
C Pointers

Goals of this Lecture

• Help you learn about:

– Pointers and application

– Pointer variables

– Operators & relation to arrays

• Note:

– We already covered pointers in precepts

– We look at them in more detail

•2

Pointer Variables

• The first step in understanding pointers is
visualizing what they represent at the
machine level.

• In most modern computers, main memory
is divided into bytes, with each byte
capable of storing eight bits of information:

• Each byte has a unique address.

•3

Pointer Variables

• If there are n bytes in memory, we can
think of addresses as numbers that range
from 0 to n – 1:

•4

Pointer Variables

• Each variable in a program occupies one or
more bytes of memory.

• The address of the first byte is said to be the
address of the variable.

• In the following figure, the address of the
variable i is 2000:

•5

Pointer Variables

• Addresses can be stored in special pointer
variables.

• When we store the address of a variable i
in the pointer variable p, we say that p
―points to‖ i.

• A graphical representation:

•6

Declaring Pointer Variables

• When a pointer variable is declared, its
name must be preceded by an asterisk:
int *p;

• p is a pointer variable capable of
pointing to objects of type int.

• We use the term object instead of
variable since p might point to an area
of memory that doesn’t belong to a
variable.

•7

Declaring Pointer Variables

• Pointer variables can appear in declarations along
with other variables:

int i, j, a[10], b[20], *p, *q;

• C requires that every pointer variable point only to
objects of a particular type (the referenced type):

int *p; /* points only to integers */

double *q; /* points only to doubles */

char *r; /* points only to characters */

• There are no restrictions on what the referenced
type may be.

•8

The Address and Indirection Operators

• C provides a pair of operators designed
specifically for use with pointers.

– To find the address of a variable, we use the
& (address) operator.

– To gain access to the object that a pointer
points to, we use the * (indirection,
dereference) operator.

•9

The Address Operator

• Declaring a pointer variable sets aside
space for a pointer but doesn’t make it
point to an object:
int *p; /* points nowhere in particular */

• It’s crucial to initialize p before we use it.

•10

The Address Operator

• One way to initialize a pointer variable is
to assign it the address of a variable:
int i, *p;

…

p = &i;

• Assigning the address of i to the
variable p makes p point to i:

•11

The Address Operator

• It’s also possible to initialize a pointer
variable at the time it’s declared:
int i;

int *p = &i;

• The declaration of i can even be
combined with the declaration of p:
int i, *p = &i;

•12

The Indirection Operator

• Once a pointer variable points to an object, we
can use the * (indirection) operator to access
what’s stored in the object.

• If p points to i, we can print the value of i as
follows:
printf("%d\n", *p);

• Applying & to a variable produces a pointer to
the variable. Applying * to the pointer takes us
back to the original variable:
j = *&i; /* same as j = i; */

•13

The Indirection Operator

• As long as p points to i, *p is an alias for i.
– *p has the same value as i.

– Changing the value of *p changes the value of i.

• The example on the next slide illustrates the
equivalence of *p and i.

•14

The Indirection Operator

p = &i;

i = 1;

printf("%d\n", i); /* prints 1 */

printf("%d\n", *p); /* prints 1 */

*p = 2;

printf("%d\n", i); /* prints 2 */

printf("%d\n", *p); /* prints 2 */

•15

The Indirection Operator

• Applying the indirection operator to an
uninitialized pointer variable causes
undefined behavior:
int *p;

printf("%d", *p); /*** WRONG ***/

• Assigning a value to *p is particularly

dangerous:
int *p;

*p = 1; /*** WRONG ***/

•16

Pointer Assignment

• C allows the use of the assignment
operator to copy pointers of the same type.

• Assume that the following declaration is in
effect:
int i, j, *p, *q;

• Example of pointer assignment:
p = &i;

•17

Pointer Assignment

• Another example of pointer assignment:
q = p;

q now points to the same place as p:

•18

Pointer Assignment

• If p and q both point to i, we can change i by
assigning a new value to either *p or *q:

*p = 1;

*q = 2;

• Any number of pointer variables may point to the
same object.

•19

Pointer Assignment

• Be careful not to confuse
q = p;

with
*q = *p;

• The first statement is a pointer
assignment, but the second is not.

• The example on the next slide shows the
effect of the second statement.

•20

Pointer Assignment

p = &i;

q = &j;

i = 1;

*q = *p;

•21

Pointers as Arguments

• Arguments in calls of scanf are

pointers:
int i;

…

scanf("%d", &i);

Without the &, scanf would be supplied
with the value of i.

•22

Pointers as Arguments

• Although scanf’s arguments must be
pointers, it’s not always true that every
argument needs the & operator:
int i, *p;
…

p = &i;

scanf("%d", p);

• Using the & operator in the call would
be wrong:
scanf("%d", &p); /*** WRONG ***/

•23

Using const to Protect Arguments

• When an argument is a pointer to a variable x,
we normally assume that x will be modified:
f(&x);

• It’s possible, though, that f merely needs to
examine the value of x, not change it.

• The reason for the pointer might be efficiency:
passing the value of a variable can waste time
and space if the variable requires a large amount
of storage.

•24

Using const to Protect Arguments

• We can use const to document that a function
won’t change an object whose address is passed
to the function.

• const goes in the parameter’s declaration, just
before the specification of its type:
void f(const int *p)

{

*p = 0; /*** WRONG ***/

}

Attempting to modify *p is an error that the
compiler will detect.

•25

Pointers as Return Values

• Functions are allowed to return pointers:
int *max(int *a, int *b)

{
if (*a > *b)

return a;

else

return b;
}

• A call of the max function:
int *p, i, j;
…

p = max(&i, &j);

After the call, p points to either i or j.

•26

Pointers as Return Values

• Pointers can point to array elements.

• If a is an array, then &a[i] is a pointer to
element i of a.

• It’s sometimes useful for a function to return a
pointer to one of the elements in an array.

• A function that returns a pointer to the middle
element of a, assuming that a has n elements:
int *find_middle(int a[], int n)

{

return &a[n/2];

}

•27

Pointer Arithmetic

int a[10], *p;

p = &a[0];

• A graphical representation:

•28

Pointer Arithmetic

• We can now access a[0] through p;
for example, we can store the value 5 in a[0]

by writing
*p = 5;

• An updated picture:

•29

Pointer Arithmetic

• C supports three (and only three) forms
of pointer arithmetic:

– Adding an integer to a pointer

– Subtracting an integer from a pointer

– Subtracting one pointer from another

•30

Adding an Integer to a Pointer

• Adding an integer j to a pointer p yields a
pointer to the element j places after the
one that p points to.

• More precisely, if p points to the array
element a[i], then p + j points to
a[i+j].

• Assume that the following declarations are
in effect:
int a[10], *p, *q, i;

•31

Adding an Integer to a Pointer

• Example of pointer addition:
p = &a[2];

q = p + 3;

p += 6;

•32

Subtracting an Integer from a Pointer

• If p points to a[i], then p - j points to a[i-j].

• Example:

p = &a[8];

q = p - 3;

p -= 6;

•33

Subtracting One Pointer from Another

• When one pointer is subtracted from another, the result
is the distance (measured in array elements) between the
pointers.

• If p points to a[i] and q points to a[j], then p - q is
equal to i - j.

• Example:
p = &a[5];

q = &a[1];

i = p - q; /* i is 4 */

i = q - p; /* i is -4 */

•34

Subtracting One Pointer from Another

• Operations that cause undefined
behavior:

– Performing arithmetic on a pointer that
doesn’t point to an array element

– Subtracting pointers unless both point to
elements of the same array

•35

Comparing Pointers

• Pointers can be compared using the relational
operators (<, <=, >, >=) and the equality operators
(== and !=).
– Using relational operators is meaningful only for pointers to

elements of the same array.

• The outcome of the comparison depends on the
relative positions of the two elements in the array.

• After the assignments
p = &a[5];
q = &a[1];

the value of p <= q is 0 and the value of p >= q is 1.

•36

Combining the * and ++ Operators

• C programmers often combine the * (indirection)
and ++ operators.

• A statement that modifies an array element and
then advances to the next element:
a[i++] = j;

• The corresponding pointer version:
*p++ = j;

• Because the postfix version of ++ takes precedence
over *, the compiler sees this as
*(p++) = j;

•37

Combining the * and ++ Operators

• Possible combinations of * and ++:
Expression Meaning

*p++ or *(p++) Value of expression is *p before increment;
increment p later

(*p)++ Value of expression is *p before increment;
increment *p later

*++p or *(++p) Increment p first;
value of expression is *p after increment

++*p or ++(*p) Increment *p first;
value of expression is *p after increment

•38

Combining the * and ++ Operators

• The most common combination of * and ++ is
*p++, which is handy in loops.

• Instead of writing
for (p = &a[0]; p < &a[N]; p++) /* assume N+1 elms */

sum += *p;

to sum the elements of the array a, we could write

p = &a[0];

while (p < &a[N])

sum += *p++;

•39

Using an Array Name as a Pointer

• Pointer arithmetic is one way in which
arrays and pointers are related.

• Another key relationship:
The name of an array can be used as a
pointer to the first element in the array.

• This relationship simplifies pointer
arithmetic and makes both arrays and
pointers more versatile.

•40

Using an Array Name as a Pointer

• Suppose that a is declared as follows:
int a[10];

• Examples of using a as a pointer:
a = 7; / stores 7 in a[0] */

(a+1) = 12; / stores 12 in a[1] */

• In general, a + i is the same as &a[i].
– Both represent a pointer to element i of a.

• Also, *(a+i) is equivalent to a[i].
– Both represent element i itself.

•41

Using an Array Name as a Pointer

• Although an array name can be used as a pointer,
it’s not possible to assign it a new value.

• Attempting to make it point elsewhere is an error:
while (*a != 0)

a++; /*** WRONG ***/

• This is no great loss; we can always copy a into a
pointer variable, then change the pointer variable:
p = a;

while (*p != 0)

p++;

•42

Array Arguments

• When passed to a function, an array name is treated as a
pointer.

• Example:
int find_largest(int a[], int n)

{
int i, max;

max = a[0];

for (i = 1; i < n; i++)

if (a[i] > max)

max = a[i];

return max;
}

•43

Array Arguments

• The fact that an array argument is treated
as a pointer has some important
consequences.

• Consequence 1: When an ordinary variable
is passed to a function, its value is copied;
any changes to the corresponding
parameter don’t affect the variable.

• In contrast, an array used as an argument
isn’t protected against change.

•44

Array Arguments

• To indicate that an array parameter won’t
be changed, we can include the word
const in its declaration:
int find_largest(const int a[], int n)

{

…

}

• If const is present, the compiler will check
that no assignment to an element of a
appears in the body of find_largest.

•45

Array Arguments

• Consequence 2: The time required to
pass an array to a function doesn’t
depend on the size of the array.

• There’s no penalty for passing a large
array, since no copy of the array is made.

•46

Array Arguments

• Consequence 3: An array parameter can be
declared as a pointer if desired.

• find_largest could be defined as follows:
int find_largest(int *a, int n)

{

…

}

• Declaring a to be a pointer is equivalent to
declaring it to be an array; the compiler treats
the declarations as though they were identical.

•47

Array Arguments

• Although declaring a parameter to be an array is the same
as declaring it to be a pointer, the same isn’t true for a
variable.

• The following declaration causes the compiler to set aside
space for 10 integers and assign the address of first
element to a
int a[10];

a = 0; / What happen? */

• The following declaration causes the compiler to allocate
space for a pointer variable:
int *a;

a = 0; / What happen? */

•48

Array Arguments

• Consequence 4: A function with an array
parameter can be passed an array ―slice‖—a
sequence of consecutive elements.

• An example that applies find_largest to
elements 5 through 14 of an array b:

largest = find_largest(&b[5], 10);

•49

Summary

• Pointers and their operations

– Pointer has a memory address as its value

– & is address operator

– * is indirection/dereference operator

– Function arguments

• Used to change the value of the passed variable

• Call-by-reference semantics

– Relation to the arrays

• Array name can be used as a pointer assigned
with the address of its first element

•50

