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Therefore, we can easily add automotive associated libraries, 
managers, and applications. Second, Android supports multi 
languages including XML. In our case, the automotive 
application is designed in an XML file, thus, supporting XML 
is an important requirement for master ECU. Third, Android 
includes powerful and user-friendly APIs and applications. 

 

Figure 5.  The proposed automotive middleware architecture 

Master ECU manages installation, deletion, and 
modification of the automotive application. We implement 
Automotive Manager on Application Framework of Android to 
manage the entire automotive applications. Automotive 
Manager consists of ECU Manager, Schedulability Analyzer, 
Workflow Decomposition Module, and Workflow Deployment 
Module. Master ECU must contain all information about 
automotive applications and ECUs in the automobile for the 

arrangement of newly-installed applications. Moreover, master 
ECU should check whether an automobile could operate safely 
after new application is installed. 

Automotive systems have strong real-time requirements 
that automotive applications must meet. At present, all OSEK-
compliant OS provide the schedulability analysis to check 
whether all jobs can execute within their deadline [11]. 
Therefore, we provide the module for schedulability analysis, 
which is Schedulability analyzer. Schedulability analyzer needs 
three parameters: worst-case execution time, deadline, priority. 
Among three parameters, schedulability analyzer performs the 
modified response time test [12], which checks whether whole 
tasks can meet their deadline in priority assignment. If analyzer 
guaranteed the application satisfying real-time operation, 
automotive application could be installed. 

The equation of modified response time test calculates the 
worst-case response time for every task. If we focus on i-th 
task the worst-case response time of the task is as follows: 
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where Wi, Ci, Di, and pi indicate the worst-case response 
time, the worst-cast execution time, the deadline, and the 
priority of the i-th task. Schedulability analyzer checks that the 
worst-case response time is smaller than the deadline for all 
tasks. The worst-case response time of the i-th task can be 
obtained by adding up the worst-case execution time of tasks 
that have higher priority of the i-th task. If the result of 
schedulability analysis passes, every task is guaranteed to meet 
the real-time requirement. Our schedulability analyzer has 
complexity of O(n2). 

In summary of Automotive Manager, ECU Manager 
contains all ECU lists and SWC lists for each allocated ECU. 
Schedulability Analyzer provides deployment possibility test. 
If the test passes, an automotive application can be installed on 
the automobile. Thus, Workflow Decomposition Module 
parses and divides automotive applications to SWC for 
deployment. Finally, Workflow Deployment Module deploys 
divided SWCs to each arranged ECUs. 

Afterward, Workflow Deployment Module distributes task 
generation message to target ECUs. A task is a set of SWCs 
that will be processed by a slave ECU. Task generation 
message contains ID of task, target destination address, priority, 
and deadline. ID of task is needed because of the collision of 
same components when several different automotive 
applications need the same set of SWCs in an ECU. 

Android application is already widely used in many fields 
via Android Libraries. We implement applications in master 
ECU for monitoring or controlling the automobile. Moreover, 
we add Automotive Library in master ECU. These Libraries 
enable to get or set the velocity of the automobile through the 
network. We discussed detailed usages of the applications in 
section 4. 

 
(a) Master ECU 

  
(b) Slave ECU 
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Figure 6.  Workflow for the MDPS system 

C. Slave ECU 
The software architecture for a slave ECU is shown in 

Figure 5(b). It consists of an real-time operating system, plug-
and-play manager (PnPM), runtime environment (RTE), and 
application layers. The real-time OS is responsible for 
hardware abstraction, communication, and scheduling and 
running given tasks in real-time. Similar to AUTOSAR, an 
application consists of several SWCs, which can be distributed 
over several ECUs to run. The runtime environment (RTE) 
provides a communication abstraction to SWCs so that they 
can talk to each other, regardless of their locations in the in-
vehicle network. Unlike AUTOSAR, our RTE contains routing 
functionality to support plug-and-play. The routing information 
is managed by PnPM which communicates with the master 
ECU to download SWCs supposed to run on the same ECU. 
When a new application is being installed, the mapping 
between the application's SWCs and ECUs is given to PnPMs 
by the master ECU. Then, each PnPM analyzes the mapping 
and renews the RTE's routing information. 

In AUTOSAR, a SWC can communicate only with pre-
determined tasks as its destination address and port are not 
reconfigurable, limiting plug-and-play and reuse of installed 
SWCs. To address this issue, we use task template, an unified 
task structure for running software components with 
reconfigurable settings. Figure 6 illustrates the process of 
creating a new application task for a SWC. SWC manager 
stores SWC object files and their configuration files. A 
configuration file describes communication information, such 
as destination address and port for the SWC. It is transferred 
from the master ECU and can be changed when plug-and-play. 
A SWC and the corresponding configuration are loaded by task 
generator which creates a new application task for the SWC 
using the unified task template and the configuration. 

IV. CASE STUDY: MDPS SYSTEM 
In order to show that our middleware supports application-

level plug-and-play, we port the middleware to experimental 
boards. We implement an example application which is like 

Motor Driven Power Steering (MDPS) or Electric Power 
Steering (EPS) system [13]. MDPS system receives two inputs: 
handle torque and vehicle velocity. Then MDPS control unit 
calculates and steers the vehicle by controlling steering motor. 
However, we assume that each wheel has its own motor like in-
wheel motor vehicle [14] and the vehicle steers with 
differential speed of each side motors. 

 

Figure 7.  Workflow for the MDPS system 

A dual core ARM board (Tegra 250) is used as master ECU 
and ported modified Android. ARM7 boards (AT91SAM7X-
EX) are used as slave ECUs and ported modified FreeRTOS. A 
master ECU and three slave ECUs are placed on small vehicle 
platform (Figure 7). Two slave ECUs are connected and 
control each DC Motor. Another slave ECU steers vehicle 
platform. The boards are connected IP-based network by router. 
Modified Android uses TCP-IP protocol with wired Ethernet 
and Modified FreeRTOS uses uIP protocol [15] with wired 
Ethernet. An IP-based network is not prevalent for in-car 
communication networks since it cannot support real-time 
communication. However, IP-based network is becoming new 
in-car network because IP is a serious alternative technology 
with many advantages and benefits. [16] Moreover, we focus 
on applying plug-and-play concept to automobile, not showing 
real operation of automobile.  

We provide a scenario with installation of MDPS 
application. Before MDPS application is installed, only a 
Driving application which can accelerate or decelerate the 
vehicle is installed. MDPS application is deployed to three 
slave ECUs. A slave ECU which steers vehicle receives vehicle 
velocity from other two motor connected ECUs periodically. 
When user sends vehicle control signal to the slave ECU, it 
calculates velocities of each side and sends velocity set signal 
to two other slave ECUs. Our objective is that installs MDPS 
application to three slave ECUs in run time. 
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Figure 8.  Prototype implementation 

Instead of using real handle or accelerator, we implement 
android application to control the vehicle. We implement three 
applications: Dash Board, Handle, and Pedal. The applications 
use automotive library to control and monitor the vehicle. We 
make a MDPS application with our web-based tool. Master 
ECU downloads the MDPS application which is made XML 
language. Master ECU parses MDPS application with 
schedulability analyzer with other application which is installed 
in advance. After schedulability analysis, master ECU deploy 
the SWC to slave ECUs and slave ECUs install own SWC. We 
get the result that new application can operate correctly. In 
other words, we provide application plug-and-play concept to 
automobile. 

V. CONCLUSION AND FUTURE WORK 
This paper presented a software architecture for plug-and-

play support in automotive systems. The proposed in-vehicle 
ECU network consists of a master ECU and slave ECUs. The 
adopted Android for the master ECU allows developers to 
benefit from rich Android application development 
environment and our automotive library for writing vehicle 
applications running on the master ECU. For general 
applications which will run on several ECUs in a distributed 
manner, we devised a model-based development tool which 
generates XML files describing the application workflow. The 
master and slave ECUs collaboratively support plug-and-play 
using the generated XML files. We demonstrated the feasibility 
of our work with a MDPS case study.  

We plan to make our plug-and-play architecture compatible 
to AUTOSAR. However, several parts of AUTOSAR, 
especially the runtime environment (RTE), should be 
redesigned to support plug-and-play, e.g., the RTE should 
include routing function because it should be aware of the 
location of software components which can be dynamically 
installed or removed. New RTE should be designed carefully 
as it plays a critical role in the system reliability, safety, and 
real-time performance. Moreover, ECU resources are quite 
limited, necessitating optimization in resource usage. We plan 
to evaluate the performance overhead in terms of real-time 
responsiveness, code complexity, and resource (typically, 
memory) usage caused by adding plug-and-play feature to 
AUTOSAR. This will lead us to enhance the presented 
architecture. 

The SWC-ECU mapping significantly affects the total 
performance. Even though in this paper, we assumed that the 
mapping is given by application developers, it will not be 
optimal in many cases because the set of ECUs and already-
installed applications will be different for each vehicle. We 
plan to develop an optimal mapping algorithm for our plug-
and-play system. 
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