
(Many Slides Borrowed from Princeton COS 217)

•1

EE 209:
Programming Structures
for Electrical Engineering

Goals for Today’s Class

• Course overview
– Introductions

– Course goals

– Resources

– Grading

– Policies

• Getting started with C
– C programming language overview

•2

Introductions

• Lecturer: KyoungSoo Park, Ph.D.
• TAs:

– Asim Jamshed (ajamshed@ndsl.kaist.edu)
– Shinae Woo(shinae2012@gmail.com)
– Sejung Kwon (sjkwon@smslab.kaist.ac.kr)
– Moonki Seok (mgseok@smslab.kais.ac.kr)
– Seokhyun Kim (kimseokhyun@netsys.kaist.ac.kr)

• Modeled around Princeton COS 217
– We borrow many slides and programming

assignments from Princeton COS 217
– Got permission to use the materials

•3

Course Goal 1: “Programming in the Large”

• Goal 1: “Programming in the large”
– How to write large computer programs

– Abstraction; Interfaces and implementations

• Specifically, help you learn how to:
– Write modular code

• Hide information

• Manage resources

• Handle errors

– Write portable code

– Test and debug your code

– Improve your code’s performance (and when to do so)

– Use tools to support those activities

•4

Course Goal 2: “Under the Hood”

• Goal 2: “Look under the hood”
– Help you learn what happens

“under the hood” of computer systems

• Specifically, two downward tours

• Goal 2 supports Goal 1
– Reveals many examples of effective abstractions

•5

C Language

Assembly Language

Machine Language

Application Program

Operating System

Hardware

language

levels

tour

service

levels

tour

Course Goals: Why C?

Q: Why C?

A: C supports Goal 1 better
– C is a lower-level language

• C provides more opportunities to create
abstractions

A: C supports Goal 2 better
– C facilitates language levels tour

• C is closely related to assembly language

– C facilitates service levels tour

• Linux is written in C

•6

Course Goals: Why Linux?

Q: Why Linux instead of Microsoft Windows?

A: Linux is good for education and research

– Linux is open-source and well-specified

A: Linux is good for programming

– Linux is a variant of Unix

– Unix has a rich open-source programming
environment

•7

Lectures and Precepts

• Lectures

– Describe concepts at a high level

– Slides available online at course Web site

• Precepts

– Once every week (Wed 7-8:15pm, this building 411)

– Attendance is required

– Support lectures by describing concepts at a lower level

– Support your work on assignments

•8

Homepage and Mailing List

• Course Website
– http://www.ndsl.kaist.edu/~kyoungsoo/ee209/

• Accessible from KAIST IP block (143.248.*)

• Course mailing list (Important!)
– ee209@list.ndsl.kaist.edu
– Subscription is required (Did you receive my email?)
– Q&A and announcements (e.g., cancelling class)

• Course Moodle
– Sign up for our class Moodle page (EE209, 2011)
– Linked to the course website
– To submit your programming assignments
– To check your score on each assignment

•9

http://www.ndsl.kaist.edu/~kyoungsoo/ee209/
mailto:ee209@list.ndsl.kaist.edu

Textbooks
• Required books

– C Programming: A Modern Approach (Second Edition), King,
2008.
• Covers the C programming language and standard libraries

– Computer Systems: A Programmer's Perspective, Bryant and
O'Hallaron, 2010.
• Covers “under the hood”

• Highly recommended books
– The C Programming Language, Kernighan and Ritchie, 1988.

• Covers the C programming language
– The Practice of Programming, Kernighan and Pike, 1999.

• Covers “programming in the large”
– Programming with GNU Software, Loukides and Oram, 1997.

• Covers tools

• All books are in the Library

•10

Manuals

• Manuals (for reference only, available online)
– Intel Architecture Software Developer's Manual, Volumes 1-3

– Tool Interface Standard & Executable and Linking Format

– Using as, the GNU Assembler

• See also
– Linux man command

• man is short for “manual”

• For more help, type man man

•11

Programming Environment

•12

Your PC/Mac Computer

SSH

Lab machines

Linux

GNU

Your

Pgm

fedora

fez

Programming Environment

• Other options
– Use your own computer; run GNU tools run your programs

locally
– e.g., Install Linux (FYI, I use Linux as the main OS for my desktop)
– e.g., Install Cygwin (http://www.cygwin.com/) on Windows
– e.g., Install Linux on VMWare Player on Windows

– Use your own computer; run a non-GNU development
environment locally; run your programs locally
– e.g., Visual C++

• Notes
– We test your program on our Lab machines.

– Cannot give grade if your program works on your local machine but
does not run on our Lab machines.

– My recommendation: use local environment for development
and lab environment for testing & debugging

– First precept provides setup instructions

•13

Grading

• Six programming assignments (50%)
– Working code
– Clean, readable, maintainable code
– On time (penalties for late submission)
– Final assignment counts more (12.5%)

• Exams (40%)
– Midterm (20%)
– Final (20%)

• Class participation (10%)
– Lecture and precept attendance is mandatory
– Attendance + participation (+)
– Evil(?) behavior (-)

• e.g., moving around in class, cell phone noise, etc.
• Unintentional(?) sleeping in class is fine, but let’s not do harm

to other students

•14

Programming Assignments

• Tentative programming assignments
1. A “de-comment” program
2. A regular expression module
3. A symbol table module
4. IA-32 assembly language programs
5. A heap manager module
6. A Unix shell

• Key part of the course
• Due (typically) Sundays at 9:00PM
• First assignment is available now
• My advice:

• Start early to allow time for debugging (important!!)
• Study the class materials/books before each assignment
• Think before you write code

•15

Why Debugging is Necessary…

•16

Course Policy

Study the course “Policy” web page!!!
• Especially the assignment and exam Policy

– Violation is automatic failure (F) of this course.
– We’ll use MOSS to check plagiarism

– We’ve caught ~10 students last year!

• Some highlights:
– Don’t view anyone else’s work during, before, or after

the assignment time period
– Don’t allow anyone to view your work during, before, or

after the assignment time period
– In your assignment “readme” file, acknowledge all

resources used

• Ask your preceptor for clarifications if necessary

•17

Course Schedule
• Tentatively…

Weeks Lectures Precepts

1-2 Intro to C (conceptual) Intro to Linux/GNU

Intro to C (mechanical)

3-7 “Pgmming in the Large” Advanced C

8 Midterm Exam

9-15 “Under the Hood” Assembly Language

Pgmming Assignments

16 Final Exam

•18

• See course “Schedule” web page for details

Getting a Good Grade for EE209

• Programming is really fun!
• If you know how to do it
• Often time, it is painful to reach the threshold

• Internalize the basic stuff first

• Know the basic grammar: C types, loops, structures, arrays, strings,
pointers, static functions, C runtime functions, etc.

• Finish the reading assignment before each class

• Allocate some time for EE209

• 7-10 hours per week on EE209
• Systematic approach would dramatically reduce debugging time

• Take sister class: EE205 Data Structure for EE (Prof. Yi Yung)

• Deep understanding of data structure is essential for intelligent
programming

•19

Any questions before we start?

•20

C : History

•21

BCPL B C K&R C
ANSI C89

ISO C90
ISO/ANSI C99

1960 1970 1972 1978 1989 1999

LISP Smalltalk C++ Java

Not yet popular;

our compiler

supports only

partially We will use

C vs. Java: Design Goals

• C design goals
– Support structured programming
– Support development of the Unix OS and Unix tools

• As Unix became popular, so did C

• Implications for C
– Good for system-level programming

• But often used for application-level programming

– Low-level
• Close to assembly language; close to machine language; close

to hardware

– Efficiency over portability
– Efficiency over security
– Flexibility over security

•22

C vs. Java: Design Goals

• Java design goals
– Support object-oriented programming
– Allow same program to be executed on multiple operating systems
– Support using computer networks
– Execute code from remote sources securely
– Adopt the good parts of other languages (esp. C and C++)

• Implications for Java
– Good for application-level programming
– High-level

• Virtual machine insulates programmer from underlying assembly language,
machine language, hardware

– Portability over efficiency
– Security over efficiency
– Security over flexibility

•23

C vs. Java: Design Goals

• Differences in design goals explain many
differences between the languages

• C’s design goal explains many of its
eccentricities

– We’ll see examples throughout the course

•24

C vs. Java: Overview

• Dennis Ritchie on the nature of C:

– “C has always been a language that never attempts to tie a

programmer down.”
– “C has always appealed to systems programmers who like the

terse, concise manner in which powerful expressions can be
coded.”

– “C allowed programmers to (while sacrificing portability) have
direct access to many machine-level features that would
otherwise require the use of assembly language.”

– “C is quirky, flawed, and an enormous success. While accidents
of history surely helped, it evidently satisfied a need for a
system implementation language efficient enough to displace
assembly language, yet sufficiently abstract and fluent to
describe algorithms and interactions in a wide variety of
environments.”

•25

C vs. Java: Overview (cont.)

• Bad things you can do in C that you can’t do in Java

– Shoot yourself in the foot (safety)

– Shoot others in the foot (security)

– Ignore wounds (error handling)

• Dangerous things you must do in C that you don’t in Java

– Explicitly manage memory via malloc() and free()

• Good things you can do in C, but (more or less) must do in Java

– Program using the object-oriented style

• Good things you can’t do in C but can do in Java

– Write completely portable code

•26

C vs. Java: Details

• Remaining slides provide some details

– Suggestion: Use for future reference

• Slides covered briefly now, as time
allows…

•27

C vs. Java: Details (cont.)

•28

Java C

Overall

Program

Structure

Hello.java:

public class Hello {

 public static void

 main(String[] args) {

 System.out.println(

 "Hello, world");

 }

}

hello.c:

#include <stdio.h>

int main(void) {

 printf("Hello, world\n");

 return 0;

}

Building

% javac Hello.java

% ls

Hello.class

Hello.java

%

% gcc209 hello.c

% ls

a.out

hello.c

%

Running

% java Hello

Hello, world

%

% ./a.out

Hello, world

%

C vs. Java: Details (cont.)

•29

Java C

Character type char // 16-bit unicode char /* 8 bits */

Integral types

byte // 8 bits

short // 16 bits

int // 32 bits

long // 64 bits

(unsigned) char

(unsigned) short

(unsigned) int

(unsigned) long

Floating point

types

float // 32 bits

double // 64 bits

float

double

long double

Logical type boolean
/* no equivalent */

/* use integral type */

Generic

pointer type
// no equivalent void*

Constants final int MAX = 1000;

#define MAX 1000

const int MAX = 1000;

enum {MAX = 1000};

C vs. Java: Details (cont.)

•30

Java C

Arrays

int [] a = new int [10];

float [][] b =

 new float [5][20];

int a[10];

float b[5][20];

Array bound

checking
// run-time check /* no run-time check */

Pointer type
// Object reference is an

// implicit pointer
int *p;

Record type

class Mine {

 int x;

 float y;

}

struct Mine {

 int x;

 float y;

}

C vs. Java: Details (cont.)

•31

Java C

Strings

String s1 = "Hello";

String s2 = new

 String("hello");

char *s1 = "Hello";

char s2[6];

strcpy(s2, "hello");

String

concatenation

s1 + s2

s1 += s2

#include <string.h>

strcat(s1, s2);

Logical ops &&, ||, ! &&, ||, !

Relational ops =, !=, >, <, >=, <= =, !=, >, <, >=, <=

Arithmetic

ops
+, -, *, /, %, unary - +, -, *, /, %, unary -

Bitwise ops >>, <<, >>>, &, |, ^ >>, <<, &, |, ^

Assignment

ops

=, *=, /=, +=, -=, <<=,

>>=, >>>=, =, ^=, |=, %=

=, *=, /=, +=, -=, <<=,

>>=, =, ^=, |=, %=

C vs. Java: Details (cont.)

•32

Java C

if stmt

if (i < 0)

 statement1;

else

 statement2;

if (i < 0)

 statement1;

else

 statement2;

switch stmt

switch (i) {

 case 1:

 ...

 break;

 case 2:

 ...

 break;

 default:

 ...

}

switch (i) {

 case 1:

 ...

 break;

 case 2:

 ...

 break;

 default:

 ...

}

goto stmt // no equivalent goto SomeLabel;

C vs. Java: Details (cont.)

•33

Java C

for stmt
for (int i=0; i<10; i++)

 statement;

int i;

for (i=0; i<10; i++)

 statement;

while stmt
while (i < 0)

 statement;

while (i < 0)

 statement;

do-while stmt

do {

 statement;

 …

} while (i < 0)

do {

 statement;

 …

} while (i < 0)

continue stmt continue; continue;

labeled

continue stmt
continue SomeLabel; /* no equivalent */

break stmt break; break;

labeled break

stmt
break SomeLabel; /* no equivalent */

C vs. Java: Details (cont.)

•34

Java C

return stmt
return 5;

return;

return 5;

return;

Compound stmt

(alias block)

{

 statement1;

 statement2;

}

{

 statement1;

 statement2;

}

Exceptions throw, try-catch-finally /* no equivalent */

Comments
/* comment */

// another kind

/* comment */

Method /

function call

f(x, y, z);

someObject.f(x, y, z);

SomeClass.f(x, y, z);

f(x, y, z);

Example C Program

•35

#include <stdio.h>

#include <stdlib.h>

const double KMETERS_PER_MILE = 1.609;

int main(void)

{

 int miles;

 double kmeters;

 printf("miles: ");

 if (scanf("%d", &miles) != 1) {

 fprintf(stderr, "Error: Expect a number.\n");

 exit(EXIT_FAILURE);

 }

 kmeters = miles * KMETERS_PER_MILE;

 printf("%d miles is %f kilometers.\n",

 miles, kmeters);

 return 0;

}

Summary

• Course overview
– Goals

• Goal 1: Learn “programming in the large”

• Goal 2: Look “under the hood”

• Goal 2 supports Goal 1

• Use of C and Linux supports both goals

– Learning resources
• Lectures, precepts, programming environment, course

mailing list, textbooks

• Course Web site: access via
http://www.ndsl.kaist.edu/~kyoungsoo/ee209/

•36

http://www.ndsl.kaist.edu/~kyoungsoo/ee209

Summary

• Getting started with C

– C was designed for system programming

• Differences in design goals of Java and C explain
many differences between the languages

• Knowing C design goals explains many of its
eccentricities

– Knowing Java gives you a head start at
learning C

• C is not object-oriented, but many aspects are
similar

•37

Getting Started

• Check out course Web site soon

– Study “Policy” page

– First assignment is available

• Establish a reasonable computing
environment soon

– Instructions given in first precept

•38

