
C Pointers

Goals of this Lecture

• Help you learn about:
– Pointers and application

– Pointer variables

– Operators & relation to arrays

•2

Pointer Variables

• The first step in understanding pointers is
visualizing what they represent at the
machine level.

• In most modern computers, main memory is
divided into bytes, with each byte capable
of storing eight bits of information:

• Each byte has a unique address.

•3

Pointer Variables

• If there are n bytes in memory, we can
think of addresses as numbers that range
from 0 to n – 1:

•4

Pointer Variables

• Each variable in a program occupies one or more bytes of
memory.

• The address of the first byte is said to be the address of
the variable.

• In the following figure, the address of the variable i is
2000:

•5

Pointer Variables

• Addresses can be stored in special pointer
variables.

• When we store the address of a variable i in
the pointer variable p, we say that p ―points to‖
i.

• A graphical representation:

•6

Declaring Pointer Variables

• When a pointer variable is declared, its
name must be preceded by an asterisk:

 int *p;

• p is a pointer variable capable of pointing
to objects of type int.

• We use the term object instead of
variable since p might point to an area of
memory that doesn’t belong to a variable.

•7

Declaring Pointer Variables

• Pointer variables can appear in declarations along with
other variables:

 int i, j, a[10], b[20], *p, *q;

• C requires that every pointer variable point only to
objects of a particular type (the referenced type):

 int *p; /* points only to integers */

 double *q; /* points only to doubles */

 char *r; /* points only to characters */

• There are no restrictions on what the referenced

type may be.

•8

The Address and Indirection Operators

• C provides a pair of operators designed
specifically for use with pointers.
– To find the address of a variable, we use

the & (address) operator.

– To gain access to the object that a pointer
points to, we use the * (indirection,
dereference) operator.

•9

The Address Operator

• Declaring a pointer variable sets aside
space for a pointer but doesn’t make it
point to an object:

 int *p; /* points nowhere in particular */

• It’s crucial to initialize p before we use
it.

•10

The Address Operator

• One way to initialize a pointer variable is
to assign it the address of a variable:

 int i, *p;

 …
 p = &i;

• Assigning the address of i to the variable
p makes p point to i:

•11

The Address Operator

• It’s also possible to initialize a pointer
variable at the time it’s declared:

 int i;

 int *p = &i;

• The declaration of i can even be
combined with the declaration of p:

 int i, *p = &i;

•12

The Indirection Operator

• Once a pointer variable points to an object, we
can use the * (indirection) operator to access
what’s stored in the object.

• If p points to i, we can print the value of i as
follows:

 printf("%d\n", *p);

• Applying & to a variable produces a pointer to
the variable. Applying * to the pointer takes us
back to the original variable:

 j = *&i; /* same as j = i; */

•13

The Indirection Operator

• As long as p points to i, *p is an alias for i.
– *p has the same value as i.
– Changing the value of *p changes the value of i.

• The example on the next slide illustrates the

equivalence of *p and i.

•14

The Indirection Operator

 p = &i;

 i = 1;

 printf("%d\n", i); /* prints 1 */

 printf("%d\n", *p); /* prints 1 */

 *p = 2;

 printf("%d\n", i); /* prints 2 */

 printf("%d\n", *p); /* prints 2 */

•15

The Indirection Operator

• Applying the indirection operator to an
uninitialized pointer variable causes
undefined behavior:

 int *p;

 printf("%d", *p); /*** WRONG ***/

• Assigning a value to *p is particularly

dangerous:
 int *p;

 *p = 1; /*** WRONG ***/

•16

Pointer Assignment

• C allows the use of the assignment
operator to copy pointers of the same
type.

• Assume that the following declaration is in
effect:

 int i, j, *p, *q;

• Example of pointer assignment:
 p = &i;

•17

Pointer Assignment

• Another example of pointer assignment:
 q = p;

 q now points to the same place as p:

•18

Pointer Assignment

• If p and q both point to i, we can change i by
assigning a new value to either *p or *q:

 *p = 1;

 *q = 2;

• Any number of pointer variables may point to the
same object.

•19

Pointer Assignment

• Be careful not to confuse
 q = p;

 with
 *q = *p;

• The first statement is a pointer

assignment, but the second is not.

• The example on the next slide shows the
effect of the second statement.

•20

Pointer Assignment

 p = &i;

 q = &j;

 i = 1;

 *q = *p;

•21

Pointers as Arguments

• Arguments in calls of scanf are
pointers:

 int i;

 …

 scanf("%d", &i);

 Without the &, scanf would be supplied
with the value of i.

•22

Pointers as Arguments

• Although scanf’s arguments must be
pointers, it’s not always true that every
argument needs the & operator:

 int i, *p;
 …

 p = &i;

 scanf("%d", p);

• Using the & operator in the call would
be wrong:

 scanf("%d", &p); /*** WRONG ***/

•23

Using const to Protect Arguments

• When an argument is a pointer to a variable x,
we normally assume that x will be modified:

 f(&x);

• It’s possible, though, that f merely needs to
examine the value of x, not change it.

• The reason for the pointer might be efficiency:
passing the value of a variable can waste time
and space if the variable requires a large
amount of storage.

•24

Using const to Protect Arguments

• We can use const to document that a function
won’t change an object whose address is passed
to the function.

• const goes in the parameter’s declaration, just
before the specification of its type:

 void f(const int *p)

 {

 *p = 0; /*** WRONG ***/

 }

 Attempting to modify *p is an error that the
compiler will detect.

•25

Pointers as Return Values

• Functions are allowed to return pointers:
 int *max(int *a, int *b)
 {
 if (*a > *b)
 return a;
 else
 return b;
 }

• A call of the max function:
 int *p, i, j;
 …
 p = max(&i, &j);

 After the call, p points to either i or j.

•26

Pointers as Return Values

• Pointers can point to array elements.

• If a is an array, then &a[i] is a pointer to element
i of a.

• It’s sometimes useful for a function to return a
pointer to one of the elements in an array.

• A function that returns a pointer to the middle
element of a, assuming that a has n elements:

 int *find_middle(int a[], int n)

 {

 return &a[n/2];

 }

•27

Pointer Arithmetic

 int a[10], *p;

 p = &a[0];

• A graphical representation:

•28

Pointer Arithmetic

• We can now access a[0] through p;
for example, we can store the value 5 in a[0] by
writing

 *p = 5;

• An updated picture:

•29

Pointer Arithmetic

• C supports three (and only three) forms
of pointer arithmetic:
– Adding an integer to a pointer

– Subtracting an integer from a pointer

– Subtracting one pointer from another

•30

Adding an Integer to a Pointer

• Adding an integer j to a pointer p yields a
pointer to the element j places after the
one that p points to.

• More precisely, if p points to the array
element a[i], then p + j points to
a[i+j].

• Assume that the following declarations are
in effect:

 int a[10], *p, *q, i;

•31

Adding an Integer to a Pointer

• Example of pointer addition:
 p = &a[2];

 q = p + 3;

 p += 6;

•32

Subtracting an Integer from a Pointer

• If p points to a[i], then p - j points to a[i-j].

• Example:

 p = &a[8];

 q = p - 3;

 p -= 6;

 •33

Subtracting One Pointer from Another

• When one pointer is subtracted from another, the
result is the distance (measured in array elements)
between the pointers.

• If p points to a[i] and q points to a[j], then p - q is
equal to i - j.

• Example:
 p = &a[5];

 q = &a[1];

 i = p - q; /* i is 4 */

 i = q - p; /* i is -4 */

•34

Subtracting One Pointer from Another

• Operations that cause undefined
behavior:
– Performing arithmetic on a pointer that

doesn’t point to an array element

– Subtracting pointers unless both point to
elements of the same array

•35

Comparing Pointers

• Pointers can be compared using the relational
operators (<, <=, >, >=) and the equality operators
(== and !=).
– Using relational operators is meaningful only for pointers to

elements of the same array.

• The outcome of the comparison depends on the
relative positions of the two elements in the array.

• After the assignments
 p = &a[5];
 q = &a[1];

 the value of p <= q is 0 and the value of p >= q is 1.

•36

Combining the * and ++ Operators

• C programmers often combine the * (indirection)
and ++ operators.

• A statement that modifies an array element and
then advances to the next element:

 a[i++] = j;

• The corresponding pointer version:
 *p++ = j;

• Because the postfix version of ++ takes
precedence over *, the compiler sees this as

 *(p++) = j;

•37

Combining the * and ++ Operators

• Possible combinations of * and ++:
 Expression Meaning

 *p++ or *(p++) Value of expression is *p before increment;
 increment p later

 (*p)++ Value of expression is *p before increment;
 increment *p later

 *++p or *(++p) Increment p first;
 value of expression is *p after increment

 ++*p or ++(*p) Increment *p first;
 value of expression is *p after increment

•38

Combining the * and ++ Operators

• The most common combination of * and ++ is *p++,
which is handy in loops.

• Instead of writing
 for (p = &a[0]; p < &a[N]; p++) /* assume N+1 elms */

 sum += *p;

 to sum the elements of the array a, we could write

 p = &a[0];

 while (p < &a[N])

 sum += *p++;

•39

Using an Array Name as a Pointer

• Pointer arithmetic is one way in which
arrays and pointers are related.

• Another key relationship:
 The name of an array can be used as a

pointer to the first element in the array.

• This relationship simplifies pointer

arithmetic and makes both arrays and
pointers more versatile.

•40

Using an Array Name as a Pointer

• Suppose that a is declared as follows:
 int a[10];

• Examples of using a as a pointer:
 a = 7; / stores 7 in a[0] */

 (a+1) = 12; / stores 12 in a[1] */

• In general, a + i is the same as &a[i].
– Both represent a pointer to element i of a.

• Also, *(a+i) is equivalent to a[i].

– Both represent element i itself.

•41

Using an Array Name as a Pointer

• Although an array name can be used as a pointer,
it’s not possible to assign it a new value.

• Attempting to make it point elsewhere is an error:
 while (*a != 0)

 a++; /*** WRONG ***/

• This is no great loss; we can always copy a into a
pointer variable, then change the pointer variable:

 p = a;

 while (*p != 0)

 p++;

•42

Array Arguments

• When passed to a function, an array name is treated as a
pointer.

• Example:
 int find_largest(int a[], int n)

 {
 int i, max;

 max = a[0];

 for (i = 1; i < n; i++)

 if (a[i] > max)

 max = a[i];

 return max;
 }

•43

Array Arguments

• The fact that an array argument is
treated as a pointer has some important
consequences.

• Consequence 1: When an ordinary variable
is passed to a function, its value is copied;
any changes to the corresponding
parameter don’t affect the variable.

• In contrast, an array used as an argument
isn’t protected against change.

•44

Array Arguments

• To indicate that an array parameter won’t
be changed, we can include the word const
in its declaration:

 int find_largest(const int a[], int n)

 {

 …

 }

• If const is present, the compiler will
check that no assignment to an element of
a appears in the body of find_largest.

•45

Array Arguments

• Consequence 2: The time required to
pass an array to a function doesn’t
depend on the size of the array.

• There’s no penalty for passing a large
array, since no copy of the array is
made.

•46

Array Arguments

• Consequence 3: An array parameter can be
declared as a pointer if desired.

• find_largest could be defined as follows:
 int find_largest(int *a, int n)

 {

 …

 }

• Declaring a to be a pointer is equivalent to

declaring it to be an array; the compiler treats
the declarations as though they were identical.

•47

Array Arguments

• The following declaration causes the
compiler to set aside space for 10 integers
and assign the address of first element to
a

 int a[10];

 a = 0; / What happens? */

• The following declaration causes the
compiler to allocate space for a pointer
variable:

 int *a;

 a = 0; / What happens? */

•48

Array Arguments

• Consequence 4: A function with an array
parameter can be passed an array ―slice‖—a
sequence of consecutive elements.

• An example that applies find_largest to

elements 5 through 14 of an array b:
 largest = find_largest(&b[5], 10);

•49

Summary

• Pointers and their operations
– Pointer has a memory address as its value

– & is address operator

– * is indirection/dereference operator

– Function arguments
• Typically used to change the value of the passed

variable

• Call-by-reference semantics

– Relation to the arrays
• Array name can be used as a pointer assigned

with the address of its first element

•50

