CoDNS: Improving DNS Performance and
Reliability via Cooperative Lookups

KyoungSoo Park, Vivek S. Pai, Larry Peterson and Zhe Wang
Department of Computer Science
Princeton University

Abstract client-side components are responsible for contacting the

The Domain Name System (DNS) is a ubiquitous par»[appropriate servers, if necessary, to resolve any name
of everyday computing, translating human-friendly ma-Presented by the user. This infrastructure, which has re-
chine names to numeric IP addresses. Most DNS rec€ived less attention, is our focus — understanding client-
search has focused on server-side infrastructure, with th&de behavior in order to improve overall DNS perfor-
assumption that the aggressive caching and redundan&@nce and reliability.

on the client side are sufficient. However, through sys- Using PlanetLab [16], a wide-area distributed testbed,
tematic monitoring, we find that client-side DNS fail- We locally monitor the client-side DNS infrastructure of

ures are widespread and frequent, degrading DNS pe|150 sites around the world, generating a large-scale ex-
formance and reliability. amination of client-side DNS performance. We find that
We introduce CoDNS, a lightweight, cooperative DNS clie.nt—side failures are widespread and frequent, gnq .that
lookup service that can be independently and incrementheir effects degrade DNS performance and reliability.
tally deployed to augment existing nameservers. It used "€ most common problems we observe are intermit-
a locality and proximity-aware design to distribute DNS tent failures to receive any response from the local name-
requests, and achieves low-latency, low-overhead namgervers, but these are generally hidden by the internal re-
resolution, even in the presence of local DNS nameservefundancy in DNS deployments. However, the cost of
delay/failure. Using live traffic, we show that CODNS such redundancy is additional delay, and we find that the
reduces average lookup latency by 27-82%, greatly redelays induced through such failures often dominate the
duces slow lookups, and improves DNS availability by time spent waiting on DNS lookups.
an additional ’9’. We also show that a widely-deployed To address these client-side problems, we have devel-

service using CODNS gains increased capacity, higher re2Pe€d CODNS, a lightweight, cooperative DNS lookup
liability, and faster start times. service that can be independently and incrementally de-

1 Introducti ployed to augment existing nameservers. CoODNS uses an
htroduction insurance-like model of operation — groups of mutually
The Domain Name System (DNS) [15] has become arusting nodes agree to resolve each other’s queries when
ubiquitous part of everyday computing due to its effec-their local infrastructure is failing. We find that the group
tiveness, human-friendliness, and scalability. It providessize does not need to be large to provide substantial bene-
a distributed lookup service primarily used to convertfits — groups of size 2 provide roughly half the maximum
from human-readable machine names to Internet Protopossible benefit, and groups of size 10 achieve almost all
col (IP) addresses. Its existence has permeated much of the possible benefit. Using locality-enhancementtech-
computing via the World Wide Web’s near-complete de-niques and proximity optimizations, CoDNS achieves
pendence on it. Thanks in part to its redundant designlow-latency, low-overhead name resolution, even in the
aggressive caching, and flexibility, it has become a ubigpresence of local DNS delays/failures.
uitous part of everyday computing that most people take CoDNS has been serving live traffic on PlanetLab
for granted, including researchers. since October 2003, providing many benefits over stan-
Most DNS research focuses on “server-side” prob-dard DNS. CoDNS reduces average lookup latency by
lems, which arise on the systems that translate namea7-82%, greatly reduces slow lookups, and improves
belonging to the group that runs them. Such prob-DNS availability by an extra '9’, from 99% to over
lems include understanding name hierarchy misconfig99.9%. Its service is more reliable and consistent than
uration [5, 9] and devising more scalable distributionany individual node’s. Additionally, CoODNS has sal-
infrastructure [4, 10, 18]. However, due to increasingvaged “unusable” nodes, which had such poor local DNS
memory sizes and DNS’s high cachability, “client-side” infrastructure that they were unfit for normal use. Appli-
DNS hit rates are approaching 90% [9, 24], so fewer recations using CoDNS often have faster and more pre-
quests are dependent on server-side performance. Tlifictable start times, improving availability.

10000 1000 10000 100000

10000
1000 ‘ 1000

100 1000

100
100

|
|

10 H “ ‘\‘HM\‘ ‘\\ ‘ M i . ‘ \I”AHMJ
0

10 10
00 06 12 18 00 06 12 18 00 00 06 12 18 00 06 12 18 00 00 06 12 18 00 06 12 18 00 00 06 12 18 00 06 12 18 00
Time Time Time Time

Average Response Time (ms)
Average Response Time (ms)
Average Response Time (ms)
Average Response Time (ms)

(a) planetlabl.cs.cornell.edu (b) lefthand.eecs.harvard.edu (c) planetlab-1.cmcl.cs.cmu.edu (d) kupl?.ittc.ku.edu

10000 10000

10000 100000

10000

1000 1000 1000

1000

=
=)
IS
=
=)
1S
=
o
1S

=
1=
S

Average Response Time (ms)
Average Response Time (ms)

Average Response Time (ms)
Average Response Time (ms)

L [

10 1
00 06 12 18 00 06 12 18 00 00 06 12 18 00 06 12 18 00 00 06 12 18 00 06 12 18 00 00 06 12 18 00 06 12 18 00
Time Time Time Time

10

(e) planetlab-1.stanford.edu () planetlabl.cs.ubc.ca (9) planetlabl.eecs.umich.edu (h) planetlab2.cs.northwestern.edu

Figure 1: Average cached DNS lookup response times on various PlanetLab nodes over two days. Note that while most Y axes
span 10-1000 milliseconds, some are as large as 100,000 milliseconds.

2 Background & Analysis of the server-side DNS infrastructure. However, local
) .) nameserver performance and reliability has not been well
While the Domain Name System (DNS) was intended tosydied, and since it handles all DN'S lookups for clients,
be a scalable, distributed means of performing name-toys fajlure can disable other systems. Our experiences
IP-mappings, its flexible design has allowed it to grow faryith puilding the CoDeeN content distribution network,
beyond its original goals. While most people would be rynning on over 100 PlanetLab nodes [23], motivated us

familiar with it for Web browsing, many systems depend i, jnvestigate this issue, since all CoDeeN nodes use the
on fast and consistent DNS performance. Mail serversyoca| nameservers at their hosting sites.

Web proxy servers, and content distribution networks
(CDNs) must all resolve hundreds or even thousands o2.1 Frequency of Name Lookup Failures
DNS names in short periods of time, and a failure in DNStq determine the failure properties of local DNS infras-
may cause a service failure, rather just delays. tructure, we systematically measure DNS lookup times
The server-side infrastructure of DNS consists ofon many PlanetLab nodes. In particular, across 40 North
hierarchically-organized name servers, with central auAmerican sites, we perform a query once per second.
thorities providing “root” servers and others delegatedwe ask these nodes to resolve each other’'s names, all of
organizations handling “top-level” servers, such aswhich are cacheable, with long time-to-live (TTL) values
“.com” and “.edu”. Domain name owners are respon-of no less than 6 hours. Lookup times for these requests
sible for providing servers that handle queries for theirshould be minimal, on the order of a few milliseconds,
names. While DNS users can manually query each levedince they can be served from the local nameserver’s
of the hierarchy in turn until the complete name has beermcache. This diagnostic workload is chosen precisely be-
resolved, most systems delegate this task to local nameause it is trivially cacheable, making local infrastruc-
server machines. This approach has performance adure failures more visible and quantifiable. Evaluation
vantages (e.g., caching replies, consolidating requestg)f DNS performance on live traffic, with and without
as well as management benefits (e.g., fewer machines ©©oDNS, is covered in Section 5.
update with new software or root server lists). Our measurements show that local DNS lookup times
With local nameserver cache hit rates approachingre generally good, but often degrade dramatically, and
90% [9, 24], their performance impact can eclipse thatthat this instability is widespread and frequent. To illus-

1 [1 T T
0.9 - 09 | ubc
0.8 7/ oo L 08 ieh
0.7 Frfrsins northwestern : Qo 07°Ff
7 - 3) stanford
w06/ U-nfwlcg ********** {1 5 06¢f Y ——
8 os5f stan % 1 £ 05¢ harvard -~
0.4 b h 3 777777 { © 04 northwestern -
03 F avar J o 03°Ff cornell -
; cmu - 2 0.2
0.2 |7 cornell - : o
0.1 [b e R
1 10 100 1000 10000 1 10 100 1000 10000
Response Time (ms) Response Time (ms)
(a) Fraction of Lookups Taking: X ms (b) Fraction of the Sum of Lookups Takirg X ms

Figure 2:Cumulative Distribution of Cached DNS Lookups

Node Avg Low High | T-Low | T-High
cornell | 531.7ms| 82.4% | 12.9% 0.5% | 99.2%
harvard 99.4ms | 92.3% 3.3% 0.7% | 97.9%

cmu 24.0ms | 81.9% 3.2% 83% | 71.0%

trate the widespread nature of the problem and its mag
nitude, Figure 1 shows the lookup behavior over a two
day period across a number of PlanetLab nodes. Eact

point shows the per-minute average response time df ku | 53.1ms| 94.6% | 1.8% | 2.9% | 95.0%
name lookups. All the nodes in the graph show some stanford | 21.5ms| 95.7% | 1.3% | 5.3% | 89.5%
sort of problems in DNS lookups during the period, with ubc | 88.8ms| 76.0% | 7.6% | 2.4% | 91.%%

umich 43.6ms| 96.7% | 1.3% 2.4% | 96.1%

lookups often taking thousands of milliseconds. ~srhwestern 43 Ims | 98 5% | 0.5% | 4.5% | 04.5%

These problems are not consistent with simple config- —
uration problems, but appear to be usage-induced or triglaPl€ 1:Statistics over two days, Avg = Average, Low = Per-
gered by activity on the nameserver nodes. For exampl&©nt2ge of lookups: 10 ms, High = Percentage of lookups
the Cornell node consistently shows DNS problems, with' 20 ™S T-Low = Percentage of total low time, T-High = Per-

) - . centage of total high time
more than 20% of lookups showing high lookup times of
over five seconds, the default timeout in the client’s re-
solver library. These failed lookups are eventually re- However, slow lookups dominate the total time spent
tried at the campus’s second nameserver, masking th@aiting on DNS, and are large enough to be noticeable
first nameserver's failures. Since the first nameserver reby end users. In Figure 2(b), we see the lookups shown
sponds to 80% of queries in a timely manner, it is notby their contribution to the total lookup time, which in-
completely misconfigured. Very often throughout the dicates thaa small percentage of failure cases domi-
day, it simply stops responding, driving the per-minutenates the total time. This weighted CDF shows, for ex-
average lookup times close to five seconds. The Harvardmple, that none of the nodes crosses the 0.5 value before
node also displays generally bad behavior. While mostL000ms, indicating that more than 50% of the lookup
lookups are fine, a few failed requests every minute subtime is spent on lookups taking more than 1000ms. If
stantially increase the per-minute average. The Stanfordie assume that a well-behaving local nameserver can
node’s graph shows periodic spikes roughly every threserve cached responses in 100ms, then the figures are
hours. This phenomenon is long-term, and we suspeaven more dramatic. This data, shown in Table 1, shows
the nameserver is being affected by heavy cron jobs. Thehat slow lookups comprise most of the lookup time.
Michigan node shows a 90 minute DNS problem, driving These measurements show tichient-side DNS in-
its generally low lookup times to above one second. frastructure problems are significant and need to be

Although the average lookup times appear quite highaddressed. If we can reduce the amount of time spent on
at times, the individual lookups are mostly fast, with athese longer cases, particularly in the failures that require
few very slow lookups dominating the averages. Fig-the local resolver to retry the request, we can dramati-
ure 2(a) displays the cumulative distribution function cally reduce the total lookup times. Furthermore, given
(CDF) of name lookup times over the same two daysthe sharp difference between “good” and “bad” lookups,
With the exception of the Cornell node, 90% of all re- we may also be able to ensure a more predictable (and
guests take less than 100ms on all nodes, indicating thdtence less annoying) user experience. Finally, it is worth
caching is effective and that avaerage-case latencies amoting that these problems are not an artifact of Planet-
quite low. Even the Cornell node works well most of the Lab — in all cases, we use the site’s local nameservers,
time, with over 80% of lookups are resolved within 6ms. on which hundreds or thousands of other non-PlanetLab

2% 2% g 800 g
g g g 700 ¢
o o F 600y F
g ¢ o 500 9
[}) = =
_é é § 400 §
)) o 200 o
8 8 g 100 g
0 0 S o S o
00 03 06 09 12 15 18 21 00 00 03 06 09 12 15 18 21 00 < 00 03 06 09 12 15 18 21 00 < 00 03 06 09 12 15 18 21 00
Time Time Time Time
(a) lefthand.eecs.harvard.edu (b) righthand.eecs.harvard.edu (c) planetlabl.cs.purdue.edu (d) planetlab2.cs.purdue.edu

Figure 3:All nodes at a site see similar local DNS behavior, despite different workloads at the nodes. Shown above are one day’s
failure rates at Harvard, and one day’s response times at Purdue.

90 25
80 R
— 70t : — 207
T 50 | 1 g °F
o o
g 40r i £ 10}
T 307 1 =
- 20t E L 5 |
10 ¢ R
0 0 Noldhose) Lot Lol
OO 06 12 18 00 06 12 18 00 OO 06 12 18 00 06 12 18 00
Time (planetlabl.cs.northwestern.edu) Time (miranda.tkn.tu-berlin.de)
(a) northwestern-1 (b) tu-berlin

Figure 4:Failures seemingly caused by nameserver overload — in both cases, the failure rate is always less than 100%, indicating
that the server is operational, but performing poorly.

machines depend. The PlanetLab nodes at a site see sim-query retransmission from the resolver. The resolver’s
ilar lookup times and failure rates, despite the fact thatdefault timeout for retransmission is five seconds, which
their other workloads may be very different. Examplesmatches some of the spikes in Figure 1.

from two sites are shown in Figure 3, and we can see that Packet loss rates in LAN environments are generally
the nodes at a site see similar DNS performance. Thigssumed to be minimal, and our measurements of Prince-
observation further enhances our claim that the problemgn’s LAN support this assumption. We saw no packet
are site-wide, and not PlanetLab-specific. loss at two hops, 0.02% loss at three hops, and 0.09% at
2.2 Origins of the Client-Side Failures four hops. Though we did see bursty behavior in the loss
While we do not have full access to all of the client- "ate, where the loss rates would stay high for a minute
side infrastructure, we can try to infer the reasons fordt @ time, we do not see enough losses to account for
the kinds of failures we are seeing and understand theif’® DNS failures. Our measurements show that 90% of

impact on lookup behavior. Absolute confirmation of the PIa:)netLab nodes have a nameserver within 4 hops, and
failure origins would require direct access to the name-/0% are within 2 hops. However, other contexts, such as
servers, routers, and switches at the sites, which we dgable modems or dial-up services, have more hops [20],
not have. Using various techniques, we can trace som@nd may have higher loss rates.
problems to packet loss, nameserver overloading, re: . .
- : . >’ “Nameserver overloading- Since most request packets
source competition and maintenance issues. We discuss_ . :
these below are likely to reach the nameserver, our next possible cul-
' prit is the nameserver itself. To understand their behav-
Packet Loss— The simplest cause we can guess is thdor, we asked all nameservers on PlanetLab to resolve a
packet loss in the LAN environment. Most nameserverdocal name once every two seconds and we measured the
communicate using UDP, so even a single packet loss eresults. For example, on planetlab-1.cs.princeton.edu,

ther as arequest or as a response would eventually triggere asked for planetlab-2.cs.princeton.edu’s IP address.

z 4r 1
5 = 357 1
b =

L = 3 r 1
= T 2.5 t g
w [a'

T o 2 r 1
g’ -))) - E 1-i i. R. n . ﬂ .. ﬂ..

o LU]
00 06 12 18 00 06 12 18 OO0
Time (pll.unm.edu)

o 1000 ‘ ‘ \ \ . L . . - o
9N ggg | BIND, 64K —— D Figure 7:This site shows failures induced by periodic activity.
2y goo [BIND,128K v : - In addition to the hourly failure spike, a larger failure spike is
58 BIND.256K ~+ FR y pike, alarg P
%E 700 - BIND/512K e seen once per day.

oo 8001 PING, BaK - E e
=2 500 P .
°8 400 P e e e e To test this theory of nameserver overload, we sub-
é% 300 el jected BIND, the most popular nameserver, to bursty
Sx fgg N N traffic. On an otherwise unloaded box (Compaq au600,
X 0 Linux 2.4.9, 1 GB memory), we ran BIND 9.2.3 and an
0 100 200 300 400 500 600 700 800 900 1000 application-level UDP ping that simulates BIND. Each
Requests/sec request contains the same name query for a local domain
name with a different query ID. Our UDP ping responds
Figure 6:BIND 9.2.3 vs. PING with bursty traffic to it by sending a fixed response with the same size as

BIND’s. We send a burst oV requests from a client ma-
. - . chine and wait 10 seconds to gather responses. Figure 6
In addition to the possibility of caching, the local name- shows the difference in responses between BIND 9.2.3
server is mostly likely the authoritative nameserver for;nq our UDP ping. With the default receive buffer size
the queried name, or at least the authoritative server cagy 64KB, BIND starts dropping requests at bursts of 200
be found on the same local network. regs/sec, and the capacity linearly grows with the size of
In Figure 4, we see some evidence that nameservetge receive buffer. Our UDP ping using the default buffer
can be temporarily overloaded. These graphs cover twpses some requests due to temporary overflow, but the
days of traffic, and show the 5-minute average failuregraph does not flatten because responses consume min-
rate, where a failure is either a response taking more thajinal CPU cycles. These experiments confirm that high-
five seconds, or no response at all. In Figure 4(a), theate bursty traffic can cause server overload, aggravating
node experiences no failures most of time but a 30% tahe buffer overflow problem.
80% failure rate for about five hours. Figure 4(b) reveals .) o
a site where failures start during the start of the workdayR€SOUrce competition- Some sites show periodic fail-
gradually increase, and drop starting in the evening. LI€S: Similar to what is seen in Figure 7. These tend to
is reasonable to assume that human activity increases {fAVe SPikes every hour or every few hours, and suggests
these hours, and affects the failure rate. some heavy process is being launched from cron. BIND

is particularly susceptible to memory pressure, since its

We suspect that a possible factor in this overloadin ; L i
is the UDP receive buffer on the nameserver. Thes%nemorycache is only periodically flushed. Any jobs that

buffers are typically sized in the range of 32-64KB, and Use large amounts of memory can evict BIND's pages,

incoming packets are silently dropped when this buffercausmg BIND to page fault when accessing the data. The

is full. If the same buffer is also used to receive thefaults: can delay the server, causing the UDP buffer to fill.

responses from other nameservers, as the BIND name- In talking with system administrators, we find that

server does, this problem gets worse. Assuming a 64K ven sites with good DNS service often run multiple ser-

vices (some cron-initiated) on the same machine. Since

receive buffer, a 6.4 byte query, and_a 300 byte respons%NS is regarded as a low-CPU service, other services are
more than 250 simultaneous queries can cause packet

. . run on the same hardware to avoid underutilization. It
dropping. In Figure 5, we see the request rate (aver-

aged over 5 minutes) for the authoritative nameserver fopo oS quite common that when these other services have

princeton.edu. Even with smoothing, the request rateéurSty resource behavior, the nameserver is affected.

are in the range of 250-400 reqs/sec, and we can expebtaintenance problems— Another common source of

that instantaneous rates are even higher. So, any activifiailure is maintenance problems which lead to service in-
that causes a 1-2 second delay of the server can causerruption, as shown in Figure 8. Here, the DNS lookup
requests to be dropped. shows a 100% failure rate for 13 hours. Both name-

» 100 % : : ; :
100 r b [} max
°

£ 8o 1 2 95%

@ >

5 60 1 =

e L S 90% |

= r 1 I

& 5 :

20 |+ T [0) 85%
[@)]
o 8
00 06 12 18 00 06 12 18 00 S 80% |
Time (planetlab2.millennium.berkeley.edu) g ;

) D‘ 75 % 1 1 ' 1 1
Figure 8: This site’s nameservers were shut down before the 03/25 04/01 04/08 04/15
nodes had been updated with the new nameserver information. Hourly statistics, 2004
The result was a 13-hour complete failure of all name lookups,
until the information was manually updated. Figure 9: Hourly % of nodes with working nameservers

servers for this site stopped working causing DNS to be

completely unavailable, instead of just slow. DNS ser-,_ . - .
to insurance — nodes join a pool that shares resources in

vice was restored only after manual intervention. An- . \ .
times of need. If a node’s local lookup performance is

other common case, complete failure of the primary : .

L : acceptable, it proceeds as usual, but may have to provide

nameserver, generates a similar pattern, with all re-"~ "~) .

] . . service to nodes that are having problems. When its lo-

sponses being retried after five seconds and sent to the :

secondary nameserver cal performance degrades, it can ask other nodes to help
y ' it. The benefit of joining is the ability to get help when

3 Design needed, even if there is some overhead at other times.

In this section, we discuss the design of CODNS, aname-1 Cross-site Correlation of DNS Failures

lookup system that provides faster and more reliableThe “insurance” model depends on failure being rela-
DNS service while minimizing extra overhead. We alsotively uncorrelated — the system must always have a suf-
discuss the observations that shape this approach. Usirfigient pool of working participants to help those having
trace-driven workloads, we calculate the overheads anttouble. If failure across sites is correlated, this assump-
benefits of various design choices in the system. tion is violated, and a cooperative lookup scheme is less
One important goal shapes our design: our systenfeasible. To test our assumption, we study the correla-
should be incrementally deployable, not only by DNStion of DNS lookup failures across PlanetLab. At every
administrators, but also by individual users. The mainminute, we record how many nodes have “healthy” DNS
reason for this decision is that it bypasses the bureawperformance. We define healthy as showing no failures
cratic processes involved with replacing existing DNS in-for one minute for the local domain name lookup test.
frastructure. Given the difficulty we have in even getting Using the per-minute data for March 2004, we show the
information about local DNS nameservers, the chanceminimum, average and maximum number of nodes avail-
of convincing system administrators to send their liveable per hour. The percentage of healthy nodes (as a frac-
traffic to an experimental name lookup service seemgion of live nodes) is shown in Figure 9.
low. Providing a migration path that coexists with exist- From this graph, we can see some minor correlation
ing infrastructure allows people the opportunity to grow in failures, shown as downward spikes in the percentage
comfortable with the service over time. of available nodes, but most of the variation in availabil-
Another implication of this strategy is that we should ity seems largely uncorrelated. An investigation into the
aim for minimal resource commitments. In particular, spikes reveals that many nodes on PlanetLab are config-
we should leverage the existing infrastructure devoted taired to use the same set of nameservers, especially those
making DNS performance generally quite good. Client-colocated at Internet2 backbone facilities (not to be con-
side nameservers achieve high cache hit rates by devofiised with Internet2-connected university sites). When
ing memory to name caching, and if we can take ad-these nameservers experience problems, the correlation
vantage of the existing infrastructure, it lessens the costippears large due to the number of nodes affected.
of deployment. While current client-side infrastructure, More important, however, is the observation that the
including nameservers, is not perfect, it provides goodraction of healthy nameservers is always high, generally
performance most of the time, and it can provide a useabove 90%. This observation provides the key insight
ful starting point. Low resource usage also reduces théor CoDNS — with enough healthy nameservers, we can
chances for failure due to resource contention. mask locally-observed delays via cooperation.

Our usage model is cooperative, operating similarly

- ,\?gfzwgf; - Plagitli?/b PaCket;%CL%/ry 55“;)'3/ peer times, making CoDNS failure masking more trans-
BI;\”'D 5 * 48.9‘VZ 25'1%‘: 34'0%‘; parent. For request locality, we would like to increase the

Other 50.0% 38.5% | 101% chances of remote queries being cache hits in the remote

Table 2: Comparison of nameserver software used by PlanetN@meservers. Using any scheme that consistently parti-
Lab, packetfactory survey and the TLD survey tions this workload will help reduce cache pollution, and

increase the likelihood of cache hits.

To ensure that these failures are not tied to any specific To un(_jerstand the relationship _between CODNS re-
ponse times, the number of peers involved, and the poli-

nameserver software, we survey the software running oy o
s for determining when requests should be sent re-

the local nameservers used by the PlanetLab nodes (1 telv. w lected 44486 uni hostnames from on
unigue nameservers) with “chaos” class queries [14]. Wé(:o,eyh_l__?;?[ef(;.e C D u Nqued 0s al tez om one
find that they are mostly running a variety of BIND ver- ay’s ratmic on LoLeeN and simu'ated various

sions. We observe 11 different BIND 9 version strings,pOIICIes and their effects. We replayed DNS lookups

13 different BIND 8 version strings and a number of hu-Of those names at. 77 PlanetLab nodes W'th. different
morous strings (included in “other”) apparently set by the AMESEIVETS, starting requests at the same time of day
nameserver administrators. These measurements, shov'vnnthe original Iogs.. The replay happened one month af-
in Table 2, are in line with two recent nameserver Sur_ter the data collections to avoid local nameserver caches

veys conducted by Brad Knowles in 2002 [11] and bywh|ch co_uld _skew the data. During this time, we also
packetfactory in 2003 [19]. From this, we conclude thatUSe application-level heartbeat measurements between

the failures are not likely to be specific to PIanetLab’sgl.I palrs"of fn;)hdes t(()jdeterm|dng thel:l)r,\:%ulnd—lzrlp Iatttan(;es.t
choices of nameserver software. ince afl of the nodes are doing 00KUPps at abou

the same time, by adding the response time at peerY to
3.2 CoDNS the time spent for the heartbeat from peerX to peerY, we

The main idea behind CoDNS is to forward name lookupWill get the response time peerX can get if it asks peerY
queries to peer nodes when the local name service is eXor a remote DNS lookup for the same hostname.
periencing a problem. Essentially, this strategy applies a An interesting question is how many simultaneous
CDN approach to DNS — spreading the load among peertookups are needed to achieve a given average response
improves the size and performance of the “global cache’time and to reduce the total time spent on slow lookups
Many of the considerations in CDN systems apply in this(defined as taking more than 1 second). As shown in
environment. We need to consider the proximity andthe previous section, it is desirable to reduce the number
availability of a node as well as the locality of the queries.of slow responses to reduce the total lookup time. Fig-
A different consideration is that we need to decide whenures 10 and 11 show two graphs answering this ques-
it is desirable to send remote queries. Given the fact thation. The lookup scheme here is to contact the local
most name lookups are fast in the local nameserver, sirrameserver first for a name lookup, wait for a timeout
ply spreading the requests to peers might generate unnegnd issue x-1 simultaneous lookups using x-1 randomly-
essary traffic with no gain in latency. Worse, the extraselected peer nodes. Figures 10 shows that even if we
load may cause marginal DNS nameservers to becomése only one extra lookup, we can reduce the average re-
overloaded. We investigate considerations for decidingsponse time by more than half. Also, beyond about five
when to send remote queries, how many peers to involvepeers, adding more simultaneous lookups produces di-
and what sorts of gains to expect. minishing returns. Different initial timeout values do not

To precisely determine the effects of locality, load, produce much difference in response times, because the
and proximity is difficult, since we have no control over benefit largely stems from reducing the number of slow
the nameservers and have little information about theitookups. The slow response portion graph proves this
workloads, configurations, etc. The proximity of a peerphenomenon, showing similar reduction in the slow re-
server is important in that DNS response time can be afsponse percentage at any initial timeout less than 700ms.
fected by its peer to peer latency. Since the DNS requests We must also consider the extra overhead of the si-
and responses are not large, we are more interested multaneous lookups, since shorter initial timeouts and
picking nearby peers with low round-trip latency insteadmore simultaneous lookups causes more DNS traffic at
of nodes with particularly high bandwidth. We have ob- all peers. Figure 12 shows the overhead in terms of ex-
served coast-to-coast round-trip ping times of 80ms irtra lookups needed for various scenarios. Most curves
CoDeeN, with regional times in the 20ms range. Both ofstart to flatten at a 500ms initial timeout, providing only
these ranges are much lower than the DNS timeout valudiminishing returns for larger timeouts. Worth noting is
of five seconds, so, in theory, any node would be an acthat even with one peer and a 200ms initial timeout, we
ceptable peer. In practice, choosing closer peers will reean still cut the average response time by more than half,
duce the difference between cache hit times and remoteith only 38% extra DNS lookups.

(&)
(5]
— 700 — , : 4 90 — : :
g \ Timeout 900ms A Timeout 900ms
= 600 Timeout 800ms —- o . «» 80 Timeout 800ms —- o 1
2 % Timeout 600mMs 3 70 Timeout 600mMs - .
= 500 N Timeout 400ms = 1 S Timeout 400ms =
© B Timeout 200ms ---=--- g 60 Timeout 200ms ---=--- 1
2 400 Timeout Oms ---e-- - & 50 Timeout Oms ---e-- ..
o RSN
o oD = 40
g 300 L > o~
o [l - = S x Xk e 30 R
o 200 o e 5 e E S
S o =- — 20 e i
£ 100 8 e
5} ° e o 10 &
> R oo = -
< (o] 5 0 -]
1 2 4 8 16 32 64 S 1 2 4 8 16 32 64
of Simultaneous Lookups # of Simultaneous Lookups
Figure 10:Average Response Time Figure 11:Slow Response Time Portion
16 : : : date that any of these results have to agree, making the
a 8 extra peers —+—— i : : ;
S 4 extra peers — general case of verification impossible. _
8 T 2 extra peers - i Many server-side DNS deployments use techniques to
— 8 1 extra peer = . L
s \\ improve performance, reliability, or balance load and lo-
3 a o cality. For example, round-robin DNS can return re-
§ U \\ sults from a list of IP addresses in order to distribute
@ Lok T load across a set of servers. Geography-based redirection
> 2 B N) IR e S e . . .
s O e VUV can be used to reduce round-trip times between clients
Z 1 e L R B e and servers by having DNS lookups resolve to closer
0 200 400 600 800 1000 servers. Finally, DNS-based content distribution net-
Initial Delay for Remote Query (ms) works will often incorporate load balancing and local-
ity considerations when resolving their DNS names. In
Figure 12:Extra DNS Lookups these cases, multiple lookups may produce different re-

sults, and lookups from different locations may receive

These results are very encouraging, demonstrating th&£Sults from different pools of IP addresses.

CoDNS can be effective even at very small scale — even While itwould be possible to imagine extending DNS
a single extra site provides significant benefits, and iSuch that each name is associated with a public key,
achieves most of its benefits with less than 10 sites. Th@nd each IP address result is signed with this key, such
reasons for this scale being important is twofold: only@ change would be significant. DNSSEC [6] attempts
small commitments are required to try a CODNS deploy-Smaller-scale change, mainly to prevent DNS spoofing,
ment, and DNS's limitations with respect to trust and ver-Put has been in some form of development for nearly a
ification (discussed in the next section) are unlikely to bed€cade, and still has not seen wide-scale adoption.

an issue at these scales. Given the current impossibility of verifying all
. L lookups, we rely on trusting peers in order to sidestep
3.3 Trust, Verification, and Implications the problems mentioned. This approach is already used

Some aspects of DNS and its design invariably impacin various schemes. Name owners often use each other as
our approach, and the most important is trust and veritheir secondary servers, sometimes at large scale. For ex-
fication. The central issue is whether it is possible for aample, princeton.edu’s DNS servers act as the secondary
requestor to determine that its peer has correctly resolveservers for 60 non-Princeton domains. BIND supports
the request, and that the result provided is actually a validone transfers, where all DNS information can be down-
IP address for the given name. This issue arises if peel®aded from another node, specifically for this kind of
can be compromised or are otherwise failing. scenario. Similarly, large-scale distributed systems run-
Unfortunately, we believe that a general solution toning at hosting centers already have a trust relationship
this problem is not possible with the current DNS, thoughin place with their hosting facility.
certain fault models are more ame_:nable to checking tha% Implementation
others. For example, if the security model assumes tha
at most one peer can be compromised, it may be posside have built a prototype of CoDNS and have been
ble to always send remote requests to at least three peersinning it on all nodes on PlanetLab for roughly eight
When these nodes respond, if two results agree, then thaeonths. During that time, we have been directing the
answer must be correct. However, DNS does not man€oDeeN CDN [23] to use CoDNS for the name lookup.

CoDNS consists of a stand-alone daemon running omesponse time of remote query responses plus one stan-
each node, accessible via UDP for remote queries, andard deviation, to avoid swamping fast remote servers.

via loopback TCP for locally-originated name lookups. 4.2 Proximity, Locality and Availability
a)

The daemon is event-driven, and is implemented as :
non-blocking master process and many (blocking) slavéEaCh CoDNS node gathers and manages a set of neigh-

processes. The master process receives name lookup 12" Nodes within a reasonable latency boundary. When a

quests from local clients and remote peers, and passé%ODNS instance starts, it sends a heartbeat to each node
them to one of its idle slaves. A slave process resolved the preconfigured CODNS node list every second. The

those names by callingethostbyname() ~ and sends response contain_s the round trip time (RTT) and the av-
the result back to the master. Then, the master return§'29€ résponse time of the local nameserver at the peer
the final result to either a local client or a remote peer°de: reflecting the proximity and the availability of the
depending on where it originated. Queries resolving®€€" node’s nameserver. The top 10 nodes with different

the same hostname are coalesced into one query antiMmeservers are picked as neighbors by comparing the
answered together when resolved. Preference for idi§UM With all nodes. Liveness of the chosen neighbors
slaves is given to locally-originated requests over remotdS Periodically checked to see if the service is still avail-
queries to ensure good performance for local users. ~ 2Ple- One heartbeat is sent each second, so we guarantee
The master process records each request's arrival tim@€ availability in 10 second granularity. Dead nodes are
from local clients and sends a UDP name lookup query€Placed with the next best node in the list. -
to a peer node when the response from the slave has not AMoNg these neighbor nodes, one peer is chosen for
returned within a certain period. This delay is used as £aCh remote name lookup using the Highest Random
boundary for deciding if the local nameserver is slow. InWeight (HRW) hashing scheme [22]. HRW consists of
the event that neither the local nameserver nor the remot&@shing the node name with the lookup name, and then

node has responded, CODNS doubles the delay value b&100Sing the node name with the smallest resulting hash
fore sending the next remote query to another peer. IYalué. Because HRW consistently picks the same node

the process, whichever result that comes first will be defOr the same domain name, this process enhances request
livered as the response for the name lookup to the clienfOC@lity for remote queries. Another desirable property
Peers may silently drop remote queries if they are overOf this approachis that some request locality is preserved

loaded, and remote queries that fail to resolve are als@S /0ng as neighbor sets have some overlap. Full overlap

discarded. Slaves may add delay if they receive a locally!S Not required.

generated request that fails to resolve, with the hope that 1€ number of neighbors is configurable according to
remote nodes may be able to resolve such names. the distribution of nodes. In the future, we will make

4.1 Remote Query Initiation & Retries CoDNS dynamically find the peer nodes not depending

- : i . on the preconfigured set of nodes. One possible solution
The initial delay before sending the first remote query isis 1o make each CoDNS node advertise its neighbor set

dynamically adjusted based on the recent performance of .4 have a few well known nodes. Then. a new CoDNS
local nameservers and peer responses. In general, Whege \ith no information about available CoDNS peer
the local nameserver performs well, we increase the de;gges can ask the well known nodes for their peer nodes

lay so that fewer remote queries are sent. When most,q recursively gather the nodes by asking each neighbor
remote answers beat the local ones, we reduce the del@ht" it finds a reasonable pool of CODNS nodes.

preferring the remote source. Specifica!ly, if the_past 32 Note that our neighbor discovery mechanisms are es-
name lookups are all resolved locally without using anysentially advisory in nature — once the node has enough

remote queries, then the initial delay is set tq 200ms b3f)eers, it only needs to poll other nodes in order to have
default. We CIT?ose 200ms beca.usle ther:ned|an resSponz&easonable set of candidates in case one of its existing
time on a well-functioning node is less than 100ms [9], o5 hecomes unavailable. In the event that some sites
so 200ms delay should respond fast during |nstab|l|ty,h‘,ﬂve enough peers to make this polling a scalability is-

while wasting minimal amqunt of extra remote queries. ¢a each node can choose to poll a nearby subset of all
quever, to respond qu_|ckly to local nameserver fa"'possible peers to reduce the background traffic.
ure, if the remote query wins more than 50% of the last

16 requests, then the delay is set to 0 ms. That is, thé-3 Policy & Tunability

remote query is sent immediately as the request arrivesn the future, we expect CoDNS node policy will become
Our test results show it is rare not to have failure whenan interesting research area, given the tradeoffs between
more than 8 out of 16 requests take more than 300ms toverhead and latency. We have made choices for initial
resolve, so we think it is reasonable to believe the locabelay and retry behavior for our environment, and we be-
nameserver is having a problem in that case. Once thikeve that these choices are generally reasonable. How-
immediate query is sent, the delay is set to the averagever, some systems may choose to tune CoDNS to have

7000 T 11 11

7000
6000
5000
4000
3000

6000 o.; 09
5000

08
4000 07
3000 06
2000 05

2000
4 /
1000 0 LDNS —— 02 / LDNS ——

1000
IM;. " L sk 03 L,‘ODNS T 01 CpDNS e

0 0 st et 0 3
00 03 06 09 12 15 18 21 00 00 03 06 09 12 15 18 21 00 1 10 100 1000 10000 100000 1 10 100 1000 10000 100000
Time Time Response Time (ms) Response Time (ms)

CDF

Weighted CDF
o
o
.

Average Response Time (ms)
Average Response Time (ms)

(a) Local DNS (b) CoDNS (a) Response Time CDF (b) Total Time CDF

Figure 13:Minute-level Average Response Time for One Dajrigure 14:CDF and Weighted CDF for One Week on planet-
on planetlabl.cs.cornell.edu labl.cs.cornell.edu, LDNS = local DNS

much lower overhead, at the cost of some latency benéd Evaluation / Live Traffic
fit. In particular, systems that want to use it only to avoid . .
situations where all local nameservers have failed could 2, 9249€ the effectiveness of CODNS, we compare its

use an initial delay threshold of several seconds. In this ehaV|or_W|th local [.)NS on CobeeN S live trafflc_ us-
. . ing a variety of metrics. CoDeeN receives 5-7 million
case, if the local nameserver repeatedly fails to resolve

. . - . requests daily from a world-wide client population of 7-
requests in multiple seconds, the initial delay will drop - e
. 12K users. These users have explicitly specified CoDeeN
to zero and all lookups will be handled remotely for the roxies in their browser, so all of their Web traffic is di-
duration of the outage. P !

rected through CoDeeN. The CoDeeN proxies maintain

Sites may also choose to limit CODNS overhead to &heir own DNS caches. so only uncached DNS names
specific level, which would turn parameter choices intoCause lookups. To eli}ninate the possible caching ef-

an optimization problem. For example, it may be rea- .
) . : ect on a nameserver from other users sharing the same
sonable to ask questions of the form “what is the bes{

.) : server, we measure both times only in CoDNS, using the
latency achievable with a maximum remote lookup rate

i - .~ slaves to indicate local DNS performance.
of 10%?” Our trace-driven simulations give some insight CoDNS effectively removes the spikes in the response
into how to make these choices, but it may be desirabl% y P P

to have an online system automatically adjust parameter.me’]c and proY'diS morIS rellalil?:a and pred|ctable_ Ser
values continuously in order to meet these constraints\éf:ra(;renzggosse L;ﬁﬁés Igfulrc?cal S?\lﬁslp:;?js gsgmg%‘?
We are investigating policies for such scenarios. CoDeeN's live traffic for one day on one PlanetLab node.
4.4 Bootstrapping While local DNS shows response time spikes of 7 sec-
CoDNS has a bootstrapping problem, since it must reonds, CoDNS never exceeds 0.6 seconds. The benefit
solve peer names in order to operate. In particular, whestems from redirecting slow lookups to working peers.
the local DNS service is slow, resolving all peer names The greater benefit of CoDNS lies in reducing the fre-
before starting will increase CoDNS's start time. So, quency of slow responses. Figure 14 shows a CDF and
CoDNS begins operation immediately, and starts resolva weighted CDF for name lookup response distribution
ing peer names in the background, which greatly reducefor the same node for one week. The CDF graph shows
its start time. The background resolver uses CoDNS itthat the response distribution in both schemes is almost
self, so as soon as a single working peer's name is resimilar until the 90th percentile, but CoDNS reduces the
solved, it can then quickly help resolve all other peerlookups taking more than 1000ms from 5.5% to 0.6%.
names. With this bootstrapping approach, CoDNS start3 his reduction gives much benefit in total lookup time
virtually instantaneously, and can resolve all 350 peein the weighted CDF. It shows CoDNS now spends 18%
names in less than 10 seconds, even for slow local DNSof total time in lookups taking more than 1000ms, while
A special case of this problem is starting when local DNSlocal DNS still spends 75% of the total time on them.

is completely unavailable. In this case, CoDNS would This improvement is widespread — Figure 15(a) shows
be unable to resolve even any peer names, and coulthe statistics of 95 CoDeeN nodes for the same period.
not send remote queries. CoDNS periodically stores allThe average number of total lookups per node is 22,208,
peer information on disk, and uses that information atranging from 12,119 to 131,466 per node. The average
startup. This file is shipped with CoDNS, allowing oper- response time in CoDNS is 60-221ms, while that of local
ation even on nodes that have no DNS supportat all. DNS is 113-935ms. In all cases, CoDNS’s response is

o
—~ 1000 T T T e 90 - -
) — LDNS ——
£ 900 ’Ctgmg p— v 80 [CODNS m===
GE-’ 800 C'g" 70
E 700 = g0
2 600 2
2 S 50
<3 500 73
4 400 y g 40|
& 300 _ 5 30
% <5}
] 100 $ 10
> Q
<: 0 R A g |
0O 10 20 30 40 50 60 70 80 90 & o] 10 20 30 40 50 60 70 80 90
Nodes Sorted by LDNS Response Time Nodes Sorted by LDNS Value
(a) Average Response Time (b) Slow Response Time portion

Figure 15:Live Traffic for One Week on the CoDeeN Nodes, LDNS = local DNS

2000 90

LDNS ——]

(&)
(<5
&) | — 2
£ 1800 ’CIBBNE e 1 N 80 [CODNS === T
g 1600 1 g 70 — 4
)] 5]
7] . 1 2 — - |
§ 1000 1 s 50 N
2 | 8 40 =
@ 800 1 2 L
T 600 i : 5 30 1
[<5] D
? 400 i E 20 + B
2 200 4 S 10t 4
< = o
0 5 10 15 20 25 30 35 40 %) 5 10 15 20 25 30 35 40
Non-Internet2 Nodes Sorted by LDNS Response Time Non-Internet2 Nodes Sorted by LDNS Value

(a) Average Response Time (b) Slow Response Time Portion
Figure 16:Non-Internet-2 Nodes, LDNS = local DNS

faster, ranging from a factor of 1.37 to 5.42. Figure 15(b)5.2 CDN Effect

shows the percentage of slow responses in the total rezopNS replaces slow local responses with fast remote
sponse time. CoDNS again reduces the slow responseygsponses, which may impact DNS-based CDNs [1] that
portion dramatically to less than 20% of the total lookup esolve names based on which DNS nameserver sends
time in most cases, delivering more predictable responsge query. CoDNS may return the address of a far replica
time. In contrast, local DNS spends 37% to 85% of theyhen it uses a peer's nameserver result. We investigate
total time in the slow queries. this issue by testing 14 popular CDN users including Ap-

. ple, CNN, and the New York Times. We measure the
5.1 Non-Internet2 Benefits DNS and download time of URLSs for the logo image file
Since most CoDeeN sites are hosted at North Amerion those web sites, and compare local DNS and CoDNS
can universities with Internet2 (12) connectivity, one may when their responses differ.

suspect that low-congestion 12 peer links are responsi- Since CoDNS is used only when the local DNS is slow
ble for our benefits. To address this issue, we pick noner failing, it should come as no surprise that the total time
I2 PlanetLab nodes and replay 10,792 unique lookupg$or CDN content is still faster on CoODNS when they dif-
of hostnames from one day'’s live traffic on a CoDeeNfer in returned IP address. The DNS time gain and the
proxy. Figure 16(a) shows that CODNS provides similardownloading time penalty presented in the difference be-
benefit on 38 non-12 nodes as well. The average respondeveen local and remote response time is shown in Fig-
time in CoDNS ranges from 63ms to 350ms, while localure 17(a). When local DNS is slow, CoDNS combined
DNS is 113ms to 1884ms, an improvement of factor ofwith a possibly sub-optimal CDN node is a much better
1.64 to 9.52. Figure 16(b) shows that CoDNS greatlychoice, with the gain from faster name lookups dwarfing
reduces the slow response portion as well - CoDNS gerthe small difference in download times when any differ-
erally spends less than 10% of the total time in this rangeence exists. If we isolate the downloading time differ-
while local DNS still spends 32% to 90%. ence between the DNS-provided CDN node versus the

100000

) "DNS Gain (L-R) —— ' 0.9
E ook Download Penalty(R-L) . 08
8 0.7 /
o 1000 . 06 /
(9] a 05
=
a 100 © 04 |
2 0.3
& 10 | 0.2 7
54 0.1
- 1 0
0 20 40 60 80 100 120 140 -400 -200 0 200 400 600 800
Nodes Sorted by DNS Time Difference Download Time Penalty (R-L, ms)
(a) DNS Lookup Time Gain vs. Downloading Time Penalty (b) Cumulative Distribution of Downloading Time Difference

Figure 17:CDN Effect for www.apple.com, L = Local Response Time, R = Remote Response Time, DNS gain = Local DNS time
- CoDNS time, Download penalty = download time of CoDNS-provided IP - download time of DNS-provided IP, shown in log
scale. Negative penalties indicate CoDNS-provided IP is faster, and are not shown in the left graph.

CoDNS-provided CDN node, we get Figure 17(b). Sur-

-) . 99.99
prisingly, almost a third of the CoDNS-provided nodes _ N TN
are closer than their DNS counterparts, and 83% of them§ 99.9 _—"
show less than a 100ms difference. This matches thep WW Sy
CDN’s strategy to avoid notably bad servers instead of 3 99 {

choosing the optimal server [8]. Results for other CDN & / e

e T
vendors arfa S|rn_|lar. o 2 90 CODNS —— 7
5.3 Reliability and Availability g LDNS —=—
CoDNS dramatically improves DNS reliability, mea- 0 10 20 30 40 50 60 70 80 90 100
sured by the local nameserver availability. To quantify Nodes Sorted by Availability

this effect, we measured the availability of name lookups
for one month across all CoDeeN nodes, with and with-
out CoDNS. We assume that a nameserver is available
unless it fails to answer requests. If it fails, we consider
the periods of time when no requests were answered &@mote queries, all experienced complete nameserver
its unavailability. Each period is capped at a maximumsajlure at some point, during which remote queries in-

of five seconds, and the total unavailability is measurectreased to over 100% of the local requests. These periods
as the sum of the unavailable periods. This data, showBkew the average overhead.

in Figure 18, is presented using the reliability metric of \y pejieve that the additional burden on nodes with
9's” of availability. Regular DNS achieves 99% avail- working DNS is tolerable, due to the combination of

ability on about 60% of the nodes, which means roughly, - ocality-conscious redirection and already high lo-
14 minutes per day of no service. In contrast, CODNS iSc5| hameserver hit rates. Using our observed median
able to achieve over 99.9% availability on over 70% of o .hoad of 25% and a local hit rate of 80% - 87% [9]
nodes, reducing downtimes to less than 90 seconds pgte |ocal DNS will incur only 3.25 - 5.00% extra out-
day. On some nodes, the availability approaches 99.99%,, 4 queries. Since remote queries are redirected only
or rqughly 9 seconds Of, gnavallablllty per (_jgy. QODNSto lightly loaded nodes, we believe the extra lookups will
provides roughly an additional '9’ of availability, without be tolerable on the peer node’s local nameserver.

any modifications to the local DNS infrastructure. .

. We also note that many remote queries are not an-
5.4 Overhead Analysis swered, with Figure 19 showing this number varies from
To analyze CoDNS's overhead, we examine the remoté% to 31%. These can be due to WAN packet losses,
query traffic generated by the CoDeeN live activity. Forunresolvable names, and remote node rate-limiting.
this workload, CoDNS issued 11% to 85% of the to- CODNS nodes drop remote requests if too many are
tal lookups as remote queries, as shown in Figure 19queued, which prevents a possible denial of service at-
The variation reflects the health of the local nameservettack. CoDNS peers never reply if the request is unre-
and less stable nameservers require more remote querisslvable, since their own local DNS may be failing, and
from CoDNS. Of the six nodes that had more than 50%some other peer may be able to resolve the name.

Figure 18:Availability of CoDNS and local DNS (LDNS)

105

90 T T T y T T
Sent ——— Win-by-3 ———

80 | Answered Dmm—m Win-by-2 o=

Win e i 100

95

90

Percentage
Percentage

85

80

75

O 10 20 30 40 50 60 70 80 90 0O 10 20 30 40 50 60 70 80 90
Nodes Sorted by Number of Remote Queries Nodes Sorted by Win-by-1
Figure 19:Analysis for Remote Lookups Figure 20:Win-by-N for Remote Lookups

The queries in which CoDNS “wins”, by beating the these nodes can still be used, providing an additional
local DNS, constitute 2% to 57% of the total requests.10% extra capacity.
On average, 9% of the original queries were answered The availability improvements come from reducing
by the remote responses, removing 47% of the slow restartup time, which can be dramatic on some nodes.
sponse portion in the total lookup time shown in the Fig-CoDeeN software upgrades are not announced down-
ure 15(b). Of the winning remote responses, more thanimes, because on nodes with working local DNS,
80% were answered by contacting the first peer, specifie@oDeeN normally starts in 10-15 seconds. This startup
as “win-by-1" in Figure 20. Of all winning responses, process is fast enough that few people notice a service
95% are resolved by the first or second peer, and onlylisruption. Part of this time is spent in resolving the
a small number require contacting three or more peermames of all CoDeeN peers, and when the primary DNS
This information can be used to further reduce CoDNS’sserver is failing, each lookup normally requires over five
overhead by reducing the number of peers contacted — §econds. For 120 peers, this raises the startup time to
it has not been resolved within the first three peers, themver 10 minutes, which is a noticeable service outage.
further attempts are unlikely to resolve it, and no morelf CoDNS is already running on the node, startup times
peers should be contacted. We may explore this optiare virtually unaffected by local failure, since CoDNS is
mization in the future, but our current overheads are lovalready sending all queries to remote servers in this en-
enough that we have no pressing need to reduce them. vironment. If CoDNS starts concurrently with CoDeeN,

In terms of extra network traffic generated for remotethe startup time for CoDeeN is roughly 20 seconds.

ueries, each query contains about 300 bytes of a request
gnd a respons((l. O>r/1 average, each CoDNS on a CoDee(?Kl Other Approaches
node handles 414 to 10,287 requests per day during th8_1 Private Nameservers
week period, amounting to 243KB to 6027KB. CoDNS
also consumes heartbeat messages to monitor the pee3ce local nameservers exhibit overload, one may be
each second, which contains 32 bytes of data. In sumempted to run a private nameserver on each machine,
each CoDNS on a CoDeeN node consumes on averagend have it contact the global DNS hierarchy directly.
7.5 MB of extra network traffic per day, consuming only This approach is more feasible as a backup mechanism

0.2% of total CoDeeN traffic in relative terms. than as a primary nameserver for several reasons. Using
L . shared nameservers reduces maintenance issues, and the
5.5 Application Benefits shared cache can be larger than individual caches. Not

By using CoDNS, CoDeeN obtains other benefits in ca-only does cache effectiveness increase due to capacity,
pacity and availability, and these may apply to other ap-but the compulsory misses will also be reduced from the
plications as well. The capacity improvements comesharing. With increased cache misses, the global DNS
from CoDeeN being able to use nodes that are virtufailure rate becomes more of an issue, so using private
ally unusable due to local DNS problems. At any givennameservers may reduce performance and reliability.
time, roughly 10 of the 100 PlanetLab nodes that run As a backup mechanism, this approach is possible, but
CoDeeN are experiencing significant DNS problems has the drawbacks common to any infrequently-used sys-
ranging from high failure rates to complete failure of tem. If it is not being exercised regularly, failure is less
the primary (and even secondary) nameservers. CoDeelkely to be noticed, and the system may be unavailable
nodes normally report their local status to each otherwhen it is needed most. It also consumes resources when
and before CoDNS, these nodes would tell other nodesot in use, so other tasks on the same machine will be
to avoid them due to the DNS problems. With CoDNS, impacted, if only slightly.

6.2 Secondary Nameservers

Since most sites have two or more local nameservers
another approach would be to modify the resolver li-
braries to be more aggressive about using multiple name-Z

odes (CDF)
o
[ee]

servers. Possible options include sending requests tog 03 ~ CODNS |
all nameservers simultaneously, being more aggressiveS 0.2 PerS'StemJgE """ s |

about timeouts and using the secondary nameserver, oﬁ 0.1
choosing whichever one has better response times.
While we believe that some of these approaches have
some merit, we also note that they cannot address all of
the failure modes that CoDNS can handle. In particular,
we have often seen all nameservers at a site fail, in which
case CoDNS is still able to answer queries via the remote
nameservers. Correlated failure of local nameserverdlso, there is another issue of reclaiming the idle con-
renders these approaches useless, while correlated faftections, since they consume system resources and can
ure among groups of remote servers is less likely. degrade performance. The DNS RFC [14] specifies two
Overly aggressive strategies are likely to backfire inminutes as a cutoff but in practice most servers discon-
the case of local nameservers, since we have seen thagct the idle connection within 30 seconds.
overload causes local nameserver failure. Increasing the To compare the performance between UDP and TCP,
request rate to a failing server is not likely to improve we replay 10,792 unique hostnames obtained from one
performance. Load balancing among local nameserverday’s live traffic of a CoDeeN proxy at 107 PlanetLab
is more plausible, but still requires modifications to all nodes. Carrying out a completely fair comparison is dif-
clients and programs. Given the cost of changing infrasficult, since we cannot issue the same query for all of
tructure, it is perhaps appealing to adopt a technique likéhem at the same time. Instead, to give a relatively fair
CoDNS that covers a broader range of failures. comparison, we run the test for CoDNS first, and subse-
Finally, upgrade cost and effort are real issues we havéuently run other parts, making all but CoDNS get the
heard from many system administrators — secondar@enefit of cached responses from the local nameserver
nameservers tend to be machines that are a generatighter having been fetched by CoDNS. Figure 21 shows
behind the primary nameservers, based on the expecttie CDF of the average response time for all approaches.
tion of lower load. Increasing the request rate to the secPersistent TCP and UDP have comparable performance,

ondary nameserver will require upgrading that machineWhile simple TCP is noticeably worse. The CoDNS la-

Simple TCP —s—
16 32 64 128 256 512 1024
Average Response Time (ms)

Figure 21:Comparison of UDP, TCP, and CoDNS latencies

whereas CoDNS works with existing infrastructure. tencies, included for reference, are better than all three.
) The replay scenario described above should be favor-
6.3 TCP Queries able to TCP, but even in this conservative configuration,

Another possible solution is to use TCP instead of UDPCoDNS still wins. Figure 22(a) shows that all nodes re-
as a way of communicating with local nameservers. Ifport that CoDNS is 10% to 500% faster than TCP, con-
the failure is caused by packet losses in the LAN or silenfirming CoDNS is a more attractive option than TCP. The
packet drops caused by UDP buffer overflow, TCP cararge difference is in the slow-response portion, where
improve the situation by reliable data delivery. In addi- CoDNS wins the most and where TCP-based lookups
tion, the flow control mechanism inherentin TCP can askcannot help. Figure 22(b) shows that a considerable
the name lookup clients to slow down when the name-amount of time is still spent on the long delayed queries
server is overloaded. in TCP-based lookups. CoDNS reduces this time by 16%
Although the DNS RFC [14] allows the use of TCP to 92% when compared to the TCP-based measurement.
in addition to UDP, in practice, TCP is used only when Though TCP ensures that the client’s request reaches the
handling AXFR queries for the zone transfer or when thenameserver, if the nameserver is overloaded, it may have
requested record set is bigger than 512 bytes. The reasdfpuble contacting the DNS hierarchy for cache misses.
why TCP is not favored in name lookups is mainly be-
cause of the additional overhead. If a TCP connection7 Related Work
is needed for every query, it would end up handling nineTraditional DNS-related research has focused on the
packets instead of two : three to establish the connectiorproblems in the server-side DNS infrastructure. As
two for the request/response, and four to tear down the seminal study in DNS measurement, Danetgal.
connection. A persistent TCP connection might removedound that a large number of network packets were being
the per-query connection overhead, but it also needs twasted due to DNS traffic, blaming nameserver software
consume one or two extra network packets for ACKs.bugs and misconfigurations as major culprits [5].

@ 900 T y - § 100 Persistent TCP ———
E 800 - PerSIStegéch:g H - CoDNS m==m |
g 700 I g & ol
= 600 H oS I
@ 2 60 1
S 500 M s
o 1 n
3 400 & 40 " i
& 300] || 5
& 200 el || 2
@ _] |||||'I|l| |||| | Il & 20 i
& 100 | ————e || || | | ||| | e
£ % o bl ¢ il
0 20 40 60 80 100 o 0 20 40 60 80 100
Nodes Sorted by Persistent TCP's Response Time Nodes Sorted by Persistent TCP’s Value
(a) Average Response Time (b) Slow Response Time Portion

Figure 22:CoDNS vs. TCP

Since then, bugs in the resolvers and nameservers hayeoviding O(1) proximity [17]. Our approaches differ
been reduced [12], but recent measurements show that several important aspects — we attempt to reduce over-
there is still much room for improvement. In 2000, Wills lapping information in caches, in order to maximize the
et al. [24] and Huitemeet al. [7] reported 29% of DNS overall aggregate cache size, while they use replication
lookups take over 2 seconds, and Cotetral. [3] re- to reduce latency. Our desire for a small process foot-
ported 10% of lookups exceed more than 3 seconds. Jungrint stems from our observation that memory pressure is
et al. also present data indicating 23% of all server-sideone of the causes of current failures in client-side infras-
lookups receive no results, indicating the problems oftructure. While their system appears not to be deployed
improper configurations and incorrect nameservers stilin production, they perform an evaluation using a DNS
persist [9]. They measure the client-side performancedrace with a Zipf factor above 0.9 [18]. In comparison,
in terms of response time and caching hit ratio as well.our evaluation of CODNS uses the live traffic generated
However, that work does not trace the origins of nameby CoDeeNafter its proxies have used their local DNS
lookup delays from the client-side, concentrating only caches, so the request stream seen by CoDNS has a Zipf
on the wide-area DNS traffic. Given the fact that localfactor of 0.50-0.55, which is a more difficult workload.
nameserver cache hit ratios are 80% - 87% [9, 24], eveiWe intend to compare the live performance of CoDNS
a small problem in the local nameserver and its environversus CoDoNS when the latter system enters produc-
ment can skew the latency of a large number of lookupstion and is made available to the public. In any case,
Our study addresses this problem. Listdral. indirectly ~ since CoDNS does not depend on the specifics of the
provide some evidence of local nameserver problems bypame lookup system, we expect that it can interoperate
attributing the major sources of response time delay tavith CoDONS if the latter provides better performance
end nameservers rather than the root/gTLD servers [13than the existing nameservers at PlanetLab sites. One is-

The research community has recently renewed its fosue that will have to be addressed by any proposed DNS
cus on improving server-side infrastructure. Cek replacement system is the use of intelligent nameservers
al. investigate the possibility of transforming DNS into that dynamically determine which IP address to return
a peer-to-peer system [4] using a distributed hash tafor a given name. These nameservers are used in CDNs
ble [21]. The idea is to replace the hierarchical DNSand geographic load balancers, and can not be replaced
name resolving process with a flat peer-to-peer queryvith purely static lookups, such as those performed in
style, in pursuit of load balancing and robustness. WithCODONS. Since CoDNS does not replace existing DNS
this design, the misconfigurations from mistakes by adinfrastructure, we can interoperate with these intelligent
ministrators can be eliminated and the traffic bottleneckniameservers without any problem.
on the root servers are removed so that the load is dis- Kangasharjet al. pursue a similar approach to reduc-
tributed over the entities joining the system. ing the DNS lookup latency by more aggressively repli-

In CoDoNS, Ramasubramaniat al. improve the cating DNS information [10]. Inspired by the fact the
poor latency performance of this approach by usingentire DNS record database fits into the size of a typi-
proactive replication of DNS records [18]. They exploit cal hard disk and with the recent emergence of terrestrial
the Zipf-like distribution of the domain names in web multicast and satellite broadcast systems, this scheme re-
browsing [2] to reduce the replicating overhead whileduces the need to query the distant nameservers by keep-

ing the DNS information up to date by efficient world-
wide replication.

The difference in our approach is to temporarily use
functioning nameservers of peer nodes, separate from th?S]
issue of improving the DNS infrastructure itself. We ex-
pect that benefits in improving the infrastructure “from
above” will complement our “bottom up” approach. One
advantage of our system is that misconfigurations can be9]
masked without name server outage, allowing adminis-
trators more time to investigate the problem.

8 Conclusion

(7]

(10]

We have shown that client-side instability in DNS name
lookups is widespread and relatively common. The fail-111]
ure cases degrade average lookup time and increase the
“tail” of response times. We show that these failures ap;
pear to be caused by temporary nameserver overload, and
are largely uncorrelated across multiple sites. Through
analysis of live traffic, we show that a simple peering[13]
system reduces response times and improves reliability.

Using these observations, we develop a lightweight
name lookup service, CoDNS, that uses peers at rg14l
mote sites to provide cooperative lookups during failures.
CoDNS operates in conjunction with local DNS name-[1°]
servers, allowing incrementally deployment without sig-
nificant resource consumption. We show that this systenLn16]
generates low overhead, cuts average response time by}
half or more, and increases DNS service availability.

Acknowledgments [18]
This research was supported in part by NSF grant CNS-
0335214. We would like to thank Jeffrey Mogul and 19
Hewlett-Packard for donation of the Alpha workstation
used for testing. We thank our shepherd, Geoff Voelker 20]
for his guidance and helpful feedback, and we thank our
anonymous reviewers for their valuable comments on

improving this paper. [21]
References
[1] Akamai. Content Delivery Network. http://www.akamai.com. [22]

[2] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
Caching and Zipf-like Distributions: Evidence and Implications.
In Proceedings of IEEE INFOCOM999.

E. Cohen and H. Kaplan. Prefetching the Means for Document
Transfer: A New Approach for Reducing Web Latency.Pir-
ceedings of IEEE INFOCOM000.

R. Cox, A. Muthitacharoen, and R. Morris. Serving DNS Using
Chord. InProceedings of the 1st International Workshop on Peer-
to-Peer Systems (IPTR002.

P. B. Danzig, K. Obraczka, and A. Kumar. An Analysis of Wide-
Area Name Server Traffic: A Study of Internet Domain Name
System. InProceedings of ACM SIGCOMM992.

D. Eastlake. Domain Name System Security Extensions. RFC
2535, January 1999.

(3]
(24]
(4]
(5]

(el

] M. Schiffman.

C. Huitema and S. Weerahandi. Internet Measurements: the Ris-
ing Tide and the DNS Snag. Proceedings of the 13th ITC Spe-
cialist Seminar on Internet Traffic Measuremnet and Modelling
2000.

K. Johnson, J. Carr, M. Day, and F. Kaashoek. The Measured
Performance of Content Distribution Networks. Pnoceedings

of the 5th International Web Caching and Content Delivery Work-
shop (WCW])2000.

J.Jung, E. Sit, H. Balakrishnan, and R. Morris. DNS Performance
and the Effectiveness of Caching. Rroceedings of the ACM
SIGCOMM Internet Measurement Worksh@p01.

J. Kangasharju and K. W. Ross. A Replicated Architecture for
the Domain Name System. Proceedings of IEEE INFOCOM
2000.

B. Knowles. Domain Name Server Comparison:
BIND 8 vs. BIND 9 wvs. djbdns vs. ???, 2002.
http://www.usenix.org/events/lisa02/tech/presentations/knopes

A. Kumar, J. Postel, C. Neuman, P. Danzig, and S. Miller. Com-
mon DNS Implementation Errors and Suggested Fixes. RFC
1536, October 1993.

R. Liston, S. Srinivasan, and E. Zegura. Diversity in DNS Perfor-
mance Measures. Proceedings of the ACM SIGCOMM Internet
Measurement Workshpp002.

P. Mockapetris. Domain Names - Implementation and Specifica-
tion. RFC 1035, November 1987.

P. Mockapetris and K. Dunlap. Development of the Domain
Name System. IiProceedings of ACM SIGCOMM988.

PlanetLab. http://www.planet-lab.org.

V. Ramasubramanian and E. G. Sirer. Beehive: O(1) Lookup
Performance for Power-Law Query Distributions in Peer-to-Peer
Overlays. Inlst Symposium on Networked Systems Design and
Implementation (NSDJR004.

V. Ramasubramanian and E. G. Sirer. The Design and Imple-
mentation of a Next Generation Name Service for the Internet. In
Proceedings of ACM SIGCOMNO004.

A Samping of the Security Posture of the In-
ternet’'s DNS Servers. http://www.packetfactory.net/papers/DNS-
posture/.

A. Shaikh, R. Tewari, and M. Agrawal. On the Effectiveness
of DNS-based Server Selection. Rioceedings of IEEE INFO-
COM, 2001.

I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrish-
nan. Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications. InProceedings of ACM SIGCOMMsan Diego,
California, 2001.

D. Thaler and C. Ravishankar. Using Name-based Mappings to
Increase Hit Rates. IEEEE/ACM Transations on Networking
volume 6, 1, 1998.

] L. Wang, K. Park, R. Pang, V. Pai, and L. Peterson. Reliability

and Security in the CoDeeN Content Distribution Network. In
USENIX Annual Technical Conferen@904.

C. E. Wills and H. Shang. The Contribution of DNS Lookup
Costs to Web Object Retrieval. Technical Report WPI-CS-TR-
00-12, Worcester Polytechnic Institute (WPI), 2000.

