Structures & Dynamic
Memory Management

Goals of this Lecture

« Help you learn about:
— Structures and unions
— Dynamic memory management

 Note:

— Mostly covered in precepts
— We look at them in more detail

Structure Variables

e Structure: collection of related data items

« Comparison with array

— The elements of a structure (its members)
aren't required to have the same type.

— The members of a structure have names; to
select a particular member, we specify its
name, not Its position.

o Structures are often called records, and
members are known as frelds.

Declaring Structure Variables

e A declaration of two structure variables

that store information about parts in a
warehouse:

struct {
int number;
char name[NAME LEN+1];
int on hand;

} partl, partZ;

Declaring Structure Variables

The members of a structure are
stored in memory in the order in
which they're declared.

Appearance of partl
Assumptions: R

— partl is located at address 2000.
— Integers occupy four bytes.
— NAME LEN has the value 25.

— There are no gaps between the
members.

2001

2002

2003

2004

2029

2030

2031

2032

2033

s> number

>name

>on_hand

Initializing Structure Variables

A structure declaration may include an initializer:

struct {
int number;
char name[NAME LEN+1];
int on hand;
} partl = {528, "Disk drive", 10},
part2 = {914, "Printer cable", 5};

« Appearance of part1 after initialization:

number 528

name |Disk drive

on hand 10

Initializing Structure Variables

Structure initializers follow rules similar
to those for array initializers.

Expressions used in a structure initializer
must be constant. (relaxed in C99)

An initializer can have fewer members
than the structure it's initializing.

Any “leftover” members are given 0O as
their initial value.

Designated Initializers (C99)

« The initializer for part1 shown in the previous
example:
{528, "Disk drive", 10}

« In a designated initializer, each value would be
labeled by the name of the member that it
initializes:

{ .number = 528, .name = "Disk drive", .on hand = 10}

« The combination of the period and the member
name is called a designator.

Designated Initializers (C99)

« Not all values listed in a designated
initializer need be prefixed by a designator.

« Example:
{ .number = 528, "Disk drive", .on hand = 10}
The compiler assumes that "Disk drive"
initializes the member that follows number

In the structure.

« Any members that the initializer fails to
account for are set to zero.

Operations on Structures

*Accessing a member within a structure:

name.member

 Statements that display the values of part1’s
members:

printf ("Part number: %d\n", partl.number);
printf ("Part name: %s\n", partl.name);
printf ("Quantity on hand: %d\n", partl.on hand);

Operations on Structures

e The members of a structure are lvalues.

« They can appear on the left side of an
assignment or as the operand in an

Increment or decrement expression:

partl.number = 258;

/* changes partl's part number */
partl.on hand++;

/* increments partl's quantity on hand */

Operations on Structures

» The period used to access a structure
member is actually a C operator.

» It takes precedence over nearly all other
operators.

» Example:
scanf ("%sd", &partl.on hand);

The . operator takes precedence over the & operator, so &

computes the address of partl.on hand.

Operations on Structures

» The other major structure operation is
assignment:
part2 = partl;

« The effect of this statement is to copy all
members from partl to part2.

—partl.number INtO part?2.number,
partl.name INtO part2.name, and so on.

Operations on Structures

 Arrays can't be copied using the = operator,
but an array embedded within a structure

iIs copied when the enclosing structure is
copied.

« Some programmers exploit this property by
creating "dummy” structures to enclose
arrays that will be copied later:

struct { int af[l1l0],; } al, a2;

al = az2;

/* legal, since al and a2 are structures
al.a[i1] = a2.al[i]; (0 <= 1 <= 9) */

Operations on Structures

» The = operator can be used only with structures
of compatible types.

— Two structures declared at the same time (as partl
and part2 were) are compatible.

— Structures declared using the same “structure tag”
or the same type name are also compatible.

« Other than assignment, C provides no
operations on entire structures.

— In particular, the == and != operators can’t be
used with structures.

Structure Types

» Suppose that a program needs to
declare several structure variables with

identical members.
* Ways to name a structure:

— Declare a “structure tag”
— Use typedef to define a type name

Declaring a Structure Tag

« A structure tag is a name used to identify
a particular kind of structure.

« The declaration of a structure tag named
part:
struct part {
int number;
char name [NAME LEN+1];
int on hand;

3

« Note that a semicolon must follow the right
brace.

Declaring a Structure Tag

« The part tag can be used to declare variables:
struct part partl, part2, *p;

p can point to a struct part variable.
p = &partl;
(*p) .name Or p->name to access partl.name

« We can't drop the word struct:

part partl, part2; /*** WRONG ***/

part isn't a type name; without the word struct, it is
meaningless.

* Since structure tags aren’t recognized unless preceded by
the word struct, they don't conflict with other names
used in a program.

Declaring a Structure Tag

» The declaration of a structure 7ag can be
combined with the declaration of

structure variables:

struct part {
int number;
char name[NAME LEN+1];
int on hand;

} partl, partZ;

Declaring a Structure Tag

« All structures declared to have type
struct part are compatible with one

another:

struct part partl = {528, "Disk drive", 10};
struct part partZ;

part?2 = partl;
/* legal; both parts have the same type */

Defining a Structure Type

 As an alternative to declaring a structure tag, we can
use typedef to define a genuine type name.

A definition of a type named Part:

typedef struct {
int number;
char name[NAME LEN+1];
int on hand;

} Part;

* Part can be used in the same way as built-in types:
Part partl, part2;

Defining a Structure Type

* When it comes time to name a structure, we can

usually choose either to declare a structure tag
or to use typedef.

« However, declaring a structure tag is mandatory
when the structure itself is referenced in it

typedef struct taglList {
char *key;
int value;
struct taglList *next;
} List;

Nested Arrays and Structures

e Structures and arrays can be combined
without restriction.

» Arrays may have structures as their
elements, and structures may contain
arrays and structures as members.

Nested Structures

e Suppose that person name is the following structure:

struct person name {
char first[FIRST NAME LEN+1];

char middle initial;
char last[LAST_NAME_LEN+l];

|

« We can use person name as part of a larger
structure;

struct student ({
struct person name name;
int id, age;
char sex;

} studentl, student?2;

« Accessing student1’s first name, middle initial, or

last name requires two applications of the .
operator:

strcpy (studentl.name.first, "Fred");

Arrays of Structures

« An array of part structures capable of storing
information about 100 parts:

struct part inventory[100];

« Accessing a member within a part structure requires
a combination of subscripting and member selection:

inventory[i] .number = 883;

« Accessing a single character in a part name requires
subscripting, followed by selection, followed by
subscripting:

inventory[i] .name[0] = '\0';

Initializing an Array of Structures

« One reason for initializing an array of structures
Is that it contains information that won't change
during program execution.

« Example: an array that contains country codes
used when making international telephone calls.

« The elements of the array will be structures that
store the name of a country along with its code:

struct dialing code
char *country;
int code;

b

Initializing an Array of Structures

const struct dialing code country codes[] =

{{"Argentina", 54}, {"Bangladesh", 8801},
{"Brazil", 55}, {"Burma (Myanmar)", 951},
{"China", 8o}, {"Colombia", 571},
{"Congo, Dem. Rep. of", 243}, {"Egypt", 201},
{"Ethiopia", 251}, {"France", 33},
{"Germany", 49}, {"India", 911},
{"Indonesia", 62}, {"Iran", 981,
{"Italy", 39}, {"Japan", 81},
{"Mexico", 52}, {"Nigeria", 2341,
{"Pakistan", 92}, {"Philippines", 63},
{"Poland", 48}, {"Russia", 7},
{"South Africa", 27}, {"South Korea', 821,
{"Spain", 34}, {"Sudan'", 2491,
{"Thailand", 66}, {"Turkey", 901},
{"Ukraine", 380}, {"United Kingdom", 4441,
{"United States", 1}, {"Vietnam", 841%11};

* The inner braces around each structure value are optional.

Unions

* A wnion, like a structure, consists of one or
more members, possibly of different types.

« The compiler allocates only enough space
for the largest of the members, which
overlay each other within this space.

« Assigning a new value to one member
alters the values of the other members as
well.

Unions

* An example of a union variable:
union {
int 1;
double d;
bouy

» The declaration of a union closely
resembles a structure declaration:

struct {
int 1i;
double d;
bosy

Unions

 The structure s and
the union u differ in
just one way.

e The members of s

are stored at
different addresses
IN memory.

e The members of u

are stored at the
same address.

—

Structure

Union

>d

Unions

« Members of a union are accessed in the
same way as members of a structure:
u.1 = 82;

u.d = 74.8;

« Changing one member of a union alters
any value previously stored in any of the
other members.

— Storing a value in u.d causes any value
previously stored in u.1i to be lost.

— Changing u.1i corrupts u.d.

Unions

» The properties of unions are almost
identical to the properties of structures.

« We can declare union tags and union
types in the same way we declare
structure tags and types.

» Like structures, unions can be copied
using the = operator, passed to

functions, and returned by functions.

Unions

* Only the first member of a union can be
given an initial value.

« How to initialize the i member of u to O:

union {
int 1,
double d;
bu = {0};

» The expression inside the braces must be

constant. (The rules are slightly different
In C99)

Unions

« Designated initializers can also be used
with unions.

« A designated initializer allows us to specity
which member of a union should be
Initialized:
union {

int 1;
double d;
} u = {.d = 10.0};

« Only one member can be initialized, but it
doesn’t have to be the first one.

Unions

 Applications for unions:
— Saving space
— Building mixed data structures
— See King's book.

Dynamic Storage Allocation

C's data structures, including arrays, are normally
fixed in size.

Fixed-size data structures can be a problem, since
we're forced to choose their sizes when writing a
program.

Fortunately, C supports dynamic storage allocation:
the ability to allocate storage during program
execution.

Using dynamic storage allocation, we can design
data structures that grow (and shrink) as needed.

Memory Allocation Functions

e The <stdlib.h> header declares three

memory allocation functions:

malloc—Allocates a block of memory but doesn't initialize it.

calloc—Allocates a block of memory and clears it.
realloc—Resizes a previously allocated block of memory.

« These functions return a value of type void * (a
‘generic” pointer).

— If a memory allocation function can’t locate a memory block
of the requested size, it returns a null pointer. (NULL or 0)

Null Pointers

An example of testing malloc's return value:

p = malloc(10000) ;
if (p == NULL) {
/* allocation failed; take appropriate action */

}

NULL is @ macro (defined in various library
headers) that represents the null pointer.

Some programmers combine the call of malloc
with the NULL test:

if ((p = malloc(10000)) == NULL) {
/* allocation failed; take appropriate action */

}

Using malloc to Allocate Memory

* Prototype for the malloc function:

volid *malloc(size t size);

* malloc allocates a block of size bytes
and returns a pointer to It.

* size t IS an unsigned integer type
defined in the library.

Using malloc to Allocate Memory for a String

« A call of malloc that allocates memory for a
string of n characters:

p = (char *)malloc(n + 1);
p is @ char * variable.

« Each character requires one byte of memory;
adding 1 to n leaves room for the null character.

Using malloc to Allocate Memory for a String

 Calling strcpy Is one way to Initialize

this array:
strcpy (p, "abc");

 The first four characters in the array will
now be a, b, ¢, and \0:

Using malloc to Allocate Storage for an Array

Suppose a program needs an array of n integers,
where n Is computed during program execution.
We'll first declare a pointer variable:

int *a;
Once the value of n is known, the program can
call malloc to allocate space for the array:

a = malloc(n * sizeof(int));
Always use the sizeof operator to calculate the
amount of space required for each element.

Using malloc to Allocate Storage for an Array

« We can now ignore the fact that a is a pointer
and use It instead as an array name, thanks to
the relationship between arrays and pointers.

» For example, we could use the following loop to
initialize the array that a points to:

0; 1 < n; 1i++)

0;

for (1
ali]

» We also have the option of using pointer
arithmetic instead of subscripting to access the
elements of the array.

The calloc Function

 Prototype for calloc:
void *calloc(size t nmemb, size t size);
 Properties of calloc:

— Allocates space for an array with nmemb
elements, each of which is size bytes long.

— Returns a null pointer if the requested space
Isn't available.

— Initializes allocated memory by setting all
bits to O.

The calloc Function

« A call of calloc that allocates space for
an array of n integers:

a = calloc(n, sizeof(int)):;
* By calling calloc with 1 as its first

argument, we can allocate space for a
data item of any type:

struct point { int x, vy; } *p;

p = calloc(l, sizeof (struct point));

The realloc Function

The realloc function can resize a dynamically
allocated array.

Prototype for realloc:

void *realloc(void *ptr, size t size);

ptr must point to a memory block obtained by
a previous call of malloc, calloc, or realloc.

size represents the new size of the block,
which may be larger or smaller than the original
size.

The realloc Function

* Properties of realloc:

— When it expands a memory block, realloc
doesn't initialize the bytes that are added to the
block.

—If realloc can't enlarge the memory block as
requested, it returns a null pointer; the data in
the old memory block is unchanged.

—If realloc is called with a null pointer as its
first argument, it behaves like malloc.

—If realloc is called with 0 as its second
argument, it frees the memory block.

The realloc Function

« We expect realloc to be reasonably efficient:

— When asked to reduce the size of a memory block,
realloc should shrink the block “in place”

— realloc should always attempt to expand a memory
block without moving it.

« If it can't enlarge a block, realloc will allocate
a new block elsewhere, then copy the contents
of the old block into the new one.

* Once realloc has returned, be sure to update

all pointers to the memory block in case it has
been moved.

Deallocating Storage

* malloc and the other memory allocation

functions obtain memory blocks from a
storage pool known as the heap.

 Calling these functions too often—or asking
them for large blocks of memory—can
exhaust the heap, causing the functions to
return a null pointer.

« To make matters worse, a program may
allocate blocks of memory and then lose
track of them, thereby wasting space.

Deallocating Storage

« Example:
p = malloc(..);
g = malloc(..);
p = gy

« A snapshot after the first two statements
have been executed:

|
|

p

I
s

Deallocating Storage

 After g is assigned to p, both variables
now point to the second memory block:

i
a5

« There are no pointers to the first block,
so we'll never be able to use it again.

Deallocating Storage

A block of memory that's no longer accessible
to a program is said to be garbage.

A program that leaves garbage behind has a
memory leak.

Some languages provide a garbage collector
that automatically locates and recycles garbage,
but C doesn't.

Instead, each C program is responsible for
recycling its own garbage by calling the free
function to release unneeded memory.

The £free Function

 Prototype for free:

vold free(voild *ptr);

« free will be passed a pointer to an

unneeded memory block:

p = malloc(..);
q = malloc(..);
free (p);

p = d

» Calling free releases the block of memory
that p points to.

The "Dangling Pointer” Problem

Using free leads to a new problem: dangling
pointers.

free (p) deallocates the memory block that p
points to, but doesn’t change p itself.

If we forget that p no longer points to a valid
memory block, chaos may ensue:

char *p = malloc(4);

free (p) ;

gtrcpy(p, "abc") ; /*** WRONG *x**/

Modifying the memory that p points to is a
serious error.

The "Dangling Pointer” Problem

» Dangling pointers can be hard to spot,
since several pointers may point to the

same block of memory.
« When the block is freed, all the pointers
are left dangling.

Summary

» Structures and Unions
— Allows heterogeneous data items

— Structure tag or typedef can be used for
specifying the same struct variables

« Dynamic memory management
— Allocates variable-sized space on run-time

— De-allocation is the programmer's
responsibility: be careful about dangling
pointers

