Memory Management

Goals of this Lecture

- Help you learn about:
 - The memory hierarchy
 - Spatial and temporal locality of reference
 - Caching, at multiple levels
 - Virtual memory
 - ... and thereby ...
 - How the hardware and OS give application pgms:
 - The illusion of a large contiguous address space
 - Protection against each other

Virtual memory is one of the most important concepts in systems programming

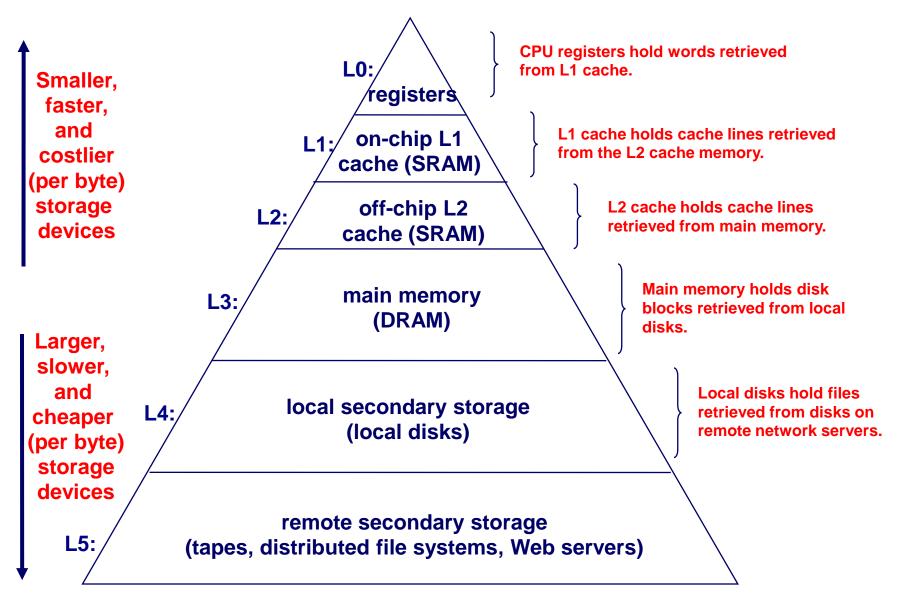
Motivation for Memory Hierarchy

- Faster storage technologies are more costly
 - Cost more money per byte
 - Have lower storage capacity
 - Require more power and generate more heat
- The gap between processing and memory is widening
 - Processors have been getting faster and faster
 - Main memory speed is not improving as dramatically
- Well-written programs tend to exhibit good locality
 - Across time: repeatedly referencing the same variables
 - Across space: often accessing other variables located nearby

Want the *speed* of fast storage at the *cost* and *capacity* of slow storage. Key idea: memory hierarchy!

Simple Three-Level Hierarchy

- Registers
 - Usually reside directly on the processor chip
 - Essentially no latency, referenced directly in instructions
 - Low capacity (e.g., 32-512 bytes)
- Main memory
 - Around 100 times slower than a clock cycle
 - Constant access time for any memory location
 - Modest capacity (e.g., 512 MB-2GB)
- Disk
 - Around 100,000 times slower than main memory
 - Faster when accessing many bytes in a row
 - High capacity (e.g., 200 GB)

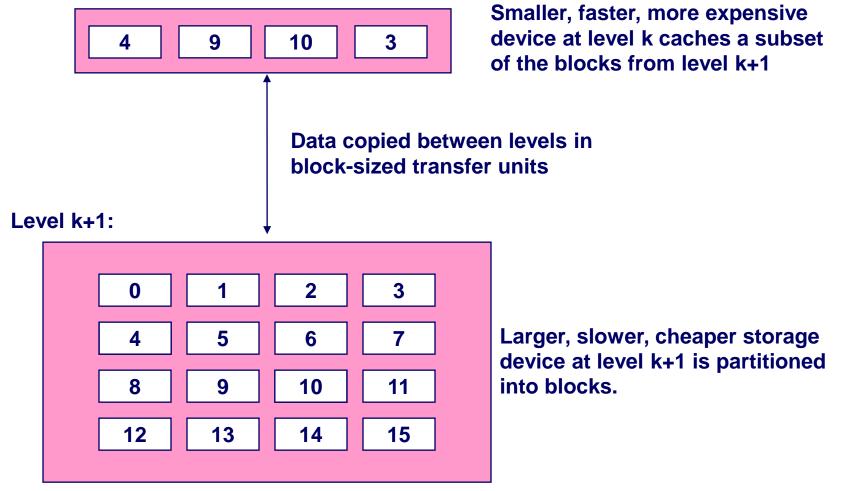


Widening Processor/Memory Gap

- Gap in speed increasing from 1986 to 2000
 CPU speed improved ~55% per year
 - Main memory speed improved only ~10% per year
- Main memory as major performance bottleneck
 - Many programs stall waiting for reads and writes to finish
- Changes in the memory hierarchy
 - Increasing the number of registers
 - 8 integer registers in the x86 vs. 128 in the Itanium
 - Adding caches between registers and main memory
 - On-chip level-1 cache and off-chip level-2 cache

An Example Memory Hierarchy

Locality of Reference

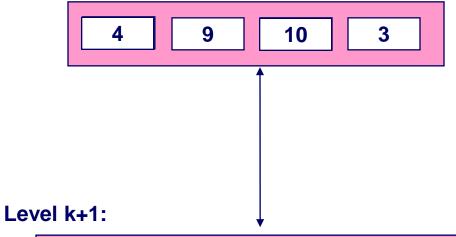

- Two kinds of locality
 - Temporal locality: recently referenced items are likely to be referenced in near future
 - Spatial locality: Items with nearby addresses tend to be referenced close together in time.
- Locality example
 - Program data
 - Temporal: the variable sum
 - Spatial: variable a [i+1] accessed soon after a [i]
 - Instructions
 - Temporal: cycle through the for-loop repeatedly
 - Spatial: reference instructions in sequence

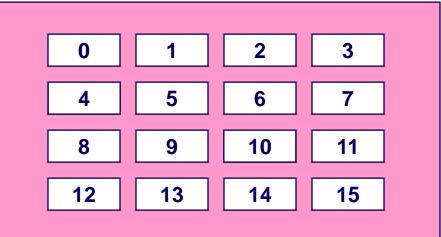
Locality Makes Caching Effective

- Cache
 - Smaller, faster storage device that acts as a staging area
 - ... for a *subset* of the data in a larger, slower device
- Caching and the memory hierarchy
 - Storage device at level k is a cache for level k+1
 - Registers as cache of L1/L2 cache and main memory
 - Main memory as a cache for the disk
 - Disk as a cache of files from remote storage
- Locality of access is the key
 - Most accesses satisfied by first few (faster) levels
 - Very few accesses go to the last few (slower) levels

Caching in a Memory Hierarchy

Level k:


Cache Block Sizes


- Fixed vs. variable size
 - Fixed-sized blocks are easier to manage (common case)
 - Variable-sized blocks make more efficient use of storage
- Block size
 - Depends on access times at the level k+1 device
 - Larger block sizes further down in the hierarchy
 - E.g., disk seek times are slow, so disk pages are larger
- Examples
 - CPU registers: 4-byte words
 - L1/L2 cache: 32-byte blocks
 - Main memory: 4 KB pages
 - Disk: entire files

Cache Hit and Miss

- Cache hit
 - Program accesses a block available in the cache
 - Satisfy directly from cache
 - E.g., request for "10"
- Cache miss
 - Program accesses a block not available in the cache
 - Bring item into the cache
 - E.g., request for "13"
- Where to place the item?
- Which item to evict?

Level k:

Three Kinds of Cache Misses

- Cold (compulsory) miss
 - Cold misses occur because the block hasn't been accessed before
 - E.g., first time a segment of code is executed
 - E.g., first time a particular array is referenced
- Capacity miss
 - Set of active cache blocks (the "working set") is larger than cache
 - E.g., manipulating a 1200-byte array within a 1000-byte cache
- Conflict miss
 - Some caches limit the locations where a block can be stored
 - E.g., block i must be placed in cache location (i mod 4)
 - Conflicts occur when multiple blocks map to the same location(s)
 - E.g., referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time

Cache Replacement

- Evicting a block from the cache
 - New block must be brought into the cache
 - Must choose a "victim" to evict
- Optimal eviction policy
 - Evict a block that is never accessed again
 - Evict the block accessed the *furthest in the future*
 - Impossible to implement without knowledge of the future
- Using the past to predict the future
 - Evict the "least recently used" (LRU) block
 - Assuming it is not likely to be used again soon
- But, LRU is often expensive to implement
 - Need to keep track of access times
 - So, simpler approximations of LRU are used

Who Manages the Cache?

- Registers
 - Cache of L1/L2 cache and main memory
 - Managed explicitly by the *compiler*
 - By determining which data are brought in and out of registers
 - Using relatively sophisticated code-analysis techniques
- L1/L2 cache
 - Cache of main memory
 - Managed by the hardware
 - Using relatively simple mechanisms (e.g., "i mod 4")
- Main memory
 - Cache of the disk
 - Managed (in modern times) by the operating system
 - Using relatively sophisticated mechanisms (e.g., LRU-like)
 - Since reading from disk is extremely time consuming

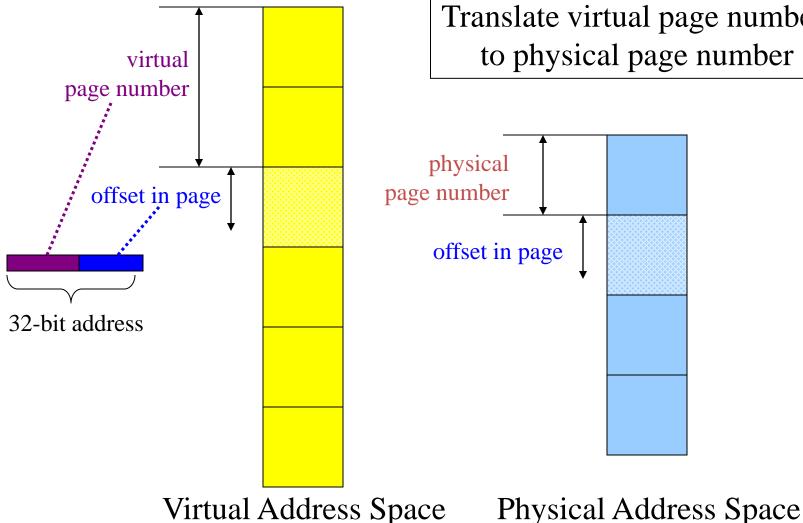
Manual Allocation: Segmentation

- In the olden days (aka "before the mid 1950s")
 - Programmers incorporated storage allocation in their programs
 - ... whenever the total information exceeded main memory
- Segmentation
 - Programmers would divide their programs into "segments"
 - Which would "overlay" (i.e., replace) one another in main memory
- Advantages
 - Programmers are intimately familiar with their code
 - And can optimize the layout of information in main memory
- Disadvantages
 - Immensely tedious and error-prone
 - Compromises the portability of the code

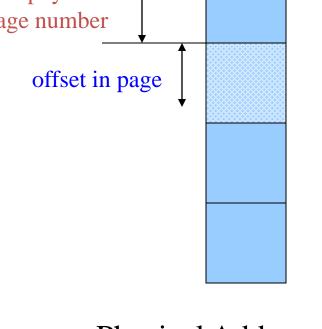
Automatic Allocation: Virtual Memory

- Give programmer the illusion of a very large memory
 - Large: 4 GB of memory with 32-bit addresses
 - Uniform: contiguous memory locations, from 0 to 2³²-1
- Independent of
 - The actual size of the main memory
 - The presence of any other processes sharing the computer
- Key idea #1: separate "address" from "physical location"
 - Virtual addresses: generated by the program
 - Memory locations: determined by the hardware and OS
- Key idea #2: caching
 - Swap virtual pages between main memory and the disk

One of the greatest ideas in computer systems!

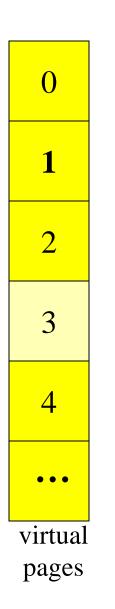

Making Good Use of Memory and Disk

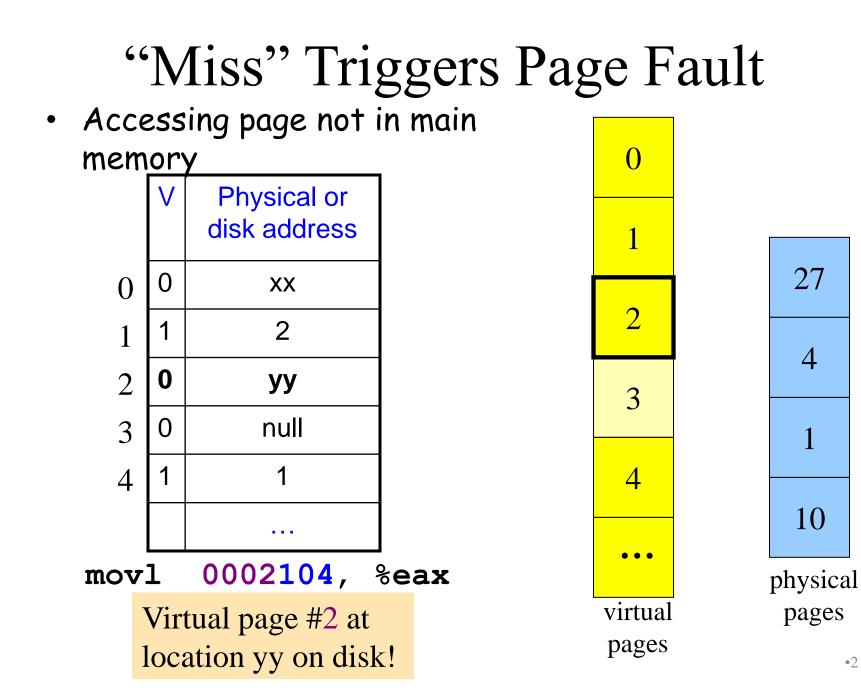
- Good use of the disk
 - Read and write data in large "pages"
 - ... to amortize the cost of "seeking" on the disk
 - E.g., page size of 4 KB
- Good use of main memory
 - Even though the address space is large
 - ... programs usually access only small portions at a time
 - Keep the "working set" in main memory
 - Demand paging: only bring in a page when needed
 - Page replacement: selecting good page to swap out
- Goal: avoid thrashing
 - Continually swapping between memory and disk


Virtual Address for a Process

- Virtual page number
 - Number of the page in the virtual address space
 - Extracted from the upper bits of the (virtual) address
 - ... and then mapped to a physical page number
- Offset in a page
 - Number of the byte within the page
 - Extracted from the lower bits of the (virtual) address
 - ... and then used as offset from start of physical page
- Example: 4 KB pages
 - 20-bit page number: 2²⁰ virtual pages
 - 12-bit offset: bytes 0 to 2^{12} -1

Virtual Memory for a Process

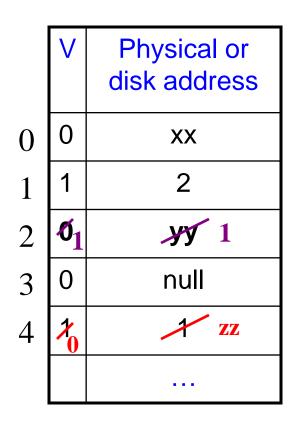

Translate virtual page number to physical page number

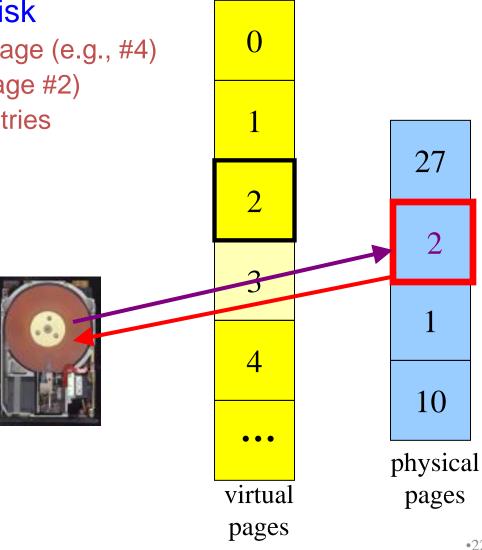


•19

Page Table to Manage the Cache

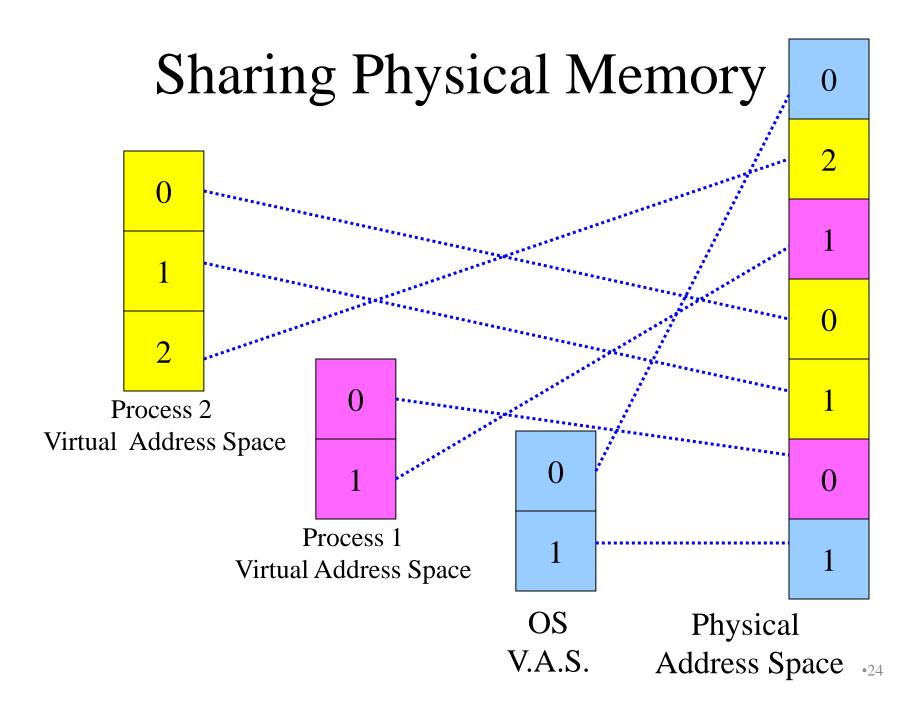
- Current location of each virtual page
 - Physical page number, or
 - Disk address (or null if unallocated)
- Example
 - Page 0: at location xx on disk
 - Page 1: at physical page 2
 - Page 3: not yet allocated
- Page "hit" handled by hardware
 - Compute the physical address
 - Map virtual page # to physical page #
 - Concatenate with offset in page
 - Read or write from main memory
 - Using the physical address
- Page "miss" triggers an exception...

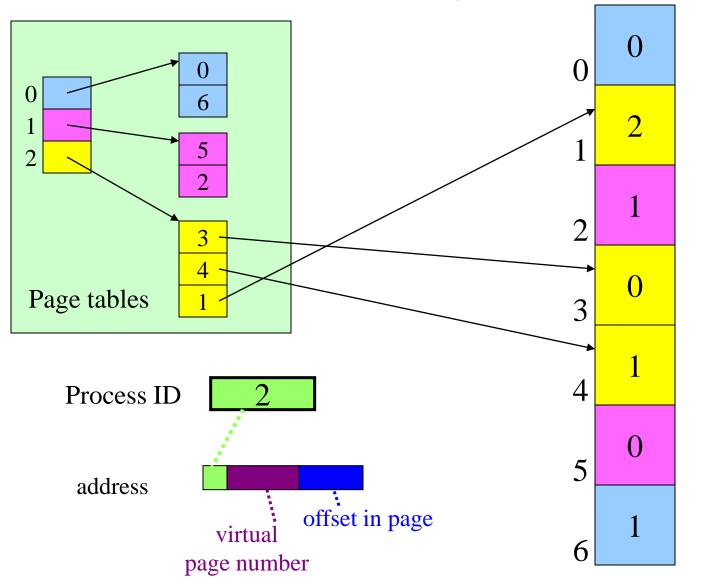




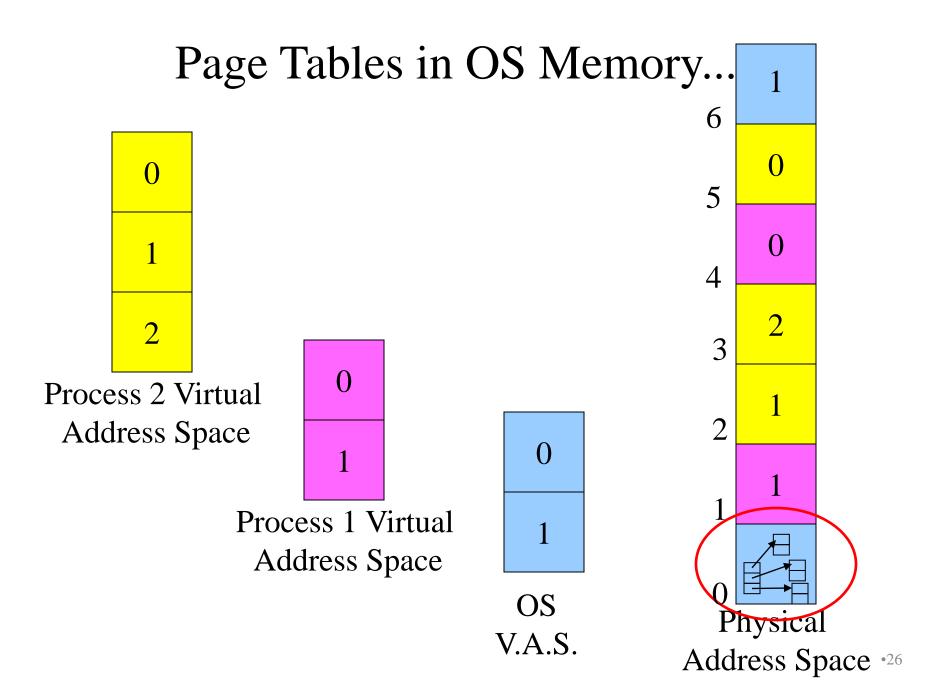
OS Handles the Page Fault

Bringing page in from disk


- If needed, swap out old page (e.g., #4)
- Bring in the new page (page #2)
- Update the page table entries



VM as a Tool for Memory Protection


- Memory protection
 - Prevent process from unauthorized reading or writing of memory
- User process should not be able to
 - Modify the read-only text section in its own address space
 - Read or write operating-system code and data structures
 - Read or write the private memory of other processes
- Hardware support
 - Permission bits in page-table entries (e.g., read-only)
 - Separate identifier for each process (i.e., process-id)
 - Switching between *unprivileged* mode (for user processes) and *privileged* mode (for the operating system)

Process-ID and Page Table Entries

Physical Memory

Measuring the Memory Usage

Virtual memory usage Physical memory usage ("resident set size") CPU time used by this process so far

0	ps r									
F	UID	PID	PPID	PRI	VSZ	RSS	STAT	TIME	COMMAND	
0	115	7264	7262	17	4716	1400	SN	0:00	-csh	
0	115	7290	7264	17	15380	10940	SN	5:52	emacs	
0	115	3283	7264	23	2864	812	RN	0:00	ps l	

Unix

×

📇 Windows Task Manager												
<u>File Options View Help</u>												
Ap	pplications Processes Performance											
	Image Name	PID	CPU	CPU Time	Mem Us	Page Fa	VM Size					
	inetd32.exe	580	00	0:00:04	2,084 K	557	552 K					
	ps_agent.exe	596	00	0:00:00	3,436 K	931	1,224 K					
	Iap.exe	612	00	0:00:02	120 K	41,224	584 K					
	qttask.exe	1180	00	0:00:00	1,348 K	345	356 K					
	POWERPNT.EXE	1188	00	86:32:55	7,444 K	753,920	67,624 K					
	acrotray.exe	1208	00	0:00:00	5,848 K	1,970	2,368 K					
	INTERNAT.EXE	1216	00	0:00:00	1,656 K	463	360 K					
	mozilla.exe	1228	00	0:14:18	62,664 K	159,297	59,600 K					
	Acrobat.exe	1236	00	0:00:49	45.056 K	121.057	47.220 K					
							End Process					
Prod	cesses: 38	CPU Usag	e: 0%) Me	em Usage: 3	329780K / 1	277168K					

Windows

VM as a Tool for Memory Management

- Simplifying linking
 - Same memory layout for each process
 - E.g., text section always starts at 0x08048000
 - E.g., stack always grows down from 0x0bfffffff
 - Linker can be independent of physical location of code
- Simplifying sharing
 - User processes can share some code and data
 - E.g., single physical copy of stdio library code (like printf)
 - Mapped in to the virtual address space of each process
- Simplifying memory allocation
 - User processes can request additional memory from the heap
 - E.g., using malloc() to allocate, and free() to deallocate
 - OS allocates contiguous virtual pages ...
 - ... and scatters them *anywhere* in physical memory

Summary

- Memory hierarchy
 - Memory devices of different speed, size, and cost
 - Registers, on-chip cache, off-chip cache, main memory, disk, tape
 - Locality of memory accesses making caching effective
- Virtual memory
 - Separate virtual address space for each process
 - Provides caching, memory protection, and memory management
 - Implemented via cooperation of the address-translation hardware and the OS (when page faults occur)
- In Dynamic Memory Management lectures:
 - Dynamic memory allocation on the heap
 - Management by user-space software (e.g., malloc() and free())