

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

Therefore, we can easily add automotive associated libraries,
managers, and applications. Second, Android supports multi
languages including XML. In our case, the automotive
application is designed in an XML file, thus, supporting XML
is an important requirement for master ECU. Third, Android
includes powerful and user-friendly APIs and applications.

Figure 5. The proposed automotive middleware architecture

Master ECU manages installation, deletion, and
modification of the automotive application. We implement
Automotive Manager on Application Framework of Android to
manage the entire automotive applications. Automotive
Manager consists of ECU Manager, Schedulability Analyzer,
Workflow Decomposition Module, and Workflow Deployment
Module. Master ECU must contain all information about
automotive applications and ECUs in the automobile for the

arrangement of newly-installed applications. Moreover, master
ECU should check whether an automobile could operate safely
after new application is installed.

Automotive systems have strong real-time requirements
that automotive applications must meet. At present, all OSEK-
compliant OS provide the schedulability analysis to check
whether all jobs can execute within their deadline [11].
Therefore, we provide the module for schedulability analysis,
which is Schedulability analyzer. Schedulability analyzer needs
three parameters: worst-case execution time, deadline, priority.
Among three parameters, schedulability analyzer performs the
modified response time test [12], which checks whether whole
tasks can meet their deadline in priority assignment. If analyzer
guaranteed the application satisfying real-time operation,
automotive application could be installed.

The equation of modified response time test calculates the
worst-case response time for every task. If we focus on i-th
task the worst-case response time of the task is as follows:

 ∑
<

<+=
ij ppj

ijii DCCW
:

, (1)

where Wi, Ci, Di, and pi indicate the worst-case response
time, the worst-cast execution time, the deadline, and the
priority of the i-th task. Schedulability analyzer checks that the
worst-case response time is smaller than the deadline for all
tasks. The worst-case response time of the i-th task can be
obtained by adding up the worst-case execution time of tasks
that have higher priority of the i-th task. If the result of
schedulability analysis passes, every task is guaranteed to meet
the real-time requirement. Our schedulability analyzer has
complexity of O(n2).

In summary of Automotive Manager, ECU Manager
contains all ECU lists and SWC lists for each allocated ECU.
Schedulability Analyzer provides deployment possibility test.
If the test passes, an automotive application can be installed on
the automobile. Thus, Workflow Decomposition Module
parses and divides automotive applications to SWC for
deployment. Finally, Workflow Deployment Module deploys
divided SWCs to each arranged ECUs.

Afterward, Workflow Deployment Module distributes task
generation message to target ECUs. A task is a set of SWCs
that will be processed by a slave ECU. Task generation
message contains ID of task, target destination address, priority,
and deadline. ID of task is needed because of the collision of
same components when several different automotive
applications need the same set of SWCs in an ECU.

Android application is already widely used in many fields
via Android Libraries. We implement applications in master
ECU for monitoring or controlling the automobile. Moreover,
we add Automotive Library in master ECU. These Libraries
enable to get or set the velocity of the automobile through the
network. We discussed detailed usages of the applications in
section 4.

(a) Master ECU

(b) Slave ECU

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

Figure 6. Workflow for the MDPS system

C. Slave ECU
The software architecture for a slave ECU is shown in

Figure 5(b). It consists of an real-time operating system, plug-
and-play manager (PnPM), runtime environment (RTE), and
application layers. The real-time OS is responsible for
hardware abstraction, communication, and scheduling and
running given tasks in real-time. Similar to AUTOSAR, an
application consists of several SWCs, which can be distributed
over several ECUs to run. The runtime environment (RTE)
provides a communication abstraction to SWCs so that they
can talk to each other, regardless of their locations in the in-
vehicle network. Unlike AUTOSAR, our RTE contains routing
functionality to support plug-and-play. The routing information
is managed by PnPM which communicates with the master
ECU to download SWCs supposed to run on the same ECU.
When a new application is being installed, the mapping
between the application's SWCs and ECUs is given to PnPMs
by the master ECU. Then, each PnPM analyzes the mapping
and renews the RTE's routing information.

In AUTOSAR, a SWC can communicate only with pre-
determined tasks as its destination address and port are not
reconfigurable, limiting plug-and-play and reuse of installed
SWCs. To address this issue, we use task template, an unified
task structure for running software components with
reconfigurable settings. Figure 6 illustrates the process of
creating a new application task for a SWC. SWC manager
stores SWC object files and their configuration files. A
configuration file describes communication information, such
as destination address and port for the SWC. It is transferred
from the master ECU and can be changed when plug-and-play.
A SWC and the corresponding configuration are loaded by task
generator which creates a new application task for the SWC
using the unified task template and the configuration.

IV. CASE STUDY: MDPS SYSTEM
In order to show that our middleware supports application-

level plug-and-play, we port the middleware to experimental
boards. We implement an example application which is like

Motor Driven Power Steering (MDPS) or Electric Power
Steering (EPS) system [13]. MDPS system receives two inputs:
handle torque and vehicle velocity. Then MDPS control unit
calculates and steers the vehicle by controlling steering motor.
However, we assume that each wheel has its own motor like in-
wheel motor vehicle [14] and the vehicle steers with
differential speed of each side motors.

Figure 7. Workflow for the MDPS system

A dual core ARM board (Tegra 250) is used as master ECU
and ported modified Android. ARM7 boards (AT91SAM7X-
EX) are used as slave ECUs and ported modified FreeRTOS. A
master ECU and three slave ECUs are placed on small vehicle
platform (Figure 7). Two slave ECUs are connected and
control each DC Motor. Another slave ECU steers vehicle
platform. The boards are connected IP-based network by router.
Modified Android uses TCP-IP protocol with wired Ethernet
and Modified FreeRTOS uses uIP protocol [15] with wired
Ethernet. An IP-based network is not prevalent for in-car
communication networks since it cannot support real-time
communication. However, IP-based network is becoming new
in-car network because IP is a serious alternative technology
with many advantages and benefits. [16] Moreover, we focus
on applying plug-and-play concept to automobile, not showing
real operation of automobile.

We provide a scenario with installation of MDPS
application. Before MDPS application is installed, only a
Driving application which can accelerate or decelerate the
vehicle is installed. MDPS application is deployed to three
slave ECUs. A slave ECU which steers vehicle receives vehicle
velocity from other two motor connected ECUs periodically.
When user sends vehicle control signal to the slave ECU, it
calculates velocities of each side and sends velocity set signal
to two other slave ECUs. Our objective is that installs MDPS
application to three slave ECUs in run time.

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

Figure 8. Prototype implementation

Instead of using real handle or accelerator, we implement
android application to control the vehicle. We implement three
applications: Dash Board, Handle, and Pedal. The applications
use automotive library to control and monitor the vehicle. We
make a MDPS application with our web-based tool. Master
ECU downloads the MDPS application which is made XML
language. Master ECU parses MDPS application with
schedulability analyzer with other application which is installed
in advance. After schedulability analysis, master ECU deploy
the SWC to slave ECUs and slave ECUs install own SWC. We
get the result that new application can operate correctly. In
other words, we provide application plug-and-play concept to
automobile.

V. CONCLUSION AND FUTURE WORK
This paper presented a software architecture for plug-and-

play support in automotive systems. The proposed in-vehicle
ECU network consists of a master ECU and slave ECUs. The
adopted Android for the master ECU allows developers to
benefit from rich Android application development
environment and our automotive library for writing vehicle
applications running on the master ECU. For general
applications which will run on several ECUs in a distributed
manner, we devised a model-based development tool which
generates XML files describing the application workflow. The
master and slave ECUs collaboratively support plug-and-play
using the generated XML files. We demonstrated the feasibility
of our work with a MDPS case study.

We plan to make our plug-and-play architecture compatible
to AUTOSAR. However, several parts of AUTOSAR,
especially the runtime environment (RTE), should be
redesigned to support plug-and-play, e.g., the RTE should
include routing function because it should be aware of the
location of software components which can be dynamically
installed or removed. New RTE should be designed carefully
as it plays a critical role in the system reliability, safety, and
real-time performance. Moreover, ECU resources are quite
limited, necessitating optimization in resource usage. We plan
to evaluate the performance overhead in terms of real-time
responsiveness, code complexity, and resource (typically,
memory) usage caused by adding plug-and-play feature to
AUTOSAR. This will lead us to enhance the presented
architecture.

The SWC-ECU mapping significantly affects the total
performance. Even though in this paper, we assumed that the
mapping is given by application developers, it will not be
optimal in many cases because the set of ECUs and already-
installed applications will be different for each vehicle. We
plan to develop an optimal mapping algorithm for our plug-
and-play system.

ACKNOWLEDGMENT
This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea
government (MEST) (No. 2012-0000979).

REFERENCES
[1] International Consumer Electronics Show (CES), http://www.cesweb.

org, 2012.
[2] AUTOSAR, http://www.autosar.org.
[3] G. Macario, M. Torchiano, and M. Violante, “An In-Vehicle

Infotainment Software Architecture Based on Google Android,” in IEEE
International Symposium on Industrial Embedded Systems (SIES’09),
July 2009, pp. 257–260.

[4] Y.-H. Cheng, W.-K. Kuo, and S.-L. Su, “An Android System Design
and Implementation for Telematics Services,” in IEEE International
Conference on Intelligent Computing and Intelligent Systems (ICIS),
vol. 2, Oct. 2010, pp. 206–210.

[5] J. Choi, H. S. Park, Y. Hwang, and K.-H. Kim, “Exhibition Speaker:
Driver-Oriented Intelligent Human-Vehicle Interaction System,” in
International Conference on Intelligent Systems, Modelling and
Simulation. IEEE Computer Society, 2012, pp. 14–16.

[6] R. Anthony, A. Rettberg, D. Chen, I. Jahnich, G. de Boer, and C.
Ekelin,“Towards a Dynamically Reconfigurable Automotive Control
System Architecture,” in mbedded System Design: Topics, Techniques
and Trends, ser. IFIP Advances in Information and Communication
Technology. Springer Boston, 2007, vol. 231, pp. 71–84.

[7] H.-M. Pham, S. Pillement, and D. Demigny, “Reconfigurable ECU
communications in Autosar Environment,” in International Conference
on Intelligent Transport Systems Telecommunications (ITST), Oct.
2009, pp. 581–585.

[8] W. Trumler, M. Helbig, A. Pietzowski, B. Satzger, and T. Ungerer,
“Self-configuration and Self-healing in AUTOSAR,” in 14th Asia
Pacific Automotive Engineering Conference (APAC-14), 2007.

[9] H. Seebach, F. Nafz, J. Holtmann, J. Meyer, M. Tichy, W. Reif, and W.
Sch?er, “Designing self-healing in automotive systems,” in Autonomic
and Trusted Computing, ser. Lecture Notes in Computer Science.
Springer Berlin/Heidelberg, 2010, vol. 6407, pp. 47–61.

[10] B. Becker, H. Giese, S. Neumann, M. Schenck, and A. Treffer, “Model-
Based Extension of AUTOSAR for Architectural Online
Reconfiguration,”in Proceedings of the 2009 International Conference
on Models in Software Engineering, ser. MODELS’09. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 83–97.

[11] RT-Druid, “RT-Druid: A tool for architecture-level design of embedded
systems” White Paper, Evidence S.r.l. 2004.

[12] J. Lehoczky, L. Sha, and Y. Ding, “The Rate Monotonic Scheduling
Algorithm: Exact Characterization and Average Case Behavior,” in Real
Time Systems Symposium, Dec. 1989, pp. 166–171.

[13] Y. Shimizu and T. Kawai, “Development of electric power steering,” in
SAE Transactions, no. 910014.

[14] S. ichiro Sakai, H. Sado, and Y. Hori, “Motion control in an electric
vehicle with four independently driven in-wheel motors,” in
IEEE/ASME Transactions on Mechatronics, vol. 4, Mar. 1999, pp. 9–16.

[15] Adam Dunkels, http://www.contiki-os.org.
[16] R. Steffen, R. Bogenberger, J. Hillebrand, W. Hintermaier, M. Rahmani,

and A. Winckler, “Design and realization of an ip-based in-car network
architecture,” in International Symposium on Vehicular Computing
Systems (ISVCS), July 2008.

6

