The Design of C:

 A Rational Reconstruction
Goals of this Lecture

- Help you learn about:
- The decisions that were available to the designers of C
- The decisions that were made by the designers of C
... and thereby...
- C!
- Why?
- Learning the design rationale of the C language provides a richer understanding of C itself
- ... and might be more interesting than simply learning the language itself !!!
- A power programmer knows both the programming language and its design rationale
- But first a preliminary topic...

Preliminary Topic

Number Systems

Why Bits (Binary Digits)?

- Computers are built using digital circuits
- Inputs and outputs can have only two values
- True (high voltage) or false (low voltage)
- Represented as 1 and 0
- Can represent many kinds of information
- Boolean (true or false)
- Numbers (23, 79, ...)
- Characters ('a', 'z', ...)
- Pixels, sounds
- Internet addresses
- Can manipulate in many ways
- Read and write
- Logical operations
- Arithmetic

Base 10 and Base 2

- Decimal (base 10)
- Each digit represents a power of 10
$-4173=4 \times 10^{3}+1 \times 10^{2}+7 \times 10^{1}+3 \times 10^{0}$
- Binary (base 2)
- Each bit represents a power of 2
$-\mathbf{1 0 1 1 0}=\mathbf{1} \times 2^{4}+\mathbf{0} \times 2^{3}+\mathbf{1} \times 2^{2}+\mathbf{1} \times 2^{1}+\mathbf{0} \times 2^{0}=22$
Decimal to binary conversion:
Divide repeatedly by 2 and keep remainders
$12 / 2=6 \quad \mathrm{R}=0$
$6 / 2=3 \quad \mathrm{R}=0$
$3 / 2=1 \quad \mathrm{R}=1$
$1 / 2=0 \quad \mathrm{R}=1$
Result $=1100$

Writing Bits is Tedious for People

- Octal (base 8)
- Digits $0,1, \ldots, 7$
- Hexadecimal (base 16)
- Digits $0,1, \ldots, 9, A, B, C, D, E, F$

$0000=0$	$1000=8$	Thus the 16-bit binary num
$0001=1$	$1001=9$	
$0010=2$	$1010=$ A	1011001010101001
$0011=3$	$1011=$ B	
$0100=4$	$1100=$ C	converted to hex is
$0101=5$	$1101=$ D	
$0110=6$	$1110=$ E	B2A9
$0111=7$	$1111=$ F	

Representing Colors: RGB

- Three primary colors
- Red
- Green
- Blue
- Strength
- 8-bit number for each color (e.g., two hex digits)
- So, 24 bits to specify a color
- In HTML, e.g. Web page
- Red: De-Comment Assignment Due
- Blue: Reading Period
- Same thing in digital cameras
- Each pixel is a mixture of red, green, and blue

Finite Representation of Integers

- Fixed number of bits in memory
- Usually 8, 16, or 32 bits
- (1, 2, or 4 bytes)
- Unsigned integer
- No sign bit
- Always 0 or a positive number
- All arithmetic is modulo 2^{n}
- Examples of unsigned integers
$-00000001 \rightarrow 1$
$-00001111 \rightarrow 15$
$-00010000 \rightarrow 16$
$-00100001 \rightarrow 33$
$-11111111 \rightarrow 255$

Adding Two Integers

- From right to left, we add each pair of digits
- We write the sum, and add the carry to the next column

Base 10

Base 2

Binary Sums and Carries

a	b	Sum
0	0	0
0	1	1
1	0	1
1	1	0
	XOR	

a	b	Carry
0	0	0
0	1	0
1	0	0
1	1	1
	AND	

("exclusive OR")

$$
\begin{array}{r}
01000101 \longleftarrow \\
+01100111 \\
\hline 10101100 \longleftarrow \\
\hline 103
\end{array}
$$

Modulo Arithmetic

- Consider only numbers in a range
- E.g., five-digit car odometer: 0, 1, ..., 99999
- E.g., eight-bit numbers 0, 1, ..., 255
- Roll-over when you run out of space
- E.g., car odometer goes from 99999 to 0, 1, ...
- E.g., eight-bit number goes from 255 to 0,1 , ...
- Adding 2^{n} doesn't change the answer
- For eight-bit number, $\mathrm{n}=8$ and $2^{\mathrm{n}}=256$
- E.g., $(37+256)$ mod 256 is simply 37
- This can help us do subtraction...
- Suppose you want to compute $a-b$
- Note that this equals $a+(256-1-b)+1$

Ones' and Two's Complement

- Ones' complement: flip every bit
- E.g., b is 01000101 (i.e., 69 in decimal)
- Ones' complement is 10111010
- That's simply 255-69
- Subtracting from 11111111 is easy (no carry needed!)

$$
\begin{aligned}
& 11111111 \\
& -01000101 \longleftarrow \text { b } \\
& 10111010 \longleftarrow \text { one's complement }
\end{aligned}
$$

- Two's complement
- Add 1 to the ones' complement
- E.g., $(255-69)+1 \rightarrow 10111011$

Putting it All Together

- Computing "a - b"
- Same as "a + 256 - b"
- Same as "a + (255-b) + 1"
- Same as "a + onesComplement(b) + 1"
- Same as "a + twosComplement(b)"
- Example: 172 - 69
- The original number 69: 01000101
- One's complement of 69: 10111010
- Two's complement of 69: 10111011
- Add to the number 172: 1010110010101100
- The sum comes to:
- Equals: 103 in decimal

signeontntegers

- Sign-magnitude representation
- Use one bit to store the sign
- Zero for positive number
- One for negative number
- Examples
- E.g., $00101100 \rightarrow 44$
- E.g., $10101100 \rightarrow-44$
- Hard to do arithmetic this way, so it is rarely used
- Complement representation
- Ones' complement
- Flip every bit
- E.g., $11010011 \rightarrow-44$
- Two's complement
- Flip every bit, then add 1
- E.g., $11010100 \rightarrow-44$

Overflow: Running Out of Room

- Adding two large integers together
- Sum might be too large to store in the number of bits available
- What happens?
- Unsigned integers
- All arithmetic is "modulo" arithmetic
- Sum would just wrap around
- Signed integers
- Can get nonsense values
- Example with 16-bit integers
- Sum: $10000+20000+30000$
- Result: -5536

Bitwise Operators: AND and OR

- Bitwise AND (\&)

$\&$	0	1
0	0	0
1	0	1

- Mod on the cheap!
- E.g., 53 \% 16
- ... is same as 53 \& 15;

53	0	0	1	1	0	1	0

- Bitwise OR (|)

\mid	0	1
0	0	1
1	1	1

Bitwise Operators: Not and XOR

- One's complement (\sim)
- Turns 0 to 1 , and 1 to 0
- E.g., set last three bits to 0
- $\mathrm{x}=\mathrm{x} \& \sim 7$;
- XOR (^)
- 0 if both bits are the same
- 1 if the two bits are different

\wedge	0	1
0	0	1
1	1	0

Bitwise Operators: Shift Left/Right

- Shift left (<<): Multiply by powers of 2
- Shift some \# of bits to the left, filling the blanks with 0

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
\hline
\end{array} \\
& \left.\begin{array}{l|l|l|l|l|l|l|l|}
\hline 53 \ll 2 & 1 & 1 & 0 & 1 & 0 & 1 & 0
\end{array} \right\rvert\,
\end{aligned}
$$

- Shift right (>>): Divide by powers of 2
- Shift some \# of bits to the right
- For unsigned integer, fill in blanks with 0
- What about signed negative integers?
- Can vary from one machine to another!

$$
\begin{aligned}
& 53 \gg 2 \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
\hline
\end{array}
\end{aligned}
$$

Example: Counting the 1's

- How many 1 bits in a number?
- E.g., how many 1 bits in the binary representation of 53 ?

\section*{| 0 | 0 | 1 | 1 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

- Four 1 bits
- How to count them?
- Look at one bit at a time
- Check if that bit is a 1
- Increment counter
- How to look at one bit at a time?
- Look at the last bit: $n \& 1$
- Check if it is a 1: $(\mathrm{n} \& 1)==1$, or simply ($\mathrm{n} \& 1$)

Counting the Number of ' 1 ' Bits

```
#include <stdio.h>
#include <stdlib.h>
int main(void) {
    unsigned int n;
    unsigned int count;
    printf("Number: ");
    if (scanf("%u", &n) != 1) {
        fprintf(stderr, "Error: Expect unsigned int.\n");
        exit(EXIT_FAILURE);
    }
    for (count = 0; n > 0; n >>= 1)
        count += (n & 1);
    printf("Number of 1 bits: %u\n", count);
    return 0;
}
```


Summary

- Computer represents everything in binary
- Integers, floating-point numbers, characters, addresses, ...
- Pixels, sounds, colors, etc.
- Binary arithmetic through logic operations
- Sum (XOR) and Carry (AND)
- Two's complement for subtraction
- Bitwise operators
- AND, OR, NOT, and XOR
- Shift left and shift right
- Useful for efficient and concise code, though sometimes cryptic

The Main Event

The Design of C

Goals of C

Designers wanted C to support:

- Systems programming
- Development of Unix OS
- Development of Unix programming tools

But also:

- Applications programming
- Development of financial, scientific, etc. applications

Systems programming was the primary intended use

The Goals of C (cont.)

The designers wanted C to be:

- Low-level
- Close to assembly/machine language
- Close to hardware

But also:

- Portable
- Yield systems software that is easy to port to differing hardware

The Goals of C (cont.)

The designers wanted C to be:

- Easy for people to handle
- Easy to understand
- Expressive
- High (functionality/sourceCodeSize) ratio

But also:

- Easy for computers to handle
- Easy/fast to compile
- Yield efficient machine language code

Commonality:

- Small/simple

Design Decisions

In light of those goals...

- What design decisions did the designers of C have?
- What design decisions did they make?

Consider programming language features, from simple to complex...

Feature 1: Data Types

- Previously in this lecture:
- Bits can be combined into bytes
- Our interpretation of a collection of bytes gives it meaning
- A signed integer, an unsigned integer, a RGB color, etc.
- A data type is a well-defined interpretation of a collection of bytes
- A high-level programming language should provide primitive data types
- Facilitates abstraction
- Facilitates manipulation via associated well-defined operators
- Enables compiler to check for mixed types, inappropriate use of types, etc.

Primitive Data Types

- Issue: What primitive data types should C provide?
- Thought process
- C should handle:
- Integers
- Characters
- Character strings
- Logical (alias Boolean) data
- Floating-point numbers
- C should be small/simple
- Decisions
- Provide integer, character, and floating-point data types
- Do not provide a character string data type (More on that later)
- Do not provide a logical data type (More on that later)

Integer Data Types

- Issue: What integer data types should C provide?
- Thought process
- For flexibility, should provide integer data types of various sizes
- For portability at application level, should specify size of each data type
- For portability ałsystems level, should define integral data types in terms of natura ${ }^{\text {word }}$ size of computer
- Primary use will be systems programming

Integer Data Types (cont.)

- Decisions
- Provide three integer data types: short, int, and long
- Do not specify sizes; instead:
- int is natural word size
- 2 <= bytes in short <= bytes in int <= bytes in long
- Incidentally, on lab machines using gcc209
- Natural word size: 4 bytes
- short: 2 bytes
- int:

4 bytes

- long:

4 bytes

Interernentants

- Issue: How should C represent integer constants?
- Thought process
- People naturally use decimal
- Systems programmers often use binary, octal, hexadecimal
- Decisions
- Use decimal notation as default
- Use "0" prefix to indicate octal notation Was that a good decision?
- Use "0x" prefix to indicate hexadecimal notation
- Do not allow binary notation; too verbose, error prone
- Use "L" suffix to indicate long constant
- Do not use a suffix to indicate short constant; instead must use cast
- Examples
- int: 123, -123, 0173, 0x7B
- long: 123L, -123L, 0173L, 0x7BL
- short: (short) 123, (short)-123, (short) 0173, (short) 0x7B

Unsigned Integer Data Types

- Issue: Should C have both signed and unsigned integer data types?
- Thought process
- Must represent positive and negative integers
- Signed types are essential
- Unsigned data can be twice as large as signed data
- Unsigned data could be useful
- Unsigned data are good for bit-level operations
- Bit-level operations are common in systems programming
- Implementing both signed and unsigned data types is complex
- Must define behavior when an expression involves both

Unsigned Integer Data Types (cont.)

- Decisions
- Provide unsigned integer types: unsigned short, unsigned int, and unsigned long
- Conversion rules in mixed-type expressions are complex
- Generally, mixing signed and unsigned converts signed to unsigned
- See King book Section 7.4 for details

Was providing unsigned types a good decision?

Do you see any potential problems?

Unsigned Integer Constants

- Issue: How should C represent unsigned integer constants?
- Thought process
- "L" suffix distinguishes long from int; also could use a suffix to distinguish signed from unsigned
- Octal or hexadecimal probably are used with bit-level operators
- Decisions
- Default is signed
- Use "U" suffix to indicate unsigned
- Integers expressed in octal or hexadecimal automatically are unsigned
- Examples
- unsigned int: 123U, 0173, 0x7B
- unsigned long: 123UL, 0173L, 0x7BL
- unsigned short: (short) 123U, (short)0173, (short) 0x7B

There's More!

To be continued next lecture!

