiles into the SPARC assembly language given below. (Note: register %l0 holds the value of
count, register %l1 holds the value of total, and register %o0 holds the return value from the
function, and thus holds value.) Write SPARC assembly language code that has the same semantics
as the given code, but is optimized by removing as many nop’s as possible.

#define count %l0
#define total %l1
#define value %o0

.

.

.
clr count
clr total

ba test
nop

loop:
add total, value, total
inc count

test:
call get_int
nop
cmp value, 0
bge loop
nop

2

4. The following function creates an array of accounts, which are names/balance pairs. Since the func-
tion does not know how many accounts it will have to put in the array, the array is adjusted in size
whenever it runs out of space. Three helper functions (am done, get name, and get balance)
are not shown; assume they all work correctly. Identify and explain the four unique run-time memory
errors in this code (one of which occurs twice). (Note: there is nothing wrong with the parameter
number).

struct Account {
char *name;
int balance;

};

void get_info(struct Account *current_account) {
char name_buf[100];

/* get_name puts name of next account into argument passed it. */
get_name(name_buf);
current_account->name = name_buf;
current_account->balance = get_balance();

}

struct Account *get_accounts(int *number) {
int i, old_array_size;
int array_size = 10;
struct Account *accounts, *current_account, *old_accounts;

/* accounts should hold the whole array, and current_account
should point to the element we are currently working on */

number = 0; / Initalize count to 0 */
accounts = (struct Account *) malloc(10 * sizeof(accounts));
current_account = accounts;
while (! am_done()) {
if (*number == array_size) {
old_array_size = array_size;
old_accounts = accounts;
array_size = array_size * 2;
accounts = (struct Account *) malloc(array_size * sizeof(accounts));
for (i = 0; i < old_array_size; ++i)

accounts[i] = old_accounts[i];
}
get_info(current_account);
++current_account;
++(*number);

} /* end while loop */
return accounts;

}

3

5. Fill in the boxes (below and on next page) showing the text and data sections that the as assembler
will produce when given this SPARC assembly language program. Flag any instructions that cannot
be assembled, filling the unresolvable bits with zeros. Express your answer in hexadecimal. The first
instruction of each section has been translated for you. Make sure you annotate your answer with
explanations in the manner shown below; explanations will be critical for determining partial credit.

.section ".data"

.ascii "abc"

.skip 4

.asciz "b"

.byte 4

.align 4
a: .word 4

.section ".text"
add %r1, %r2, %r3
sub %r1, %r2, %r3
add %r1, 4, %r3
add %r1, 4 + 4, %r3
sethi %hi(a), %r3
bg mylabel
call printf
ld [%r1 + %r2], %r3
ld [%r1 + 4], %r3

mylabel:
ld [%r1], %r3

Text Section

Offset Contents (hex) Explanation

0 86 00 40 02 10 00011 000000 00001 0 00000000 00010

4

8

12

16

20

24

28

32

36

40

44

4

Data Section

Offset Contents (hex) Explanation

0 61 ASCII code for ’a’

1 62 ASCII code for ’b’

2 63 ASCII code for ’c’

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

6. A processor’s instruction set is like a software module’s interface: you want it to stay fixed even if the
underlying implementation changes. This allows codes written for early versions of the processor to
run on later versions. One way that a processor implementation might change is to add more registers,
for example, giving each process access to 64 registers instead of just 32. Unfortunately, this particular
implementation change would force a change to the instruction set. Explain why.

5

7. Answer the questions below for the following C program. Assume all local variables are saved on the
stack. Partial credit depends on showing your work.

void f (int a0, int a1, int a2, int a3, int a4, int a5, int a6)
{
int b;

b = a6;
if (b > 0)

f (a0, a1, a2, a3, a4, a5, b-1);
}

int main ()
{
f(0,0,0,0,0,0,3);
return (0);

}

(a) What is the minimal number of bytes that must be allocated to hold main’s stack frame?

(b) Give the very first assembly language statement of function f. Hint: it’s a save instruction.

(c) Keeping in mind that the stack changes in size as the program runs, how many total bytes are
allocated on the stack when it is at its largest. Ignore any stack space allocated for wrapper
functions; just consider the code shown above.

(d) Give the sequence of assembly language statements that implements statement “b = a6;”.

6

8. The MIPS architecture, which today runs in Silicon Graphics computers, was developed at the same
time as the SPARC architecture; the two architectures are similar in many respects. One of the differ-
ences is how the MIPS architecture partitions the 32-bit address space. The format for a MIPS address
is defined as follows:

031 12 11

VPN Offset

That is, the 32-bit addess is partitioned into a 20-bit VPN (Virtual Page Number) and a 12-bit Offset.
This means that memory is divided into 220 pages, each of which is 212 = 4KBytes big. What’s unique
about the MIPS architecture is how these 220 memory pages are further divided into those that can be
accessed by user programs (it’s where the text, data, bss, and stack sections are stored), and those that
can be accessed by the just the kernel (i.e., only when the processor is running in supervisor mode).
Specifically, MIPS memory is further deliniated into four segments based on the first few bits of each
address:

user seg: the most-significant bit of the address (bit 31) is 0.

kern seg0: the most-significant three bits of the address are 100.

kern seg1: the most-significant three bits of the address are 101.

kern seg2: the most-significant two bits of the address are 11.

It is not important to this question that you understand how the kernel makes use of its three segments
(kern seg0, kern seg1, and kern seg2); it is only relevent that there are three kernel segments.

Complete the following schematic of memory by showing where each segment resides in the address
space, that is, by giving the addresses (in hex) where each segment begins/ends. Also report the size
(in bytes) of each segment.

0000 0000

ffff ffff

7

