
Modularity

•1

Goals of this Lecture

• Help you learn:
– How to create high quality modules in C

• Why?
– Abstraction is a powerful (the only?) technique

available for understanding large, complex systems

– A power programmer knows how to find the
abstractions in a large program

– A power programmer knows how to convey a large
program’s abstractions via its modularity

•2

Modularity

• Good program consists of well-designed
modules (set of code that provides
related functionalities)

• Let’s learn how to design a good module

•3

Interfaces

(1) A well-designed module separates interface
and implementation

• Why?
– Hides implementation details from clients

• Thus facilitating abstraction

– Allows separate compilation of each implementation
• Thus allowing partial builds

•4

Interface Example

• Stack: A stack whose items are strings

– Data structure
• Linked list

– Algorithms

• new: Create a new Stack object and return it (or NULL if not
enough memory)

• free: Free the given Stack object
• push: Push the given string onto the given Stack object and

return 1 (or 0 if not enough memory)
• top: Return the top item of the given Stack object
• pop: Pop a string from the given Stack object and discard it
• isEmpty: Return 1 the given Stack object is empty, 0

otherwise

•5

Interfaces Example
• Stack (version 1)

– Stack module consists of one file (stack.c); no separate interface
– Problem: Change stack.c => must rebuild stack.c and client
– Problem: Client “sees” Stack function definitions; poor abstraction

/* stack.c */

struct Node {

 const char *item;

 struct Node *next;

};

struct Stack {

 struct Node *first;

};

struct Stack *Stack_new(void) {…}

void Stack_free(struct Stack *s) {…}

int Stack_push(struct Stack *s, const char *item) {…}

char *Stack_top(struct Stack *s) {…}

void Stack_pop(struct Stack *s) {…}

int Stack_isEmpty(struct Stack *s) {…}

/* client.c */

#include "stack.c"

/* Use the functions

defined in stack.c. */

•6

Interfaces Example
• Stack (version 2)

– Stack module consists of two files:
 (1) stack.h (the interface) declares functions and

defines data structures

/* stack.h */

struct Node {

 const char *item;

 struct Node *next;

};

struct Stack {

 struct Node *first;

};

struct Stack *Stack_new(void);

void Stack_free(struct Stack *s);

int Stack_push(struct Stack *s, const char *item);

char *Stack_top(struct Stack *s);

void Stack_pop(struct Stack *s);

int Stack_isEmpty(struct Stack *s);

•7

Interfaces Example

• Stack (version 2)

(2) stack.c (the implementation) defines functions

• #includes stack.h so
– Compiler can check consistency of function declarations and

definitions
– Functions have access to data structures

/* stack.c */

#include "stack.h"

struct Stack *Stack_new(void) {…}

void Stack_free(struct Stack *s) {…}

int Stack_push(struct Stack *s, const char *item) {…}

char *Stack_top(struct Stack *s) {…}

void Stack_pop(struct Stack *s) {…}

int Stack_isEmpty(struct Stack *s) {…}

•8

Interfaces Example

• Stack (version 2)

– Client #includes only the interface
– Change stack.c => must rebuild stack.c, but not the

client
– Client does not “see” Stack function definitions;

better abstraction

/* client.c */

#include "stack.h"

/* Use the functions declared in stack.h. */

•9

Encapsulation

(2) A well-designed module encapsulates data
– An interface should hide implementation details

– A module should use its functions to encapsulate its data

– A module should not allow clients to manipulate the data
directly

• Why?
– Clarity: Encourages abstraction

– Security: Clients cannot corrupt object by changing its
data in unintended ways

– Flexibility: Allows implementation to change – even the
data structure – without affecting clients

•10

Encapsulation Example

• Stack (version 1)

– That’s bad

– Interface reveals how Stack object is implemented (e.g., as a linked list)
– Client can access/change data directly; could corrupt object

/* stack.h */

struct Node {

 const char *item;

 struct Node *next;

};

struct Stack {

 struct Node *first;

};

struct Stack *Stack_new(void);

void Stack_free(struct Stack *s);

void Stack_push(struct Stack *s, const char *item);

char *Stack_top(struct Stack *s);

void Stack_pop(struct Stack *s);

int Stack_isEmpty(struct Stack *s);

Structure type definitions

in .h file

•11

Encapsulation Example

• Stack (version 2)

– That’s better
– Interface does not reveal how Stack object is implemented
– Client cannot access data directly

/* stack.h */

struct Stack;

struct Stack *Stack_new(void);

void Stack_free(struct Stack *s);

void Stack_push(struct Stack *s, const char *item);

char *Stack_top(struct Stack *s);

void Stack_pop(struct Stack *s);

int Stack_isEmpty(struct Stack *s);

Place declaration of

struct Stack in interface;

move definition to

implementation

Move definition of struct Node

to implementation; clients

need not know about it

•12

Encapsulation Example 1

• Stack (version 3)

– That’s better still
– Interface provides “Stack_T” abbreviation for client
– Interface encourages client to view a Stack as an object, not as a

(pointer to a) structure
– Client still cannot access data directly; data is “opaque” to the

client

/* stack.h */

typedef struct Stack * Stack_T;

Stack_T Stack_new(void);

void Stack_free(Stack_T s);

void Stack_push(Stack_T s, const char *item);

char *Stack_top(Stack_T s);

void Stack_pop(Stack_T s);

int Stack_isEmpty(Stack_T s);

Opaque pointer

•13

Resources

(3) A well-designed module manages resources consistently
– A module should free a resource if and only if the module has

allocated that resource

– Examples

• Object allocates memory <=> object frees memory

• Object opens file <=> object closes file

• Why?
– Error-prone to allocate and free resources at different levels

What if module

allocates

memory and

nobody frees it?

What if module

frees memory

that nobody

has allocated?

•14

Resources Example

• Stack: Who allocates and frees the strings?

– Reasonable options:
(1) Client allocates and frees strings

– Stack_push() does not create copy of given string
– Stack_pop() does not free the popped string
– Stack_free() does not free remaining strings

(2) Stack object allocates and frees strings

– Stack_push() creates copy of given string
– Stack_pop() frees the popped string
– Stack_free() frees all remaining strings

– Our choice: (1)

Advantages/

disadvantages?

•15

SymTable Aside

• Consider SymTable (from Assignment 3)…
• Who allocates and frees the key strings?

– Reasonable options:
(1) Client allocates and frees strings

– SymTable_put() does not create copy of given string
– SymTable_remove() does not free the string
– SymTable_free() does not free remaining strings

(2) SymTable object allocates and frees strings
– SymTable_put() creates copy of given string
– SymTable_remove() frees the string
– SymTable_free() frees all remaining strings

– Our choice: (2)

Advantages/

disadvantages?

•16

Passing Resource Ownership

• Passing resource ownership
– Should note violations of the heuristic in function comments

/* somefile.h */

…

void *f(void);

/* …

 This function allocates memory for

 the returned object. You (the caller)

 own that memory, and so are responsible

 for freeing it when you no longer

 need it. */

…

•17

Consistency

(4) A well-designed module is consistent
– A function’s name should indicate its module

• Facilitates maintenance programming; programmer can
find functions more quickly

• Reduces likelihood of name collisions (from different
programmers, different software vendors, etc.)

– A module’s functions should use a consistent
parameter order
• Facilitates writing client code

•18

Consistency Examples

• Stack
(+) Each function name begins with “Stack_”

(+) First parameter identifies Stack object

•19

Minimization

(5) A well-designed module has a minimal interface
– Function declaration should be in a module’s

interface if and only if:
• The function is necessary to make objects complete, or

• The function is convenient for many clients

• Why?

– More functions => higher learning costs, higher
maintenance costs

•20

Minimization Example

• Stack
/* stack.h */

typedef struct Stack *Stack_T ;

Stack_T Stack_new(void);

void Stack_free(Stack_T s);

void Stack_push(Stack_T s, const char *item);

char *Stack_top(Stack_T s);

void Stack_pop(Stack_T s);

int Stack_isEmpty(Stack_T s);
Should any

functions be

eliminated?

•21

Minimization Example

• Another Stack function?
void Stack_clear(Stack_T s);

• Pops all items from the Stack object

Should the Stack ADT

define Stack_clear()?

•22

SymTable Aside

• Consider SymTable (from Assignment 3)
– Declares SymTable_get() in interface

– Declares SymTable_contains() in interface

Should

SymTable_contains()

be eliminated?

•23

Error Detection/Handling/Reporting

(6) A well-designed module detects and
handles/reports errors
– A module should:

• Detect errors

• Handle errors if it can; otherwise…

• Report errors to its clients
– A module often cannot assume what error-handling

action its clients prefer

•24

Detecting and Handling Errors in C

• C options for detecting errors
– if statement
– assert macro

• C options for handling errors

– Print message to stderr
• Impossible in many embedded applications

– Recover and proceed
• Sometimes impossible

– Abort process
• Often undesirable

•25

Reporting Errors in C

• C options for reporting errors to client
– Set global variable?

• Easy for client to forget to check
• Bad for multi-threaded programming

– Use function return value?
• Awkward if return value has some other natural purpose

– Use extra call-by-reference parameter?
• Awkward for client; must pass additional parameter

– Call assert macro?
• Terminates the entire program!

• No option is ideal
What additional

option does Java

provide?

•26

User Errors

Our recommendation: Distinguish between…
(1) User errors

– Errors made by human user
– Errors that “could happen”

– Example: Bad data in stdin
– Example: Bad value of command-line argument

– Use if statement to detect
– Handle immediately if possible, or…
– Report to client via return value or call-by-

reference parameter

•27

Programmer Errors

(2) Programmer errors
– Errors made by a programmer
– Errors that “should never happen”

– Example: int parameter should not be negative, but is
– Example: pointer parameter should not be NULL, but is

– Use assert to detect and handle

• The distinction sometimes is unclear
– Example: Write to file fails because disk is full

•28

Error Handling Example

• Stack

– Invalid parameter is programmer error

• Should never happen
• Detect and handle via assert

– Memory allocation failure is user error
• Could happen (huge data set and/or small computer)
• Detect via if; report to client via return value

/* stack.c */

…

int Stack_push(Stack_T s, const char *item) {

 struct Node *p;

 assert(s != NULL);

 p = (struct Node*)malloc(sizeof(struct Node));

 if (p == NULL) return 0;

 p->item = item;

 p->next = s->first;

 s->first = p;

 return 1;

}

•29

Establishing Contracts

(7) A well-designed module establishes contracts
– A module should establish contracts with its clients
– Contracts should describe what each function does, esp:

• Meanings of parameters
• Work performed
• Meaning of return value
• Side effects

• Why?
– Facilitates cooperation between multiple programmers
– Assigns blame to contract violators!!!

• If your functions have precise contracts and implement them
correctly, then the bug must be in someone else’s code!!!

•30

Establishing Contracts in C

•Our recommendation…

• In C, establish contracts via comments in
module interface

•31

Establishing Contracts Example

• Stack

– Comment defines contract:
• Meaning of function’s parameters

– s is the stack to be affected; item is the item to be pushed
• Work performed

– Push item onto s
• Meaning of return value

– Indicates success/failure
• Side effects

– (None, by default)

/* stack.h */

…

int Stack_push(Stack_T s, const char *item);

/* Push item onto s. Return 1 (TRUE)

 if successful, or 0 (FALSE) if

 insufficient memory is available. */

…

•32

Summary

• A well-designed module:
(1) Separates interface and implementation

(2) Encapsulates data

(3) Manages resources consistently

(4) Is consistent

(5) Has a minimal interface

(6) Detects and handles/reports errors

(7) Establishes contracts

•33

