
Structures & Dynamic
Memory Management

Goals of this Lecture

• Help you learn about:

– Structures and unions

– Dynamic memory management

• Note:

– Mostly covered in precepts

– We look at them in more detail

•2

Structure Variables

• Structure: collection of related data items

• Comparison with array
– The elements of a structure (its members)

aren’t required to have the same type.

– The members of a structure have names; to
select a particular member, we specify its
name, not its position.

• Structures are often called records, and
members are known as fields.

•3

Declaring Structure Variables

• A declaration of two structure variables
that store information about parts in a
warehouse:
struct {

int number;

char name[NAME_LEN+1];

int on_hand;

} part1, part2;

•4

Declaring Structure Variables

• The members of a structure are
stored in memory in the order in
which they’re declared.

• Appearance of part1
• Assumptions:

– part1 is located at address 2000.

– Integers occupy four bytes.

– NAME_LEN has the value 25.

– There are no gaps between the

members.

•5

Initializing Structure Variables

• A structure declaration may include an initializer:
struct {

int number;

char name[NAME_LEN+1];

int on_hand;

} part1 = {528, "Disk drive", 10},

part2 = {914, "Printer cable", 5};

• Appearance of part1 after initialization:

•6

Initializing Structure Variables

• Structure initializers follow rules similar
to those for array initializers.

• Expressions used in a structure initializer
must be constant. (relaxed in C99)

• An initializer can have fewer members
than the structure it’s initializing.

• Any “leftover” members are given 0 as
their initial value.

•7

Designated Initializers (C99)

• The initializer for part1 shown in the previous

example:
{528, "Disk drive", 10}

• In a designated initializer, each value would be
labeled by the name of the member that it
initializes:
{.number = 528, .name = "Disk drive", .on_hand = 10}

• The combination of the period and the member
name is called a designator.

•8

Designated Initializers (C99)

• Not all values listed in a designated
initializer need be prefixed by a designator.

• Example:
{.number = 528, "Disk drive", .on_hand = 10}

The compiler assumes that "Disk drive"

initializes the member that follows number

in the structure.

• Any members that the initializer fails to
account for are set to zero.

•9

Operations on Structures

•Accessing a member within a structure:

name.member

• Statements that display the values of part1’s

members:
printf("Part number: %d\n", part1.number);

printf("Part name: %s\n", part1.name);

printf("Quantity on hand: %d\n", part1.on_hand);

•10

Operations on Structures

• The members of a structure are lvalues.

• They can appear on the left side of an
assignment or as the operand in an
increment or decrement expression:

part1.number = 258;

/* changes part1's part number */

part1.on_hand++;

/* increments part1's quantity on hand */

•11

Operations on Structures

• The period used to access a structure
member is actually a C operator.

• It takes precedence over nearly all other
operators.

• Example:
scanf("%d", &part1.on_hand);

The . operator takes precedence over the & operator, so &

computes the address of part1.on_hand.

•12

Operations on Structures

• The other major structure operation is
assignment:

part2 = part1;

• The effect of this statement is to copy all
members from part1 to part2.
– part1.number into part2.number,
part1.name into part2.name, and so on.

•13

Operations on Structures

• Arrays can’t be copied using the = operator,
but an array embedded within a structure
is copied when the enclosing structure is
copied.

• Some programmers exploit this property by
creating “dummy” structures to enclose
arrays that will be copied later:

struct { int a[10]; } a1, a2;

a1 = a2;

/* legal, since a1 and a2 are structures

a1.a[i] = a2.a[i]; (0 <= i <= 9) */

•14

Operations on Structures

• The = operator can be used only with structures
of compatible types.
– Two structures declared at the same time (as part1

and part2 were) are compatible.

– Structures declared using the same “structure tag”
or the same type name are also compatible.

• Other than assignment, C provides no
operations on entire structures.
– In particular, the == and != operators can’t be

used with structures.

•15

Structure Types

• Suppose that a program needs to
declare several structure variables with
identical members.

• Ways to name a structure:

– Declare a “structure tag”

– Use typedef to define a type name

•16

Declaring a Structure Tag

• A structure tag is a name used to identify
a particular kind of structure.

• The declaration of a structure tag named
part:
struct part {

int number;

char name[NAME_LEN+1];

int on_hand;

};

• Note that a semicolon must follow the right
brace.

•17

Declaring a Structure Tag
• The part tag can be used to declare variables:

struct part part1, part2, *p;

p can point to a struct part variable.
p = &part1;

(*p).name or p->name to access part1.name

• We can’t drop the word struct:

part part1, part2; /*** WRONG ***/

part isn’t a type name; without the word struct, it is
meaningless.

• Since structure tags aren’t recognized unless preceded by
the word struct, they don’t conflict with other names
used in a program.

•18

Declaring a Structure Tag

• The declaration of a structure tag can be
combined with the declaration of
structure variables:
struct part {

int number;

char name[NAME_LEN+1];

int on_hand;

} part1, part2;

•19

Declaring a Structure Tag

• All structures declared to have type
struct part are compatible with one

another:
struct part part1 = {528, "Disk drive", 10};

struct part part2;

part2 = part1;

/* legal; both parts have the same type */

•20

Defining a Structure Type

• As an alternative to declaring a structure tag, we can
use typedef to define a genuine type name.

• A definition of a type named Part:
typedef struct {

int number;

char name[NAME_LEN+1];

int on_hand;

} Part;

• Part can be used in the same way as built-in types:
Part part1, part2;

•21

Defining a Structure Type

• When it comes time to name a structure, we can
usually choose either to declare a structure tag
or to use typedef.

• However, declaring a structure tag is mandatory
when the structure itself is referenced in it

typedef struct tagList {

char *key;

int value;

struct tagList *next;

} List;

•22

Nested Arrays and Structures

• Structures and arrays can be combined
without restriction.

• Arrays may have structures as their
elements, and structures may contain
arrays and structures as members.

•23

Nested Structures

• Suppose that person_name is the following structure:

struct person_name {

char first[FIRST_NAME_LEN+1];

char middle_initial;

char last[LAST_NAME_LEN+1];

};

• We can use person_name as part of a larger
structure:
struct student {

struct person_name name;

int id, age;

char sex;

} student1, student2;

• Accessing student1’s first name, middle initial, or
last name requires two applications of the .
operator:
strcpy(student1.name.first, "Fred");

•24

Arrays of Structures

• An array of part structures capable of storing

information about 100 parts:

struct part inventory[100];

• Accessing a member within a part structure requires

a combination of subscripting and member selection:
inventory[i].number = 883;

• Accessing a single character in a part name requires
subscripting, followed by selection, followed by
subscripting:

inventory[i].name[0] = '\0';

•25

Initializing an Array of Structures

• One reason for initializing an array of structures
is that it contains information that won’t change
during program execution.

• Example: an array that contains country codes
used when making international telephone calls.

• The elements of the array will be structures that
store the name of a country along with its code:
struct dialing_code {

char *country;

int code;

};

•26

Initializing an Array of Structures

const struct dialing_code country_codes[] =

{{"Argentina", 54}, {"Bangladesh", 880},

{"Brazil", 55}, {"Burma (Myanmar)", 95},

{"China", 86}, {"Colombia", 57},

{"Congo, Dem. Rep. of", 243}, {"Egypt", 20},

{"Ethiopia", 251}, {"France", 33},

{"Germany", 49}, {"India", 91},

{"Indonesia", 62}, {"Iran", 98},

{"Italy", 39}, {"Japan", 81},

{"Mexico", 52}, {"Nigeria", 234},

{"Pakistan", 92}, {"Philippines", 63},

{"Poland", 48}, {"Russia", 7},

{"South Africa", 27}, {"South Korea", 82},

{"Spain", 34}, {"Sudan", 249},

{"Thailand", 66}, {"Turkey", 90},

{"Ukraine", 380}, {"United Kingdom", 44},

{"United States", 1}, {"Vietnam", 84}};

• The inner braces around each structure value are optional.
•27

Unions

• A union, like a structure, consists of one or
more members, possibly of different types.

• The compiler allocates only enough space
for the largest of the members, which
overlay each other within this space.

• Assigning a new value to one member
alters the values of the other members as
well.

•28

Unions

• An example of a union variable:
union {

int i;

double d;

} u;

• The declaration of a union closely
resembles a structure declaration:
struct {

int i;

double d;

} s;

•29

Unions

• The structure s and
the union u differ in
just one way.

• The members of s
are stored at
different addresses
in memory.

• The members of u
are stored at the
same address.

•30

Unions

• Members of a union are accessed in the
same way as members of a structure:
u.i = 82;

u.d = 74.8;

• Changing one member of a union alters
any value previously stored in any of the
other members.
– Storing a value in u.d causes any value

previously stored in u.i to be lost.

– Changing u.i corrupts u.d.

•31

Unions

• The properties of unions are almost
identical to the properties of structures.

• We can declare union tags and union
types in the same way we declare
structure tags and types.

• Like structures, unions can be copied
using the = operator, passed to

functions, and returned by functions.

•32

Unions

• Only the first member of a union can be
given an initial value.

• How to initialize the i member of u to 0:
union {

int i;

double d;

} u = {0};

• The expression inside the braces must be
constant. (The rules are slightly different
in C99.)

•33

Unions

• Designated initializers can also be used
with unions.

• A designated initializer allows us to specify
which member of a union should be
initialized:
union {

int i;

double d;

} u = {.d = 10.0};

• Only one member can be initialized, but it
doesn’t have to be the first one.

•34

Unions

• Applications for unions:

– Saving space

– Building mixed data structures

– See King’s book.

•35

Dynamic Storage Allocation

• C’s data structures, including arrays, are normally
fixed in size.

• Fixed-size data structures can be a problem, since
we’re forced to choose their sizes when writing a
program.

• Fortunately, C supports dynamic storage allocation:
the ability to allocate storage during program
execution.

• Using dynamic storage allocation, we can design
data structures that grow (and shrink) as needed.

•36

Memory Allocation Functions

• The <stdlib.h> header declares three

memory allocation functions:
malloc—Allocates a block of memory but doesn’t initialize it.

calloc—Allocates a block of memory and clears it.

realloc—Resizes a previously allocated block of memory.

• These functions return a value of type void * (a

“generic” pointer).
– If a memory allocation function can’t locate a memory block

of the requested size, it returns a null pointer. (NULL or 0)

•37

Null Pointers

• An example of testing malloc’s return value:
p = malloc(10000);

if (p == NULL) {

/* allocation failed; take appropriate action */

}

• NULL is a macro (defined in various library
headers) that represents the null pointer.

• Some programmers combine the call of malloc
with the NULL test:

if ((p = malloc(10000)) == NULL) {

/* allocation failed; take appropriate action */

}

•38

Using malloc to Allocate Memory

• Prototype for the malloc function:
void *malloc(size_t size);

• malloc allocates a block of size bytes

and returns a pointer to it.

• size_t is an unsigned integer type

defined in the library.

•39

Using malloc to Allocate Memory for a String

• A call of malloc that allocates memory for a
string of n characters:

p = (char *)malloc(n + 1);

p is a char * variable.

• Each character requires one byte of memory;
adding 1 to n leaves room for the null character.

•40

Using malloc to Allocate Memory for a String

• Calling strcpy is one way to initialize

this array:
strcpy(p, "abc");

• The first four characters in the array will
now be a, b, c, and \0:

•41

Using malloc to Allocate Storage for an Array

• Suppose a program needs an array of n integers,
where n is computed during program execution.

• We’ll first declare a pointer variable:

int *a;

• Once the value of n is known, the program can
call malloc to allocate space for the array:

a = malloc(n * sizeof(int));

• Always use the sizeof operator to calculate the

amount of space required for each element.

•42

Using malloc to Allocate Storage for an Array

• We can now ignore the fact that a is a pointer
and use it instead as an array name, thanks to
the relationship between arrays and pointers.

• For example, we could use the following loop to
initialize the array that a points to:
for (i = 0; i < n; i++)

a[i] = 0;

• We also have the option of using pointer
arithmetic instead of subscripting to access the
elements of the array.

•43

The calloc Function

• Prototype for calloc:
void *calloc(size_t nmemb, size_t size);

• Properties of calloc:

– Allocates space for an array with nmemb
elements, each of which is size bytes long.

– Returns a null pointer if the requested space
isn’t available.

– Initializes allocated memory by setting all
bits to 0.

•44

The calloc Function

• A call of calloc that allocates space for
an array of n integers:
a = calloc(n, sizeof(int));

• By calling calloc with 1 as its first

argument, we can allocate space for a
data item of any type:
struct point { int x, y; } *p;

p = calloc(1, sizeof(struct point));

•45

The realloc Function

• The realloc function can resize a dynamically
allocated array.

• Prototype for realloc:
void *realloc(void *ptr, size_t size);

• ptr must point to a memory block obtained by
a previous call of malloc, calloc, or realloc.

• size represents the new size of the block,
which may be larger or smaller than the original
size.

•46

The realloc Function

• Properties of realloc:
– When it expands a memory block, realloc

doesn’t initialize the bytes that are added to the
block.

– If realloc can’t enlarge the memory block as
requested, it returns a null pointer; the data in
the old memory block is unchanged.

– If realloc is called with a null pointer as its
first argument, it behaves like malloc.

– If realloc is called with 0 as its second
argument, it frees the memory block.

•47

The realloc Function

• We expect realloc to be reasonably efficient:

– When asked to reduce the size of a memory block,
realloc should shrink the block “in place.”

– realloc should always attempt to expand a memory

block without moving it.

• If it can’t enlarge a block, realloc will allocate

a new block elsewhere, then copy the contents
of the old block into the new one.

• Once realloc has returned, be sure to update

all pointers to the memory block in case it has
been moved.

•48

Deallocating Storage

• malloc and the other memory allocation
functions obtain memory blocks from a
storage pool known as the heap.

• Calling these functions too often—or asking
them for large blocks of memory—can
exhaust the heap, causing the functions to
return a null pointer.

• To make matters worse, a program may
allocate blocks of memory and then lose
track of them, thereby wasting space.

•49

Deallocating Storage

• Example:
p = malloc(…);

q = malloc(…);

p = q;

• A snapshot after the first two statements
have been executed:

•50

Deallocating Storage

• After q is assigned to p, both variables

now point to the second memory block:

• There are no pointers to the first block,
so we’ll never be able to use it again.

•51

Deallocating Storage

• A block of memory that’s no longer accessible
to a program is said to be garbage.

• A program that leaves garbage behind has a
memory leak.

• Some languages provide a garbage collector
that automatically locates and recycles garbage,
but C doesn’t.

• Instead, each C program is responsible for
recycling its own garbage by calling the free
function to release unneeded memory.

•52

The free Function

• Prototype for free:
void free(void *ptr);

• free will be passed a pointer to an
unneeded memory block:

p = malloc(…);
q = malloc(…);
free(p);
p = q;

• Calling free releases the block of memory
that p points to.

•53

The “Dangling Pointer” Problem

• Using free leads to a new problem: dangling
pointers.

• free(p) deallocates the memory block that p
points to, but doesn’t change p itself.

• If we forget that p no longer points to a valid
memory block, chaos may ensue:

char *p = malloc(4);
…
free(p);
…
strcpy(p, "abc"); /*** WRONG ***/

• Modifying the memory that p points to is a
serious error.

•54

The “Dangling Pointer” Problem

• Dangling pointers can be hard to spot,
since several pointers may point to the
same block of memory.

• When the block is freed, all the pointers
are left dangling.

•55

Summary

• Structures and Unions

– Allows heterogeneous data items

– Structure tag or typedef can be used for
specifying the same struct variables

• Dynamic memory management

– Allocates variable-sized space on run-time

– De-allocation is the programmer’s
responsibility: be careful about dangling
pointers

•56

