
Debugging

•1

The material for this lecture is drawn, in part, from

The Practice of Programming (Kernighan & Pike) Chapter 5

Goals of this Lecture

• Help you learn about:
– Strategies and tools for debugging

your code

• Why?
– Debugging large programs can be

difficult
– A power programmer knows a wide

variety of debugging strategies
– A power programmer knows about

tools that facilitate debugging
• Debuggers
• Version control systems

•2

Testing vs. Debugging

• Testing

– What should I do to try to break my program?

• Debugging

– What should I do to try to fix my program?

•3

Debugging Heuristics

Debugging Heuristic When Applicable

(1) Understand error messages Build-time

(2) Think before writing

Run-time

(3) Look for familiar bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

•4

Understand Error Messages

Debugging at build-time is easier than
debugging at run-time, if and only if you…

(1) Understand the error messages!!!

•5

#include <stdioo.h>

int main(void)

/* Print "hello, world" to stdout and

return 0.

{

printf("hello, world\n");

return 0;

}

What are the

error(s)? (No

fair looking at

the next slide!)

Understand Error Messages (cont.)

(1) Understand the error messages (cont.)

•6

#include <stdioo.h>

int main(void)

/* Print "hello, world" to stdout and

return 0.

{

printf("hello, world\n");

return 0;

}

Which tool

(preprocessor,

compiler, or

linker) reports

the error(s)?

$ gcc209 hello.c -o hello

hello.c:1:20: stdioo.h: No such file or directory

hello.c:3:1: unterminated comment

hello.c:2: error: syntax error at end of input

Understand Error Messages (cont.)

(1) Understand the error messages (cont.)

•7

#include <stdio.h>

int main(void)

/* Print "hello, world" to stdout and

return 0. */

{

printf("hello, world\n")

retun 0;

}

What are the

error(s)? (No

fair looking at

the next slide!)

Understand Error Messages (cont.)

(1) Understand the error messages (cont.)

•8

#include <stdio.h>

int main(void)

/* Print "hello, world" to stdout and

return 0. */

{

printf("hello, world\n")

retun 0;

}

Which tool

(preprocessor,

compiler, or

linker) reports

the error(s)?

$ gcc209 hello.c -o hello

hello.c: In function `main':

hello.c:7: error: `retun' undeclared (first use in this

function)

hello.c:7: error: (Each undeclared identifier is reported

only once

hello.c:7: error: for each function it appears in.)

hello.c:7: error: syntax error before numeric constant

Understand Error Messages (cont.)

(1) Understand error messages (cont.)

•9

#include <stdio.h>

int main(void)

/* Print "hello, world" to stdout and

return 0. */

{

prinf("hello, world\n")

return 0;

}

What are the

error(s)? (No

fair looking at

the next slide!)

Understand Error Messages (cont.)

(1) Understand error messages (cont.)

•10

#include <stdio.h>

int main(void)

/* Print "hello, world" to stdout and

return 0. */

{

prinf("hello, world\n")

return 0;

}

Which tool

(preprocessor,

compiler, or

linker) reports

the error(s)?

$ gcc209 hello.c -o hello

hello.c: In function `main':

hello.c:6: warning: implicit declaration of function

`prinf'

/tmp/cc43ebjk.o(.text+0x25): In function `main':

: undefined reference to `prinf'

collect2: ld returned 1 exit status

Think Before Writing

Inappropriate changes could make matters worse, so…

(2) Think before writing
– Draw pictures of the data structures

– Take a break
• Sleep on it!
• Start early so you can!!!

– Explain the code to:
• Yourself
• Someone else
• A teddy bear!
• A giant wookie!!!

•11

Look for Familiar Bugs
(3) Look for familiar bugs

– Some of our favorites:

•12

int i;

…

scanf("%d", i);

char c;

…

c = getchar();

switch (i) {

case 0:

…

break;

case 1:

…

case 2:

…

}

if (i = 5)

…

if (5 < i < 10)

…

if (i & j)

…

while (c = getchar() != EOF)

…

What are

the errors?

Divide and Conquer

(4) Divide and conquer

– Incrementally find smallest/simplest input that illustrates the bug
– Example: Program fails on large input file filex

– Approach 1: Remove input
• Start with filex
• Incrementally remove lines of

filex until bug disappears
– Maybe in “binary search” fashion

– Approach 2: Add input
• Start with small subset of filex
• Incrementally add lines of filex

until bug appears

•13

Divide and Conquer (cont.)

(4) Divide and conquer (cont.)

– Incrementally find smallest code subset that illustrates
the bug

– Example: Test client for your module fails

– Approach 1: Remove code
• Start with test client
• Incrementally remove lines of test client until bug disappears

– Approach 2: Add code
• Start with minimal client
• Incrementally add lines of test client until bug appears

•14

Add More Internal Tests

(5) Add more internal tests

– Internal tests help find bugs (see “Testing”
lecture)

– Internal test also can help eliminate bugs

• Checking invariants and conservation properties
can eliminate some functions from the bug hunt

•15

Display Output

(6) Display output

– Print values of important variables at critical
spots

– Poor:

– Maybe better:

– Better:

•16

printf("%d", keyvariable);

stdout is buffered;

program may crash

before output appears

printf("%d", keyvariable);

fflush(stdout);

printf("%d\n", keyvariable);

Call fflush() to flush

stdout buffer explicitly

Printing '\n' flushes

the stdout buffer, but

not if stdout is

redirected to a file

Display Output (cont.)

(6) Display output (cont.)

– Maybe even better:

– Maybe better still:

•17

fprintf(stderr, "%d", keyvariable);

FILE *fp = fopen("logfile", "w");

…

fprintf(fp, "%d", keyvariable);

fflush(fp);

Write debugging
output to stderr;

debugging output

can be separated

from normal output

via redirection

Write to a log file

Bonus: stderr is

unbuffered

Use a Debugger

(7) Use a debugger
– Alternative to displaying output

– Bonuses:

• Debugger can load “core dumps”

– Examine state of program when it terminated

• Debugger can “attach” to a running program

•18

The GDB Debugger

• GNU Debugger
– Part of the GNU development environment
– Integrated with Emacs editor
– Allows user to:

• Run program
• Set breakpoints
• Step through code one line at a time
• Examine values of variables during run
• Etc.

• See Appendix 1 for details

•19

Focus on Recent Changes

(8) Focus on recent changes

– Corollary: Debug now, not later

•20

Easier:

(1) Write a little

(2) Test a little

(3) Debug a little

(4) Write a little

(5) Test a little

(6) Debug a little

…

Difficult:

(1) Write entire program

(2) Test entire program

(3) Debug entire program

Focus on Recent Changes (cont.)

(8) Focus on recent change (cont.)

– Corollary: Maintain old versions

•21

Difficult:

(1) Change code

(2) Note bug

(3) Try to remember what

changed since last

working version!!!

Easier:

(1) Backup working version

(2) Change code

(3) Note bug

(4) Compare code with

working version to

determine what changed

Maintaining Previous Versions

• To maintain old versions
– Approach 1: Manually copy project directory

• Repeat occasionally

– Approach 2: Use RCS

•22

…

$ mkdir myproject

$ cd myproject

Create project files here.

$ cd ..

$ cp –r myproject myprojectDateTime

$ cd myproject

Continue creating project files here.

…

RCS

Revision Control System
– A simple personal version control system
– Provided with many Linux distributions

• Available on hats

– Allows developer to:
• Create a source code repository
• Check source code files into repository

– RCS saves old versions

• Check source code files out of repository

– Appropriate for one-developer projects
– Not appropriate for multi-developer projects

• Use CVS or Subversion instead

• See Appendix 2 for details

•23

Summary

Debugging Heuristic When Applicable

(1) Understand error messages Build-time

(2) Think before writing

Run-time

(3) Look for familiar bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger *

(8) Focus on recent changes **

•24

* Use GDB

** Use RCS

Appendix 1: Using GDB

• An example program
File testintmath.c:

•25

#include <stdio.h>

int gcd(int i, int j) {

int temp;

while (j != 0) {

temp = i % j;

i = j;

j = temp;

}

return i;

}

int lcm(int i, int j) {

return (i / gcd(i, j)) * j;

}

…

The program is correct

But let’s pretend it has a
runtime error in gcd()…

…

int main(void) {

int iGcd;

int iLcm;

iGcd = gcd(8, 12);

iLcm = lcm(8, 12);

printf("%d %d\n", iGcd, iLcm);

return 0;

}

Euclid’s algorithm;

Don’t be concerned

with details

Appendix 1: Using GDB (cont.)

• General GDB strategy:

– Execute the program to the point of interest

• Use breakpoints and stepping to do that

– Examine the values of variables at that point

•26

Appendix 1: Using GDB (cont.)

• Typical steps for using GDB:

(a) Build with –g
gcc209 –g testintmath.c –o testintmath

– Adds extra information to executable file that GDB uses

(b) Run Emacs, with no arguments
emacs

(c) Run GDB on executable file from within Emacs
<Esc key> x gdb <Enter key> testintmath <Enter key>

(d) Set breakpoints, as desired
break main

– GDB sets a breakpoint at the first executable line of main()
break gcd

– GDB sets a breakpoint at the first executable line of gcd()

•27

Appendix 1: Using GDB (cont.)

• Typical steps for using GDB (cont.):
(e) Run the program

run

– GDB stops at the breakpoint in main()
– Emacs opens window showing source code
– Emacs highlights line that is to be executed next

continue

– GDB stops at the breakpoint in gcd()
– Emacs highlights line that is to be executed next

(f) Step through the program, as desired
step (repeatedly)

– GDB executes the next line (repeatedly)

– Note: When next line is a call of one of your functions:
• step command steps into the function
• next command steps over the function, that is, executes the next

line without stepping into the function

•28

Appendix 1: Using GDB (cont.)

• Typical steps for using GDB (cont.):

(g) Examine variables, as desired
print i

print j

print temp

– GDB prints the value of each variable

(h) Examine the function call stack, if desired
where

– GBB prints the function call stack
– Useful for diagnosing crash in large program

(i) Exit gdb
quit

(j) Exit Emacs
<Ctrl-x key> <Ctrl-c key>

•29

Appendix 1: Using GDB (cont.)

• GDB can do much more:
– Handle command-line arguments

run arg1 arg2

– Handle redirection of stdin, stdout, stderr
run < somefile > someotherfile

– Print values of expressions

– Break conditionally

– Etc.

• See Programming with GNU Software (Loukides and
Oram) Chapter 6

•30

Appendix 2: Using RCS

• Typical steps for using RCS:
(a) Create project directory, as usual

mkdir helloproj

cd helloproj

(b) Create RCS directory in project directory
mkdir RCS

– RCS will store its repository in that directory

(c) Create source code files in project directory
emacs hello.c …

(d) Check in
ci hello.c

– Adds file to RCS repository
– Deletes local copy (don’t panic!)
– Can provide description of file (1st time)
– Can provide log message, typically describing changes

•31

Appendix 2: Using RCS (cont.)

• Typical steps for using RCS (cont.):
(e) Check out most recent version for reading

co hello.c

– Copies file from repository to project directory
– File in project directory has read-only permissions

(f) Check out most recent version for reading/writing
co –l hello.c

– Copies file from repository to project directory
– File in project directory has read/write permissions

(g) List versions in repository
rlog hello.c

– Shows versions of file, by number (1.1, 1.2, etc.), with
descriptions

(h) Check out a specified version
co –l –rversionnumber hello.c

•32

Appendix 2: Using RCS (cont.)

• RCS can do much more:
– Merge versions of files

– Maintain distinct development branches

– Place descriptions in code as comments

– Assign symbolic names to versions

– Etc.

• See Programming with GNU Software
(Loukides and Oram) Chapter 8

• Recommendation: Use RCS
– ci and co can become automatic!

•33

Appendix 3: Debugging Mem Mgmt

• Some debugging techniques are specific to dynamic
memory management
– That is, to memory managed by malloc(), calloc(),
realloc(), and free()

• Soon will be pertinent in the course

• For future reference…

•34

Appendix 3: Debugging Mem Mgmt (cont.)

(9) Look for familiar dynamic memory management bugs

– Some of our favorites:

•35

int *p; /* value of p undefined */

…

*p = somevalue;

int *p; /* value of p undefined */

…

fgets(p, 1024, stdin);

Dangling pointer

Dangling pointer

int *p;

…

p = (int*)malloc(sizeof(int));

…

free(p);

…

*p = 5;

Dangling pointer

Appendix 3: Debugging Mem Mgmt (cont.)

(9) Look for familiar dynamic memory management bugs
(cont.)
– Some of our favorites (cont.):

•36

int *p;

…

p = (int*)malloc(sizeof(int));

…

p = (int*)malloc(sizeof(int));

…

Memory leak

alias

Garbage creation

Detection: Valgrind, etc.

int *p;

…

p = (int*)malloc(sizeof(int));

…

free(p);

…

free(p);

Multiple free

Detection: man malloc,

MALLOC_CHECK_

Appendix 3: Debugging Mem Mgmt (cont.)

(9) Look for familiar dynamic memory management bugs
(cont.)
– Some of our favorites (cont.):

•37

char *s1 = "Hello";

char *s2;

s2 = (char*)malloc(strlen(s1));

strcpy(s2, s1);

double *p;

p = (double*)malloc(sizeof(double*));

char *s1 = "Hello";

char *s2;

s2 = (char*)malloc(sizeof(s1));

strcpy(s2, s1);

Allocating too few bytes

Allocating too few bytes

Allocating too few bytes

Appendix 3: Debugging Mem Mgmt (cont.)

(10)Segmentation fault? Make it happen within gdb,
and then issue the gdb where command. The
output will lead you to the line that caused the
fault. (But that line may not be where the error
resides.)

(11)Manually inspect each call of malloc(), calloc(), and
realloc() in your code, making sure that it allocates
enough memory.

(12)Temporarily hardcode each call of malloc(), calloc(),
and realloc() such that it requests a large number
of bytes. If the error disappears, then you'll know
that at least one of your calls is requesting too few
bytes.

•38

Appendix 3: Debugging Mem Mgmt (cont.)

(13) Temporarily comment-out each call of
free() in your code. If the error disappears,
then you'll know that you're freeing
memory too soon, or freeing memory that
already has been freed, or freeing memory
that should not be freed, etc.

•39

