
Scope, Blocks,
and Modularity

•1

Goals of this Lecture

• Help you learn:
– Local vs. global variables, scope, and blocks

– How to create high quality modules in C

• Why?
– Knowing lifetime and visibility of identifiers is crucial in

writing correct code

– Abstraction is a powerful (the only?) technique available
for understanding large, complex systems

– A power programmer knows how to find the
abstractions in a large program

– A power programmer knows how to convey a large
program’s abstractions via its modularity

•2

Local Variables

• A variable declared in the body of a function is
said to be local to the function:
int sum_digits(int n)

{
int sum = 0; /* local variable */

while (n > 0) {

sum += n % 10;

n /= 10;
}

return sum;
}

•3

Local Variables

• Default properties of local variables:

– Automatic storage duration. Storage is
―automatically‖ allocated when the enclosing
function is called and deallocated when the
function returns.

– Block scope. A local variable is visible from
its point of declaration to the end of the
enclosing function body.

•4

Local Variables

• Since C99 doesn’t require variable declarations to
come at the beginning of a function, it’s possible for a
local variable to have a very small scope:

•5

Static Local Variables

• Including static in the declaration of a local
variable causes it to have static storage duration.

• A variable with static storage duration has a
permanent storage location, so it retains its value
throughout the execution of the program.

• Example:
void f(void)
{
static int i; /* static local variable */
…

}

• A static local variable still has block scope, so it’s not
visible to other functions.

•6

Function Parameters

• Parameters have the same properties—
automatic storage duration and block scope—
as local variables.

• Each parameter is initialized automatically
when a function is called (by being assigned
the value of the corresponding argument).

•7

External Variables

• Passing arguments is one way to transmit
information to a function.

• Functions can also communicate through
external variables—variables that are declared
outside the body of any function.

• External variables are sometimes known as
global variables.

•8

External Variables

• Properties of external variables:

– Static storage duration

– File scope

• Having file scope means that an external
variable is visible from its point of declaration

to the end of the enclosing file.

•9

Example: Using External Variables
to Implement a Stack

• To illustrate how external variables might be
used, let’s look at a data structure known as
a stack.

• A stack, like an array, can store multiple data
items of the same type.

• The operations on a stack are limited:
– Push an item (add it to one end—the ―stack top‖)

– Pop an item (remove it from the same end)

• Examining or modifying an item that’s not
at the top of the stack is forbidden.

•10

Example: Using External Variables
to Implement a Stack

• One way to implement a stack in C is to store
its items in an array, which we’ll call
contents.

• A separate integer variable named top marks
the position of the stack top.
– When the stack is empty, top has the value 0.

• To push an item: Store it in contents at the
position indicated by top, then increment
top.

• To pop an item: Decrement top, then use it
as an index into contents to fetch the item
that’s being popped.

•11

Example: Using External Variables
to Implement a Stack

• The following program fragment declares
the contents and top variables for a stack.

• It also provides a set of functions that
represent stack operations.

• All five functions need access to the top

variable, and two functions need access to
contents, so contents and top will be

external.

•12

Example: Using External Variables
to Implement a Stack

#include <stdbool.h> /* C99 only */

#define STACK_SIZE 100

/* external variables */

int contents[STACK_SIZE];

int top = 0;

void make_empty(void)

{
top = 0;

}

bool is_empty(void)

{
return top == 0;

}

•13

Example: Using External Variables
to Implement a Stack

bool is_full(void)

{
return top == STACK_SIZE;

}

void push(int i)

{
if (is_full())

stack_overflow();

else

contents[top++] = i;
}

int pop(void)

{
if (is_empty())

stack_underflow();

else

return contents[--top];
}

•14

Pros and Cons of External Variables

• External variables are convenient when many functio
ns must share a variable or when a few functions
share a large number of variables.

• In most cases, it’s better for functions to communica
te through parameters rather than by sharing variabl
es:
– If we change an external variable during program maintena

nce (by altering its type, say), we’ll need to check every fun
ction in the same file to see how the change affects it.

– If an external variable is assigned an incorrect value, it may
be difficult to identify the guilty function.

– Functions that rely on external variables are hard to reuse
in other programs.

•15

Pros and Cons of External Variables

• Making variables external when they should be local can lead to
some rather frustrating bugs.

• Code that is supposed to display a 10 × 10 arrangement of
asterisks:
int i;

void print_one_row(void)
{
for (i = 1; i <= 10; i++)

printf("*");
}

void print_all_rows(void)
{
for (i = 1; i <= 10; i++) {

print_one_row();

printf("\n");
}

}

• Instead of printing 10 rows, print_all_rows prints only one.

•16

Blocks

• We encountered compound statements of the
form:

{ statements }

• C allows compound statements to contain
declarations as well as statements:

{ declarations statements }

• This kind of compound statement is called a
block.

•17

Blocks

• Example of a block:
if (i > j) {

/* swap values of i and j */

int temp = i;

i = j;

j = temp;

}

•18

Blocks

• By default, the storage duration of a variable
declared in a block is automatic: storage for
the variable is allocated when the block is
entered and deallocated when the block is
exited.

• The variable has block scope; it can’t be
referenced outside the block.

• A variable that belongs to a block can be
declared static to give it static storage
duration.

•19

Blocks

• The body of a function is a block.

• Blocks are also useful inside a function body
when we need variables for temporary use.

• Advantages of declaring temporary variables in
blocks:
– Avoids cluttering declarations at the beginning of

the function body with variables that are used only
briefly.

– Reduces name conflicts.

• C99 allows variables to be declared anywhere
within a block.

•20

Scope

• Scope defines the visible area of a given identifier

• C’s scope rules enable the programmer (and the
compiler) to determine which meaning is relevant
at a given point in the program.

• The most important scope rule: When a
declaration inside a block names an identifier
that’s already visible, the new declaration
temporarily ―hides‖ the old one, and the identifier
takes on a new meaning.

• At the end of the block, the identifier regains its
old meaning.

•21

•22

Modularity

• Good program consists of well-designed
modules (set of code that provides
related functionalities)

• Let’s learn how to design a good module

•23

Interfaces

(1) A well-designed module separates interface
and implementation

• Why?

– Hides implementation details from clients
• Thus facilitating abstraction

– Allows separate compilation of each implementation
• Thus allowing partial builds

•24

Interface Example

• Stack: A stack whose items are strings

– Data structure
• Linked list

– Algorithms
• new: Create a new Stack object and return it (or NULL if not

enough memory)
• free: Free the given Stack object
• push: Push the given string onto the given Stack object and

return 1 (or 0 if not enough memory)
• top: Return the top item of the given Stack object
• pop: Pop a string from the given Stack object and discard it
• isEmpty: Return 1 the given Stack object is empty, 0

otherwise

•25

Interfaces Example
• Stack (version 1)

– Stack module consists of one file (stack.c); no separate interface
– Problem: Change stack.c => must rebuild stack.c and client
– Problem: Client ―sees‖ Stack function definitions; poor abstraction

/* stack.c */

struct Node {

const char *item;

struct Node *next;

};

struct Stack {

struct Node *first;

};

struct Stack *Stack_new(void) {…}

void Stack_free(struct Stack *s) {…}

int Stack_push(struct Stack *s, const char *item) {…}

char *Stack_top(struct Stack *s) {…}

void Stack_pop(struct Stack *s) {…}

int Stack_isEmpty(struct Stack *s) {…}

/* client.c */

#include "stack.c"

/* Use the functions

defined in stack.c. */

•26

Interfaces Example
• Stack (version 2)

– Stack module consists of two files:
(1) stack.h (the interface) declares functions and
defines data structures

/* stack.h */

struct Node {

const char *item;

struct Node *next;

};

struct Stack {

struct Node *first;

};

struct Stack *Stack_new(void);

void Stack_free(struct Stack *s);

int Stack_push(struct Stack *s, const char *item);

char *Stack_top(struct Stack *s);

void Stack_pop(struct Stack *s);

int Stack_isEmpty(struct Stack *s);

•27

Interfaces Example

• Stack (version 2)

(2) stack.c (the implementation) defines functions
• #includes stack.h so

– Compiler can check consistency of function declarations
and definitions

– Functions have access to data structures

/* stack.c */

#include "stack.h"

struct Stack *Stack_new(void) {…}

void Stack_free(struct Stack *s) {…}

int Stack_push(struct Stack *s, const char *item) {…}

char *Stack_top(struct Stack *s) {…}

void Stack_pop(struct Stack *s) {…}

int Stack_isEmpty(struct Stack *s) {…}

•28

Interfaces Example

• Stack (version 2)

– Client #includes only the interface

– Change stack.c => must rebuild stack.c, but not
the client

– Client does not ―see‖ Stack function definitions;
better abstraction

/* client.c */

#include "stack.h"

/* Use the functions declared in stack.h. */

•29

Encapsulation

(2) A well-designed module encapsulates data
– An interface should hide implementation details

– A module should use its functions to encapsulate its data

– A module should not allow clients to manipulate the data
directly

• Why?
– Clarity: Encourages abstraction

– Security: Clients cannot corrupt object by changing its
data in unintended ways

– Flexibility: Allows implementation to change – even the
data structure – without affecting clients

•30

Encapsulation Example
• Stack (version 1)

– That’s bad

– Interface reveals how Stack object is implemented (e.g., as a linked list)

– Client can access/change data directly; could corrupt object

/* stack.h */

struct Node {

const char *item;

struct Node *next;

};

struct Stack {

struct Node *first;

};

struct Stack *Stack_new(void);

void Stack_free(struct Stack *s);

void Stack_push(struct Stack *s, const char *item);

char *Stack_top(struct Stack *s);

void Stack_pop(struct Stack *s);

int Stack_isEmpty(struct Stack *s);

Structure type definitions

in .h file

•31

Encapsulation Example

• Stack (version 2)

– That’s better
– Interface does not reveal how Stack object is implemented
– Client cannot access data directly

/* stack.h */

struct Stack;

struct Stack *Stack_new(void);

void Stack_free(struct Stack *s);

void Stack_push(struct Stack *s, const char *item);

char *Stack_top(struct Stack *s);

void Stack_pop(struct Stack *s);

int Stack_isEmpty(struct Stack *s);

Place declaration of

struct Stack in interface;

move definition to

implementation

Move definition of struct Node

to implementation; clients

need not know about it

•32

Encapsulation Example 1

• Stack (version 3)

– That’s better still

– Interface provides ―Stack_T‖ abbreviation for client

– Interface encourages client to view a Stack as an object, not as a
(pointer to a) structure

– Client still cannot access data directly; data is ―opaque‖ to the client

/* stack.h */

typedef struct Stack * Stack_T;

Stack_T Stack_new(void);

void Stack_free(Stack_T s);

void Stack_push(Stack_T s, const char *item);

char *Stack_top(Stack_T s);

void Stack_pop(Stack_T s);

int Stack_isEmpty(Stack_T s);

Opaque pointer

•33

Resources

(3) A well-designed module manages resources consistently

– A module should free a resource if and only if the module has
allocated that resource

– Examples

• Object allocates memory <=> object frees memory

• Object opens file <=> object closes file

• Why?
– Error-prone to allocate and free resources at different levels

What if module

allocates

memory and

nobody frees it?

What if module

frees memory

that nobody

has allocated?

•34

Resources Example

• Stack: Who allocates and frees the strings?

– Reasonable options:
(1) Client allocates and frees strings

– Stack_push() does not create copy of given string
– Stack_pop() does not free the popped string
– Stack_free() does not free remaining strings

(2) Stack object allocates and frees strings
– Stack_push() creates copy of given string
– Stack_pop() frees the popped string
– Stack_free() frees all remaining strings

– Our choice: (1) Advantages/

disadvantages?

•35

SymTable Aside

• Consider SymTable (from Assignment 3)…
• Who allocates and frees the key strings?

– Reasonable options:
(1) Client allocates and frees strings

– SymTable_put() does not create copy of given string
– SymTable_remove() does not free the string
– SymTable_free() does not free remaining strings

(2) SymTable object allocates and frees strings
– SymTable_put() creates copy of given string
– SymTable_remove() frees the string
– SymTable_free() frees all remaining strings

– Our choice: (2)
Advantages/

disadvantages?

•36

Passing Resource Ownership

• Passing resource ownership
– Should note violations of the heuristic in function comments

/* somefile.h */

…

void *f(void);

/* …

This function allocates memory for

the returned object. You (the caller)

own that memory, and so are responsible

for freeing it when you no longer

need it. */

…

•37

Consistency

(4) A well-designed module is consistent

– A function’s name should indicate its module
• Facilitates maintenance programming; programmer can

find functions more quickly

• Reduces likelihood of name collisions (from different
programmers, different software vendors, etc.)

– A module’s functions should use a consistent
parameter order
• Facilitates writing client code

•38

Consistency Examples

• Stack

(+) Each function name begins with ―Stack_‖

(+) First parameter identifies Stack object

•39

Minimization

(5) A well-designed module has a minimal interface

– Function declaration should be in a module’s
interface if and only if:
• The function is necessary to make objects complete, or

• The function is convenient for many clients

• Why?

– More functions => higher learning costs, higher
maintenance costs

•40

Minimization Example

• Stack
/* stack.h */

typedef struct Stack *Stack_T ;

Stack_T Stack_new(void);

void Stack_free(Stack_T s);

void Stack_push(Stack_T s, const char *item);

char *Stack_top(Stack_T s);

void Stack_pop(Stack_T s);

int Stack_isEmpty(Stack_T s);
Should any

functions be

eliminated?

•41

Minimization Example

• Another Stack function?
void Stack_clear(Stack_T s);

• Pops all items from the Stack object

Should the Stack ADT

define Stack_clear()?

•42

SymTable Aside

• Consider SymTable (from Assignment 3)
– Declares SymTable_get() in interface

– Declares SymTable_contains() in interface

Should

SymTable_contains()

be eliminated?

•43

Error Detection/Handling/Reporting

(6) A well-designed module detects and
handles/reports errors

– A module should:

• Detect errors

• Handle errors if it can; otherwise…

• Report errors to its clients
– A module often cannot assume what error-handling

action its clients prefer

•44

Detecting and Handling Errors in C

• C options for detecting errors
– if statement
– assert macro

• C options for handling errors
– Print message to stderr

• Impossible in many embedded applications

– Recover and proceed
• Sometimes impossible

– Abort process
• Often undesirable

•45

Reporting Errors in C

• C options for reporting errors to client
– Set global variable?

• Easy for client to forget to check
• Bad for multi-threaded programming

– Use function return value?
• Awkward if return value has some other natural purpose

– Use extra call-by-reference parameter?
• Awkward for client; must pass additional parameter

– Call assert macro?
• Terminates the entire program!

• No option is ideal
What additional

option does Java

provide?

•46

User Errors

Our recommendation: Distinguish between…
(1) User errors

– Errors made by human user
– Errors that ―could happen‖

– Example: Bad data in stdin
– Example: Bad value of command-line argument

– Use if statement to detect
– Handle immediately if possible, or…
– Report to client via return value or call-by-reference

parameter

•47

Programmer Errors

(2) Programmer errors
– Errors made by a programmer
– Errors that ―should never happen‖

– Example: int parameter should not be negative, but is
– Example: pointer parameter should not be NULL, but is

– Use assert to detect and handle

• The distinction sometimes is unclear
– Example: Write to file fails because disk is full

•48

Error Handling Example

• Stack

– Invalid parameter is programmer error
• Should never happen
• Detect and handle via assert

– Memory allocation failure is user error
• Could happen (huge data set and/or small computer)
• Detect via if; report to client via return value

/* stack.c */

…

int Stack_push(Stack_T s, const char *item) {

struct Node *p;

assert(s != NULL);

p = (struct Node*)malloc(sizeof(struct Node));

if (p == NULL) return 0;

p->item = item;

p->next = s->first;

s->first = p;

return 1;

}

•49

Establishing Contracts

(7) A well-designed module establishes contracts
– A module should establish contracts with its clients
– Contracts should describe what each function does, esp:

• Meanings of parameters
• Work performed
• Meaning of return value
• Side effects

• Why?
– Facilitates cooperation between multiple programmers
– Assigns blame to contract violators!!!

• If your functions have precise contracts and implement them
correctly, then the bug must be in someone else’s code!!!

•50

Establishing Contracts in C

• Our recommendation…

• In C, establish contracts via comments in
module interface

•51

Establishing Contracts Example

• Stack

– Comment defines contract:
• Meaning of function’s parameters

– s is the stack to be affected; item is the item to be pushed
• Work performed

– Push item onto s
• Meaning of return value

– Indicates success/failure
• Side effects

– (None, by default)

/* stack.h */

…

int Stack_push(Stack_T s, const char *item);

/* Push item onto s. Return 1 (TRUE)

if successful, or 0 (FALSE) if

insufficient memory is available. */

…

•52

Summary

• A well-designed module:

(1) Separates interface and implementation

(2) Encapsulates data

(3) Manages resources consistently

(4) Is consistent

(5) Has a minimal interface

(6) Detects and handles/reports errors

(7) Establishes contracts

•53

