
Performance Improvement

1

Goals of this Lecture

• Help you learn how to:
– Improve program performance by exploiting

knowledge of underlying system

• Compiler capabilities

• Hardware architecture

• Program execution

• And thereby:
– Help you to write efficient programs

– Review material from the second half of the
course

2

Improving Program Performance

• Most programs are already “fast enough”
– No need to optimize performance at all
– Save your time, and keep the program simple/readable

• Most parts of a program are already “fast enough”
– Usually only a small part makes the program run slowly
– Optimize only this portion of the program, as needed

• Steps to improve execution (time) efficiency
– Do timing studies (e.g., gprof)
– Identify hot spots
– Optimize that part of the program
– Repeat as needed

3

Ways to Optimize Performance

• Better data structures and algorithms
– Improves the “asymptotic complexity”

• Better scaling of computation/storage as input
grows

• E.g., going from O(n2) sorting algorithm to O(n log n)
– Clearly important if large inputs are expected
– Requires understanding data structures and algorithms

• Better source code the compiler can optimize
– Improves the “constant factors”

• Faster computation during each iteration of a loop
• E.g., going from 1000n to 10n running time

– Clearly important if a portion of code is running slowly
– Requires understanding hardware, compiler, execution

4

Helping the Compiler Do Its Job

5

Optimizing Compilers

• Provide efficient mapping of program to machine
– Register allocation

– Code selection and ordering

– Eliminating minor inefficiencies

• Don’t (usually) improve asymptotic efficiency
– Up to the programmer to select best overall algorithm

• Have difficulty overcoming “optimization blockers”
– Potential function side-effects

– Potential memory aliasing

6

Limitations of Optimizing Compilers

• Fundamental constraint
– Compiler must not change program behavior
– Ever, even under rare pathological inputs

• Behavior that may be obvious to the programmer
can be obfuscated by languages and coding styles
– Data ranges more limited than variable types suggest
– Array elements remain unchanged by function calls

• Most analysis is performed only within functions
– Whole-program analysis is too expensive in most cases

• Most analysis is based only on static information
– Compiler has difficulty anticipating run-time inputs

7

Avoiding Repeated Computation

• A good compiler recognizes simple optimizations
– Avoiding redundant computations in simple loops

– Still, programmer may still want to make it explicit

• Example
– Repetition of computation: n * i

8

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

a[n*i + j] = b[j];

for (i = 0; i < n; i++) {

int ni = n * i;

for (j = 0; j < n; j++)

a[ni + j] = b[j];

}

Worrying About Side Effects

• Compiler cannot always avoid repeated
computation
– May not know if the code has a “side effect”
– … that makes the transformation change the code’s

behavior
• Is this transformation okay?

• Not necessarily, if

9

int func1(int x) {

return f(x) + f(x) + f(x) + f(x);

} int func1(int x) {

return 4 * f(x);

}

int counter = 0;

int f(int x) {

return counter++;

}

And this function may be defined in

another file known only at link time!

Another Example on Side Effects

• Is this optimization okay?

• Short answer: it depends
– Compiler often cannot tell
– Most compilers do not try to identify side effects

• Programmer knows best
– And can decide whether the optimization is safe

10

for (i = 0; i < strlen(s); i++) {

/* Do something with s[i] */

}

length = strlen(s);

for (i = 0; i < length; i++) {

/* Do something with s[i] */

}

Memory Aliasing

• Is this optimization okay?

• Not necessarily, what if xp and yp are equal?
– First version: result is 4 times *xp

– Second version: result is 3 times *xp

11

void twiddle(int *xp, int *yp) {

*xp += *yp;

*xp += *yp;

}

void twiddle(int *xp, int *yp) {

*xp += 2 * *yp;

}

Memory Aliasing

• Memory aliasing
– Single data location accessed through multiple names
– E.g., two pointers that point to the same memory location

• Modifying the data using one name
– Implicitly modifies the values seen through other names

• Blocks optimization by the compiler
– The compiler cannot tell when aliasing may occur
– … and so must forgo optimizing the code

• Programmer often does know
– And can optimize the code accordingly

12

xp, yp

Another Aliasing Example

• Is this optimization okay?

• Not necessarily
– If y and x point to the same location in memory…

– … the correct output is “x = 10\n”

13

int *x, *y;

…

*x = 5;

*y = 10;

printf(“x=%d\n”, *x);

printf(“x=5\n”);

Summary: Helping the Compiler

• Compiler can perform many optimizations
– Register allocation
– Code selection and ordering
– Eliminating minor inefficiencies

• But often the compiler needs your help
– Knowing if code is free of side effects
– Knowing if memory aliasing will not happen

• Modifying the code can lead to better
performance
– Profile the code to identify the “hot spots”
– Look at the assembly language the compiler produces
– Rewrite the code to get the compiler to do the right

thing

14

Exploiting the Hardware

15

Underlying Hardware

• Implements a collection of instructions
– Instruction set varies from one architecture to another
– Some instructions may be faster than others

• Registers and caches are faster than main memory
– Number of registers and sizes of caches vary
– Exploiting both spatial and temporal locality

• Exploits opportunities for parallelism
– Pipelining: decoding one instruction while running another

• Benefits from code that runs in a sequence

– Superscalar: perform multiple operations per clock cycle
• Benefits from operations that can run independently

– Speculative execution: performing instructions before
knowing they will be reached (e.g., without knowing outcome
of a branch)

16

Addition Faster Than Multiplication

• Adding instead of multiplying
– Addition is faster than multiplication

• Recognize sequences of products
– Replace multiplication with repeated addition

17

for (i = 0; i < n; i++) {

int ni = n * i;

for (j = 0; j < n; j++)

a[ni + j] = b[j];

}
int ni = 0;

for (i = 0; i < n; i++) {

for (j = 0; j < n; j++)

a[ni + j] = b[j];

ni += n;

}

Bit Operations Faster Than Arithmetic

• Shift operations to multiple/divide by powers
of 2
– “x >> 3” is faster than “x/8”

– “x << 3” is faster than “x * 8”

• Bit masking is faster than
mod operation
– “x & 15” is faster than “x % 16”

18

0 0 1 1 0 1 0 153

1 1 0 1 0 0 0 053<<2

0 0 1 1 0 1 0 1

0 0 0 0 1 1 1 1

53

& 15

0 0 0 0 0 1 0 15

Caching: Matrix Multiplication

• Caches
– Slower than registers, but faster than main memory
– Both instruction caches and data caches

• Locality
– Temporal locality: recently-referenced items are likely

to be referenced in near future
– Spatial locality: Items with nearby addresses tend to

be referenced close together in time

• Matrix multiplication
– Multiply n-by-n matrices A and B, and store in matrix C
– Performance heavily depends on effective use of

caches

19

Matrix Multiply: Cache Effects

20

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

for (k=0; k<n; k++)

c[i][j] += a[i][k] * b[k][j];

}

}

• Reasonable cache effects
• Good spatial locality for A

• Poor spatial locality for B

• Good temporal locality for C A B C

(i,*)

(*,j)

(i,j)

Matrix Multiply: Cache Effects

• Rather poor cache effects
– Bad spatial locality for A

– Good temporal locality for B

– Bad spatial locality for C
21

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {

for (i=0; i<n; i++)

c[i][j] += a[i][k] * b[k][j];

}

}

A B C

(*,j)

(k,j)

(*,k)

Matrix Multiply: Cache Effects

• Good poor cache effects
– Good temporal locality for A

– Good spatial locality for B

– Good spatial locality for C
22

for (k=0; k<n; k++) {

for (i=0; i<n; i++) {

for (j=0; j<n; j++)

c[i][j] += a[i][k] * b[k][j];

}

}

A B C

(i,*)

(i,k) (k,*)

Parallelism: Loop Unrolling

• What limits the performance?

• Limited apparent parallelism
– One main operation per iteration (plus book-keeping)
– Not enough work to keep multiple functional units busy
– Disruption of instruction pipeline from frequent

branches

• Solution: unroll the loop
– Perform multiple operations on each iteration

23

for (i = 0; i < length; i++)

sum += data[i];

Parallelism: After Loop Unrolling

• Original code

• After loop unrolling (by three)

24

for (i = 0; i < length; i++)

sum += data[i];

/* Combine three elements at a time */

limit = length – 2;

for (i = 0; i < limit; i+=3)

sum += data[i] + data[i+1] + data[i+2];

/* Finish any remaining elements */

for (; i < length; i++)

sum += data[i];

Program Execution

25

Avoiding Function Calls

• Function calls are expensive
– Caller saves registers and pushes arguments on stack
– Callee saves registers and pushes local variables on

stack
– Call and return disrupt the sequence flow of the code

• Function inlining:

26

void g(void) {

/* Some code */

}

void f(void) {

…

g();

…

}

void f(void) {

…

/* Some code */

…

}

Some compilers support

“inline” keyword directive.

Writing Your Own Malloc and Free

• Dynamic memory management
– malloc() to allocate blocks of memory
– free() to free blocks of memory

• Existing malloc() and free() implementations
– Designed to handle a wide range of request sizes
– Good most of the time, but rarely the best for all workloads

• Designing your own dynamic memory management
– Forego using traditional malloc() and free(), and write

your own
– E.g., if you know all blocks will be the same size
– E.g., if you know blocks will usually be freed in the order

allocated
– E.g., <insert your known special property here>

27

Conclusion

• Work smarter, not harder
– No need to optimize a program that is “fast enough”
– Optimize only when, and where, necessary

• Speeding up a program
– Better data structures and algorithms: better

asymptotic behavior
– Optimized code: smaller constants

• Techniques for speeding up a program
– Coax the compiler
– Exploit capabilities of the hardware
– Capitalize on knowledge of program execution

28

Course Wrap Up

29

Goals of EE 209
• Understand boundary between code and computer

– Machine architecture

– Operating systems

– Compilers

• Learn C and the Unix development tools
– C is widely used for programming low-level systems

– Unix has a rich development environment

– Unix is open and well-specified, good for study & research

• Improve your programming skills
– More experience in programming

– Challenging and interesting programming assignments

– Emphasis on modularity and debugging
30

Lessons Learned

• Modularity
– Well-defined interfaces between components
– Allows changing the implementation of one component

without changing another
– The key to managing complexity in large systems

• Resource sharing
– Time sharing of the CPU by multiple processes
– Sharing of the physical memory by multiple processes

• Indirection
– Representing address space with virtual memory
– Manipulating data via pointers (or addresses)

31

Lessons Continued

• Hierarchy
– Memory: registers, cache, main memory, disk, tape,

…
– Balancing the trade-off between fast/small and

slow/big

• Bits can mean anything
– Code, addresses, characters, pixels, money, grades,

…
– Arithmetic can be done through logic operations
– The meaning of the bits depends entirely on how

they are accessed, used, and manipulated

32

Computer Networks (EE323)

• How Internet Works?
– How it is designed, operated, and going to evolve?
– How do I browse the Web, exchange emails?
– How do hackers attack the Internet? How to defend?

Secure/private network communication?

• Design of the Internet is very simple but solid
– Smart end hosts + dumb networks
– TCP/IP is the fundamental Internet protocol
– Smart distributed algorithms

• Learn one of the smartest inventions!
– With exciting assignments!!

33

Thank You!

• EE209 was a tough course
– But hopefully you remember it for longer time

• Good luck with your final exam!
– And your final assignment!

34

