Arrays, Strings, Functions
&
Assignment #2

Goals of this Lecture

« Help you learn about:
— Arrays, Strings, Functions
— Recursive Functions
— Reqgular Expression
— Assighment #2

Array

e Definition

— Data structure containing a number of data values
— Data values = elements

 Array declaration (one-dimensional array)

TYPE Array-name[size];

« Examples

#define N 20

int a[l10]; /* array
int a[N]; /* array
char msg[10]; /* array
char *msg[N]; /* array

of 10 integers a[0]..a[9] */
of N integers: a[0]..a[N-1] */
of 10 chars */

of N char pointers */

Array Indexing

« The elements of an array of length n are indexed from 0
to n—-1.

« Expressions of the form a[i] are lvalues, so they can be
used in the same way as ordinary variables:
al0] = 1;
printf ("$d\n", al[5]);
++al[1];

« In general, if an array contains elements of type 7, then
each element of the array is treated as if it were a
variable of type 7.

Initialization

int al[5] = {1, 2, 3, 4, 5};
— {1, 2, 3, 4, 5} is called array initializer

—al[0]=1, al[l]l=2, al[2]=3, al[3]=4, al[4]=5
int al[5] = {1, 2, 3};
—al0]=1, alll=2, al[2]=3, a[3]=0, al[4]=0

— a[N] = {0}; /*seta[0].a[N-1]to 0 */

— a[N] = {}; /*lillegal, at least one init value needed */
int al] = {1,2,3,4,5};

— 1int al[b] = {1,2,3,4,5};

Designated initializers (C99)
—al50] = {[2] = 29, [9] = 7, [3] = 3*7 };
— Rest of the elements are assigned O

Type and sizeof

* int al[5];
— What is the type of a?

« The type of a is integer array
— What is the type of a[3]7
« The type of a[3] is integer
— sizeof (array) returns # of memory bytes for array

e sizeof(a), sizeof(al[3])

#define N 10
#define SIZEOFARRAY (x) (sizeof(x)/sizeof (x[0]))

int a[N];
for (1 = 0; i < SIZEOFARRAY (a); i++)
a[i] = 0;

Multidimensional Arrays

« An array may have any number of dimensions.

« The following declaration creates a two-
dimensional array (a matrix, iIn mathematical
terminology):
int m[5][9];

 m has 5 rows and 9 columns. Both rows and
columns are (i)nc?exzeds fI;OFQ Cg:

7 8

w [\ [(@]

Multidimensional Arrays

To access the element of m in row i, column 5,
we must write m[1] [7].

The expression m[i] designates row i of m, and
m[i] [J] then selects element § In this row.

Resist the temptation to write m[i, 7] instead of
m[1][]J].

C treats the comma as an operator in this
context, som[i,J] Is the same asm[]].

Multidimensional Arrays

 Although we visualize two-dimensional arrays as
tables, that's not the way they're actually stored
In computer memory.

« C stores arrays in row-major order, with row 0
first, then row 1, and so forth.

* How the m array is stored:

row 0 row 1 row 4

Initializing a Multidimensional Array

* int al2][5]={{1,2,3},{6,7,8,9,10}};
—al0][1l]=2, a[0][3]1=0, al0][4]=0,
all][3]=9

« C99 designated initializers
—int al[2][>5] = {[0][O0] =1, [1]1[1] = 1};

« (C99 variable-length arrays

int n;

scanf (“%$d”, &n) ;

int a[n]; /* size of array depends on n */

Constant Arrays

« An array can be made “constant” by starting its
declaration with the word const:

const char hex chars[] =
{IOV, llV, I2V, l31, '4!['51, '61, '71, '81, '9![
IAV, IBV, VCV, VDV, lEV’ lFV};

« An array that's been declared const should not
be modified by the program.

hex chars[0] = ‘k’; /* compile error*/

Constant Arrays

« Advantages of declaring an array to be const:
— Documents that the program won't change the array.
— Helps the compiler catch errors.

« const Isn't limited to arrays, but it's particularly

useful in array declarations.
— Example: ready-only table (1og[x], for integer x)

Character Array

char x[4] = {‘a’, ‘b’, ‘c’', “\0'};
— x[0]=Ya’, x[1]=‘b’, x[2]=‘c’, x[3]="\0"
— char x[4] = {‘a’, ‘b’, ‘c’'};

e x[3]=0 or x[3]="\0'
— char x[] = {‘a’, ‘b’, ‘c’, “\0'};

« []: compiler determines the size
— char x[4] = “abc”;

* “abc” is not a string literal when used as init value for a
char array. “abc” is abbreviation for {*a’, ‘b’ ,"c’, *\0’ }.

— char x[]=“abc”;/* same as char x[4]=“abc”; */

String Literals

« A string literal is a sequence of characters
enclosed within double quotes:

"When you come to a fork in the road, take it."

« String literals may contain escape sequences.
« For example, each \n character in the string

"Candy\nIs dandy\nBut liquor\nIs quicker.\n --0Ogden
Nash\n"

causes the cursor to advance to the next line:
Candy

Is dandy

But liquor
Is quicker.
—--0gden Nash

How String Literals are Stored

 When a C compliler encounters a string literal
of length nin a program, it sets aside n + 1
bytes of memory for the string.

« This memory will contain the characters in the
string, plus one extra character—the nul/
character—to mark the end of the string.

« The null character is a byte whose bits are all
zero, so it's represented by the \ 0 escape

sequence.

How String Literals are Stored

« The string literal "abc" is stored as an array of
four characters:

a | b c | \O

* The string "" Is stored as a single null
character:

« What about “abc\07?

— sizeof (“abc\0”)?

Operations on String Literals

« We can use a string literal wherever C allows a
char * pointer:

char *p;

p = "abc";
« This assignment makes p point to the first

character of the string.

— “abc” evaluates to the address of the first
character of the string

Operations on String Literals

 String literals can be subscripted:
char ch;
ch = "abc"[1];
The new value of ch will be the letter b.

char *p = “abc”;
ch = p[l]; /* ch = *(p+1); */

* A function that converts a number between 0
and 15 into the equivalent hex digit:

%har digit to hex char(int digit)
return "0123456789ABCDEF" [digit];

Initializing a String Variable

A string variable can be initialized at the same
time it's declared:

char datel[8] = "June 14";

The compiler will automatically add a null
character so that datel can be used as a string:

datel | J | u n e 1 4 |\O

"June 14" Is not a string literal in this context.

Instead, C views it as an abbreviation for an
array initializer.

Initializing a String Variable

e If the initializer is too short to fill the
string variable, the compiler adds extra
null characters:

char date2[9] = "June 14";
Appearance of date?2:

date2 | J u | n e 1 4 |\O \O|

Initializing a String Variable

« An initializer for a string variable can't be
longer than the variable, but it can be
the same length:
char date3[7] = "June 14";

« There's no room for the null character, so
the compiler makes no attempt to store

one. date3 | J u n e 1 4 I

Initializing a String Variable

» The declaration of a string variable may omit its
length, in which case the compiler computes it:

char dated[] = "June 14";

« The compiler sets aside eight characters for
date4, enough to store the characters in "June
14" plus a null character.

. Omittinﬁ; the length of a string variable is
especially useful If the initializer is long, since
computing the length by hand is error-prone.

Character Arrays versus Character Pointers

 The declaration char date(1 = "June 14";
declares date to be an array,

» The similar-looking char *date = "June 14";
declares date to be a pointer.

« Thanks to the close relationship between
arrays and pointers, either version can be
used as a string.

Character Arrays versus Character Pointers

« However, there are significant differences
between the two versions of date.

—In the array version, the characters stored In
date can be modified. In the pointer

version, date points to a string literal that
shouldn’t be modified.

—In the array version, date is an array name.
In the pointer version, date is a variable
that can point to other strings.

Character Arrays versus Character Pointers

The declaration char *p; does not allocate space for a
string.

Before we can use p as a string, it must point to an
array of characters.

One possibility is to make p point to a string variable:
char str[STR LEN+1], *p;

o = str;

Another possibility is to make p point to a dynamically
allocated string.

Functions

« Function: a series of statements that have been
grouped together and given a name.
— Each function is a small program
— Building blocks of larger C program
« Function definition

return-type function-name (parameters)
{

declarations
statements

}
— Function may not return arrays, but can return others.
— void return type indicates it does not return a value.

— If the return type is omitted in C89, the function is
assumed to return a value of type int.

— In C99, omitting the return type is illegal.

Examples

 Calculating the average of two double values

double average (double a, double b)

{
return (a + b) / 2;

}
« See if nis a prime number

int is prime (int n)
{
int divisor;
if (n <= 1) return FALSE;
for (divisor = 2; divisor * divisor <= n; divisor++)
if (n % divisor == 0)
return FALSE;
return TRUE;

}

Function Calls

« Function name followed by a list of arguments in

parentheses

double average (double a, double b)

{
return (a + b) / 2;

}

double avg = average(x, y):;

« What happens under the hood?

— Before executing the function body, parameters are assigned with
the passed arguments

— a =X b =y, /* executed before executing other statements */

Function declarations

« Before function call, the compiler needs to know
the type of the function

return-type function-name (params);

double average (double a, double b); /* declaration */

int main (void)

{
double x, y;
scanf (“$1f $1f”, &x, &y);
printf (“Average of %g and %g: %g\n”, x, y, average (x,y))|;
return O;

}

double average (double a, double b)

{
return (a + b) / 2;

}

Function declarations

« Before function call, the compiler needs to know
the type of the function

return-type function-name (params);

double average (double a, double b); /* declaration */

int main (void)

{
double x, y;
scanf (“$1f $1f”, &x, &y);
printf (“Average of %g and %g: %g\n”, x, y, average (x,y))|;
return O;

}

double average (double a, double b)

{
return (a + b) / 2;

}

Recursive Function

 Function that calls itself in its body
« Example: factorial of n (or n!)

int fact(int n)

{
if (n <= 1)

return 1; é/////

return n * fact(n-1);

}

« fact(3);
— return 3 * fact (2)
— return 3 * (2 * fact(l))
— return 3 * (2 * 1)

Not correct
for large or
negative n

Recursive Function

« Useful in divide-and-conqguer

— Divide the work into smaller pieces
— Smaller pieces are handled with the same algorithm

« Examples
— factorial of n; fact(n) =n * fact(n-1)
e fact (n-1) is solved in the same way

— Quicksort of n values

 Pick e among n values
Partition the values into two groups, A and B
All values in A are less than or equal to e
All values in B are larger than or equal to e
Run Quicksort for A and Quicksort for B

Regular Expression (RE)

« Represent a string pattern
— Consists of regular characters and wild cards

« Assignment #2: implement a subset of RE
— ¢ matches any literal char "c' unless 'c' is a wild card
— »~, S matches the beginning and end of the input string
— . matches any one character

— 2, *, + matches zero or one, zero or more, one or
more occurrences of the previous character

— \x matches the character, 'x" if 'x' is a wild card or one
of the following characters:
* \d, \D matches any decimal digit or any non-digit
* \s, \S matches any whitespace(ws) or any non-ws character.

Skeleton Code for AS2

int Implement
main (int argc, char *argv[]) this function
{

if (argc < 2) {
fprintf (stderr, "usage mygrep
return (EXIT FAILURE) ;

egexp [file 1)

}
if ('is valid regexp(argv[l])) {
fprintf (stderr, "wrong regular expression format:%s", argv[l]);
return(EXIT_FAILURE);

}

if (argc == 2) {
nmatch = grep(argv[l], stdin, "stdin");

}

else {

JET

Skeleton code for AS2

/* reading one file at a time */
for (1 = 2; i < argc; i++) {
f = fopen(argv[i], "r");
if (£ == NULL) {
fprintf (stderr, "can't open %s:", argv[i]);
continue;
}
nmatch += grep(argv([l], £, argv[i]);
fclose (f) ;
}

}
printf ("Total # of matching lines: %d\n", nmatch);

return (EXIT SUCCESS) ;

Skeleton code for AS2

Int grep(const char* regexp, FILE* f, const char* filename)

char buf[BUFSIZE] ;
int nmatch = 0;
int n;

Implement
this function

while (fgets(buf, sizeof(buf), f)) {
n = strlen (buf) ;
/* terminate the input s

if (match(regexp, buf)) {
nmatch++;
printf ("$s:%s\n", filename, buf);
}
}

return (nmatch) ;

36

Skeleton code for AS2

/* match: search for regexp anywhere in text. If a match is
/* found, return TRUE and if not, return FALSE

int
match (const char *regexp, const char *text)
{

/* £ill out this function */

return FALSE;

}

* const char *regexp: regexp
— const char regexpl]

* const char *text: 1nput line
— const char text]]

e const: you cannot change the elements in the strings
— But you can change the pointer itself

match () Implementation Strategy

« Divide and conquer

1. See if we are done
1. 1if (*regexp == “\0 || *text ==‘\0')7?
2. See if the first characters match
1. If not match, return FALSE
2. If match, return match(regexp + 1, text + 1);

 Works if there's no wild card
— If there's no wild card, strcmp(regexp, text) suffices

« What if we have a wild card?
— How to implement *, ?, +

Pike and Kernighan's code

/* match: search for regexp anywhere in text */
int match (char *regexp, char *text)
{
if (regexp[0] == '*")
return matchhere (regexp+l, text);
do { /* must look even if string is empty */
if (matchhere (regexp, text)) return 1;
} while (*text++ '= '\0');
return O;
}
/* matchhere: search for regexp at beginning of text */
int matchhere (char *regexp, char *text)

{

if (regexp[0] == '\0'")
return 1;
if (regexp[l] == '*')
return matchstar (regexp[0], regexp+2, text);
if (regexp[0] == '$' && regexp[l] == '\0')
return *text == '\0';
if (*text!='\0' && (regexp[0]=='.' || regexp[0]==*text))

return matchhere (regexp+l, text+l);
return O;

Pike and Kernighan's code

/* matchstar: search for c*regexp at beginning of text */
int matchstar (int ¢, char *regexp, char *text)
{

do { /* a * matches zero or more instances */

if (matchhere (regexp, text))
return 1;
} while (*text '= '\0' && (*text++ ==c || ¢ == '."));
return 0O;

Summary

 Array: a collection of elements
— Initialization, sizeof(), multi-dimensional
— const array, char array

* Function
— Building block of a program
— Declaration needed before function call
— Recursive function: calls itself in the body

« Regular expression
— Divide and conquer

— Simplify the problem: specifying a problem with
a recurrence of smaller problem

