
I/O Management

1

Goals of this Lecture

• Help you to learn about:
– The Unix stream concept

– Standard C I/O functions

– Unix system-level functions for I/O

– How the standard C I/O functions use the Unix
system-level functions

– Additional abstractions provided by the standard C
I/O functions

Streams are a beautiful Unix abstraction
2

Stream Abstraction

• Any source of input or destination for output
– E.g., keyboard as input, and screen as output
– E.g., files on disk or CD, network ports, printer port, …

• Accessed in C programs through file pointers
– E.g., FILE *fp1, *fp2;
– E.g., fp1 = fopen("myfile.txt", "r");

• Three streams provided by stdio.h
– Streams stdin, stdout, and stderr

• Typically map to keyboard, screen, and screen
– Can redirect to correspond to other streams

• E.g., stdin can be the output of another program
• E.g., stdout can be the input to another program

3

Sequential Access to a Stream

• Each stream has an associated file position
– Starting at beginning of file (if opened to read or write)
– Or, starting at end of file (if opened to append)

• Read/write operations advance the file position
– Allows sequencing through the file in sequential manner

• Support for random access to the stream
– Functions to learn current position and seek to new one

4

file file

Standard I/O Functions

• Portability
– Generic I/O support for C programs
– Specific implementations for various host OSes
– Invokes the OS-specific system calls for I/O

• Abstractions for C programs
– Streams
– Line-by-line input
– Formatted output

• Additional optimizations
– Buffered I/O
– Safe writing

5

File System

Stdio Library

Appl Prog

user

OS

Example: Opening a File

• FILE *fopen("myfile.txt", "r")

– Open the named file and return a stream

– Includes a mode, such as “r” for read or “w” for write

• Creates a FILE data structure for the file
– Mode, status, buffer, …

– Assigns fields and returns a pointer

• Opens or creates the file, based on the mode
– Write („w‟): create file with default permissions

– Read („r‟): open the file as read-only

– Append („a‟): open or create file, and seek to the end

6

Example: Formatted I/O

• int fprintf(fp1, "Number: %d\n", i)

– Convert and write output to stream in specified
format

• int fscanf(fp1, "FooBar: %d", &i)

– Read from stream in format and assign converted
values

• Specialized versions
– printf(…) is just fprintf(stdout, …)

– scanf(…) is just fscanf(stdin, …)

7

Layers of Abstraction

8

Disk

Driver

Storage

File System

disk blocks

variable-length segments

hierarchical file system

Operating

System

Stdio Library
FILE * stream

Appl Pgm
User

process

int fd

File descriptor:

An integer that

uniquely identifies

an open file

System-Level Functions for I/O

int creat(char *pathname, mode_t mode);

– Create a new file named pathname, and return a file
descriptor

int open(char *pathname, int flags, mode_t mode);

– Open the file pathname and return a file descriptor
int close(int fd);

– Close fd
int read(int fd, void *buf, int count);

– Read up to count bytes from fd into the buffer at
buf

int write(int fd, void *buf, int count);

– Writes up to count bytes into fd from the buffer at
buf

int lseek(int fd, int offset, int whence);

– Assigns the file pointer of fd to a new value by
applying an offset

9

Example: open()

• Converts a path name into a file descriptor
– int open(const char *pathname, int flags,
mode_t mode);

• Arguments
– Pathname: name of the file
– Flags: bit flags for O_RDONLY, O_WRONLY, O_RDWR
– Mode: permissions to set if file must be created

• Returns
– File descriptor (or a -1 if an error)

• Performs a variety of checks
– E.g., whether the process is entitled to access the file

• Underlies fopen()

10

Example: read()

• Reads bytes from a file descriptor
– int read(int fd, void *buf, int count);

• Arguments
– File descriptor: integer descriptor returned by open()
– Buffer: pointer to memory to store the bytes it reads
– Count: maximum number of bytes to read

• Returns
– Number of bytes read

• Value of 0 if nothing more to read
• Value of -1 if an error

• Performs a variety of checks
– Whether file has been opened, whether reading is okay

• Underlies getchar() , fgets(), scanf() , etc.

11

Example: A Simple getchar()
int getchar(void) {

char c;

if (read(0, &c, 1) == 1)

return c;

else return EOF;

}

12

• Read one character from stdin
• File descriptor 0 is stdin

•&c points to the buffer

•1 is the number of bytes to read

• Read returns the number of bytes read
• In this case, 1 byte means success

Making getchar() More Efficient

• Poor performance reading one byte at a time
– Read system call is accessing the device (e.g., a disk)
– Reading one byte from disk is very time consuming
– Better to read and write in larger chunks

• Buffered I/O
– Read a large chunk from disk into a buffer

• Dole out bytes to the user process as needed
• Discard buffer contents when the stream is closed

– Similarly, for writing, write individual bytes to a buffer
• And write to disk when full, or when stream is closed
• Known as “flushing” the buffer

13

Better getchar() with Buffered I/O

int getchar(void) {

static char base[1024];

static char *ptr;

static int cnt = 0;

if (cnt--) return *ptr++;

cnt = read(0, base, sizeof(base));

if (cnt <= 0) return EOF;

ptr = base;

return getchar();

}

14

persistent variables

base

ptr

But, many functions may read (or write) the stream…

Details of FILE in stdio.h (K&R 8.5)
#define OPEN_MAX 20 /* max files open at once */

typedef struct _iobuf {

int cnt; /* num chars left in buffer */

char *ptr; /* ptr to next char in buffer */

char *base; /* beginning of buffer */

int flag; /* open mode flags, etc. */

char fd; /* file descriptor */
} FILE;

extern FILE _iob[OPEN_MAX];

#define stdin (&_iob[0])

#define stdout (&_iob[1])

#define stderr (&_iob[2])

15

A Funny Thing About Buffered I/O

int main(void) {

printf("Step 1\n");

sleep(10);

printf("Step 2\n");

return 0;

}

16

• Run “a.out > out.txt &” and then “tail -f out.txt”

• To run a.out in the background, outputting to out.txt

• And then to see the contents on out.txt

• Neither line appears till ten seconds have elapsed

• Because the output is being buffered

• Add fflush(stdout) to flush the output buffer

• fclose() also flushes the buffer before closing

• The standard library also buffers output; example:

Summary

• System-level I/O functions provide simple
abstractions
– Stream as a source or destination of data
– Functions for manipulating streams

• Standard I/O library builds on system-level
functions
– Calls system-level functions for low-level I/O
– Adds buffering

• Powerful examples of abstraction
– Application pgms interact with streams at a high level
– Standard I/O library interact with streams at lower

level
– Only the OS deals with the device-specific details

17

