
Assembly Language: Overview

•1

Goals of this Lecture

• Help you learn:
– The basics of computer architecture

– The relationship between C and assembly
language

– IA-32 assembly language, through an
example

•2

Context of this Lecture

Second half of the course

•3

Starting Now Afterward

C Language

Assembly Language

Machine Language

Application Program

Operating System

Hardware

language

levels

tour

service

levels

tour

Three Levels of Languages

•4

High-Level Language

• Make programming
easier by describing
operations in a semi-
natural language

• Increase the
portability of the code

• One line may involve
many low-level
operations

• Examples: C, C++, Java,
Pascal, …

•5

count = 0;

while (n > 1) {

count++;

if (n & 1)

n = n*3 + 1;

else

n = n/2;
}

Assembly Language
• Tied to the specifics

of the underlying
machine

• Commands and names
to make the code
readable and writeable
by humans

• Hand-coded assembly
code may be more
efficient

• E.g., IA-32 from Intel

•6

movl %edx, %eax

andl $1, %eax

je else

jmp endif
else:

endif:

sarl $1, %edx

movl %edx, %eax

addl %eax, %edx

addl %eax, %edx

addl $1, %edx

addl $1, %ecx

loop:
cmpl $1, %edx

jle endloop

jmp loop

endloop:

movl $0, %ecx

Machine Language

• Also tied to the
underlying machine

• What the computer
sees and deals with

• Every instruction is a
sequence of one or
more numbers

• All stored in memory
on the computer, and
read and executed

• Unreadable by humans

•7

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

9222 9120 1121 A120 1121 A121 7211 0000

0000 0001 0002 0003 0004 0005 0006 0007

0008 0009 000A 000B 000C 000D 000E 000F

0000 0000 0000 FE10 FACE CAFE ACED CEDE

1234 5678 9ABC DEF0 0000 0000 F00D 0000

0000 0000 EEEE 1111 EEEE 1111 0000 0000

B1B2 F1F5 0000 0000 0000 0000 0000 0000

Why Learn Assembly Language?

• Write faster code (even in high-level language)
– By understanding which high-level constructs are

better
– … in terms of how efficient they are at the machine

level

• Understand how things work underneath
– Learn the basic organization of the underlying machine
– Learn how the computer actually runs a program
– Design better computers in the future

• Some software is still written in assembly
language
– Code that really needs to run quickly
– Code for embedded systems, network processors, etc.

•8

Why Learn Intel IA-32 Assembly?

• Program natively on our computing platform
– Rather than using an emulator to mimic another machine

• Learn instruction set for the most popular
platform
– Most likely to work with Intel platforms in the future

• But, this comes at some cost in complexity
– IA-32 has a large and varied set of instructions

– More instructions than are really useful in practice

• Fortunately, you won’t need to use everything

•9

Computer Architecture

•10

A Typical Computer

•11

CPU

ChipsetMemory

I/O bus

CPU. . .

Network

ROM

Von Neumann Architecture

• Central Processing Unit
– Control unit

• Fetch, decode, and execute

– Arithmetic and logic unit

• Execution of low-level
operations

– General-purpose registers

• High-speed temporary
storage

– Data bus

• Provide access to memory

•12

Random Access

Memory (RAM)

Control

Unit

ALU

CPU

Registers

Data bus

Von Neumann Architecture
• Memory

– Store executable machine-
language instructions (text section)

– Store data (rodata, data, bss,
heap, and stack sections)

•13

Random Access

Memory (RAM)

Control

Unit

ALU

CPU

Registers

Data bus

TEXT

RODATA

DATA

BSS

HEAP

STACK

Control Unit: Instruction Pointer
• Stores the location of the next instruction

– Address to use when reading machine-language
instructions from memory (i.e., in the text section)

• Changing the instruction pointer (EIP)
– Increment to go to the next instruction

– Or, load a new value to “jump” to a new location

•14

EIP

Control Unit: Instruction Decoder
• Determines what operations need to take place

– Translate the machine-language instruction

• Control what operations are done on what data
– E.g., control what data are fed to the ALU

– E.g., enable the ALU to do multiplication or addition

– E.g., read from a particular address in memory

•15

ALU

src1 src2

dst

operation flag/carryALU

Registers

• Small amount of storage on the CPU
– Can be accessed more quickly than main memory

• Instructions move data in and out of registers
– Loading registers from main memory

– Storing registers to main memory

• Instructions manipulate the register contents
– Registers essentially act as temporary variables

– For efficient manipulation of the data

• Registers are the top of the memory hierarchy
– Ahead of main memory, disk, tape, …

•16

Keeping it Simple: All 32-bit Words

• Simplifying assumption: all data in four-byte units
– Memory is 32 bits wide
– Registers are 32 bits wide

• In practice, can manipulate different sizes of data

•17

EAX
EBX

C Code vs. Assembly Code

•18

Kinds of Instructions

• Reading and writing data
– count = 0

– n

• Arithmetic and logic operations
– Increment: count++

– Multiply: n * 3

– Divide: n/2

– Logical AND: n & 1

• Checking results of comparisons
– Is (n > 1) true or false?

– Is (n & 1) non-zero or zero?

• Changing the flow of control
– To the end of the while loop (if “n > 1”)

– Back to the beginning of the loop

– To the else clause (if “n & 1” is 0)

•19

count = 0;

while (n > 1) {

count++;

if (n & 1)

n = n*3 + 1;

else

n = n/2;

}

Variables in Registers

•20

Registers

n %edx

count %ecx

Referring to a register: percent sign (“%”)

count = 0;

while (n > 1) {

count++;

if (n & 1)

n = n*3 + 1;

else

n = n/2;

}

Immediate and Register Addressing

count=0;

while (n>1) {

count++;

if (n&1)

n = n*3+1;

else

n = n/2;

}

•21

movl $0, %ecx

addl $1, %ecx

Referring to a immediate operand: dollar sign (“$”)

Read directly

from the

instruction

written to

a register

Immediate and Register Addressing

•22

count=0;

while (n>1) {

count++;

if (n&1)

n = n*3+1;

else

n = n/2;

}

movl %edx, %eax

andl $1, %eax

Computing intermediate value in register EAX

Immediate and Register Addressing

•23

movl %edx, %eax

addl %eax, %edx

addl %eax, %edx

addl $1, %edx

count=0;

while (n>1) {

count++;

if (n&1)

n = n*3+1;

else

n = n/2;

}

Adding n twice is cheaper than multiplication!

Immediate and Register Addressing

•24

sarl $1, %edx

count=0;

while (n>1) {

count++;

if (n&1)

n = n*3+1;

else

n = n/2;

}

Shifting right by 1 bit is cheaper than division!

Changing Program Flow

• Cannot simply run next instruction
– Check result of a previous operation
– Jump to appropriate next instruction

• Flags register (EFLAGS)
– Stores the status of operations, such

as comparisons, as a side effect
– E.g., last result was positive, negative,

zero, etc.
• Jump instructions

– Load new address in instruction pointer
• Example jump instructions

– Jump unconditionally (e.g., “}”)
– Jump if zero (e.g., “n&1”)
– Jump if greater/less (e.g., “n>1”)

•25

count=0;

while (n>1) {

count++;

if (n&1)

n = n*3+1;

else

n = n/2;

}

Conditional and Unconditional Jumps

• Comparison cmpl compares two integers
– Done by subtracting the first number from the second

• Discarding the results, but setting flags as a side effect
– Example:

• cmpl $1, %edx (computes %edx – 1)
• jle endloop (checks whether result was 0 or negative)

• Logical operation andl compares two integers
– Example:

• andl $1, %eax (bit-wise AND of %eax with 1)
• je else (checks whether result was 0)

• Also, can do an unconditional branch jmp
– Example:

• jmp endif and jmp loop

•26

Jump and Labels: While Loop

•27

…

loop:
cmpl $1, %edx

jle endloop

jmp loop

endloop:

while (n>1) {

}

Checking if EDX

is less than or

equal to 1.

Jump and Labels: While Loop

•28

movl %edx, %eax

andl $1, %eax

je else

jmp endif
else:

endif:

sarl $1, %edx

movl %edx, %eax

addl %eax, %edx

addl %eax, %edx

addl $1, %edx

addl $1, %ecx

loop:
cmpl $1, %edx

jle endloop

jmp loop

endloop:

movl $0, %ecx

count=0;

while (n>1) {

count++;

if (n&1)

n = n*3+1;

else

n = n/2;

}

Jump and Labels: If-Then-Else

•29

movl %edx, %eax

andl $1, %eax

je else

jmp endif
else:

endif:

…

if (n&1)

...

else

...

“then” block

“else” block

…

Jump and Labels: If-Then-Else

•30

movl %edx, %eax

andl $1, %eax

je else

jmp endif
else:

endif:

sarl $1, %edx

movl %edx, %eax

addl %eax, %edx

addl %eax, %edx

addl $1, %edx

addl $1, %ecx

loop:
cmpl $1, %edx

jle endloop

jmp loop

endloop:

movl $0, %ecx

count=0;

while(n>1) {

count++;

if (n&1)

n = n*3+1;

else

n = n/2;

}

“then” block

“else” block

Making the Code More Efficient…

•31

movl %edx, %eax

andl $1, %eax

je else

jmp endif
else:

endif:

sarl $1, %edx

movl %edx, %eax

addl %eax, %edx

addl %eax, %edx

addl $1, %edx

addl $1, %ecx

loop:
cmpl $1, %edx

jle endloop

jmp loop

endloop:

movl $0, %ecx

count=0;

while(n>1) {

count++;

if (n&1)

n = n*3+1;

else

n = n/2;

}

Replace with

“jmp loop”

movl %edx, %eax

addl %eax, %edx

addl %eax, %edx

addl $1, %edx

movl %edx, %eax

andl $1, %eax

je else

jmp endif
else:
endif:

addl $1, %ecx

loop:
cmpl $1, %edx

jle endloop

jmp loop

endloop:

movl $0, %ecx

Complete Example

count=0;

while (n>1) {

count++;

if (n&1)

n = n*3+1;

else

n = n/2;

}

•32

n %edx

count %ecx

sarl $1, %edx

Reading IA-32 Assembly Language

• Referring to a register: percent sign (“%”)
– E.g., “%ecx” or “%eip”

• Referring to immediate operand: dollar sign (“$”)
– E.g., “$1” for the number 1

• Storing result: typically in the second argument
– E.g. “addl $1, %ecx” increments register ECX
– E.g., “movl %edx, %eax” moves EDX to EAX

• Assembler directives: starting with a period (“.”)
– E.g., “.section .text” to start the text section of

memory

• Comment: pound sign (“#”)
– E.g., “# Purpose: Convert lower to upper case”

•33

Conclusions

• Assembly language
– In between high-level language and machine code
– Programming the “bare metal” of the hardware
– Loading and storing data, arithmetic and logic

operations, checking results, and changing control
flow

• To get more familiar with IA-32 assembly
– Read more assembly-language examples

• Chapter 3 of Bryant and O’Hallaron book
– Generate your own assembly-language code

• gcc209 –S –O2 code.c

•34

