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Abstract

Stateful middleboxes, such as intrusion detection systems
and application-level firewalls, have provided key func-
tionalities in operating modern IP networks. However,
designing an efficient middlebox is challenging due to
the lack of networking stack abstraction for TCP flow
processing. Thus, middlebox developers often write the
complex flow management logic from scratch, which is
not only prone to errors, but also wastes efforts for similar
functionalities across applications.

This paper presents the design and implementation of
mOS, a reusable networking stack for stateful flow pro-
cessing in middlebox applications. Our API allows de-
velopers to focus on the core application logic instead
of dealing with low-level packet/flow processing them-
selves. Under the hood, it implements an efficient event
system that scales to monitoring millions of concurrent
flow events. Our evaluation demonstrates that mOS en-
ables modular development of stateful middleboxes, often
significantly reducing development efforts represented by
the source lines of code, while introducing little perfor-
mance overhead in multi-10Gbps network environments.

1 Introduction
Network appliances or “middleboxes”, such as intrusion
detection systems and application accelerators, are widely
deployed in modern networks [59]. With the trend towards
commodity server-based middleboxes [59] and network
functions virtualization [38], these middlebox applications
are commonly implemented in software. Middlebox de-
velopment, however, still remains an onerous task. It often
requires handling complex flow-level states and events at
layer 4 or above, such as connection state management
and flow reassembly. The key challenge is that middlebox
developers have to build these low-level flow management
features from scratch, due to lack of common abstrac-
tions and well-defined APIs. This is in stark contrast to
end-host applications programming, where application
programmers rely on a set of networking system calls,
such as the Berkeley socket API, that hides the details.

Existing socket APIs focus on end-to-end semantics and
transferring application (layer 7) data. Unfortunately, they
are not flexible enough to monitor session state, packet
loss or retransmission patterns at lower layers. In contrast,
popular packet processing frameworks, such as Click [46],
DPDK [4], PacketShader IOEngine [40], and netmap [57],
provide useful features for packet-level I/O processing, but
lack flow-level abstraction required for stateful middlebox
applications. A huge semantic gap exists between the two
commonly-used abstractions. Thus, the state-of-the art
middlebox programming remains that each application
implements low-level flow-processing features in addition
to the application-specific logic. This practice prevents
code reuse and makes it challenging to understand the
details of implementation. For example, we find that two
popular NIDS implementations, Snort and Suricata, are
drastically different, although they expose similar flow
management features [19, 58].

This work presents the design and implementation of
mOS, a reusable networking stack and an API for modular
development of flow-processing middlebox applications.
The design of mOS is based upon two principles. First,
the API should facilitate a clear separation between low-
level packet/flow processing and application-specific logic.
While tight integration of the two layers might benefit per-
formance, it easily becomes a source of complexity and
a maintenance nightmare. In contrast, a reusable middle-
box networking stack allows developers to focus on core
middlebox application logic. Second, the middlebox
networking API should provide programming constructs
that natively support user-definable flow events for custom
middlebox operations. Most middlebox operations are
triggered by a set of custom flow events—being able to
express them via a well-defined API is the key to modular
middlebox programming. For example, a middlebox ap-
plication that detects malicious payload in retransmission
should be able to easily express the condition for the event
and provide a custom action as its event handler. Building
middlebox applications as a synthesis of event processing
significantly improves the code readability while hiding
the details for tracking complex conditions.



mOS satisfies a number of practical demands for mid-
dlebox development. First, it exposes a monitoring socket
abstraction to precisely express the viewpoint of a middle-
box on an individual TCP connection flowing through it.
Unlike an end-host stack, mOS simultaneously manages
the flow states of both end-hosts, which allows developers
to compose arbitrary conditions of a flow state on either
side. Second, mOS provides scalable monitoring. In high-
speed networks with hundreds of thousands of concurrent
flows, monitoring individual flow events incurs high over-
head. Our event system significantly reduces the memory
fooprint and memory bandwidth requirement for dynamic
event registration and deregistration. Third, the mOS
API supports fine-grained resource management on a per-
flow basis. Developers can dynamically enable/disable
event generation for an active flow and turn off tracking
of unnecessary features. Tight controlling of computing
resources leads to high performance as it avoids redun-
dant cycle wastes. Finally, the mOS implementation ex-
tends the mTCP [43] codebase to benefit from the scalable
user-level TCP stack architecture that harnesses modern
multicore systems.

We make the following contributions. First, we
present a design and implementation of a reusable flow-
processing networking stack for modular development of
high-performance middleboxes. Second, we present key
abstractions that hide the internals of complex middle-
box flow management. We find that the mOS monitoring
socket and its flexible event composition provides an ele-
gant separation between the low-level flow management
and custom application logic. Third, we demonstrate its
benefits in a number of real-world middlebox applications
including Snort, Halfback, and Abacus.

2 Motivation and Approach
In this section, we explain the motivation for a unified
middlebox networking stack, and present our approaches
to its development.

2.1 Towards a Unified Middlebox Stack
mOS targets middleboxes that require L4-L7 processing
but typically cannot benefit from existing socket APIs,
including NIDS/NIPSes [3, 6, 19, 41, 58], L7 protocol
analyzers [7, 9], and stateful NATs [5, 10]. These mid-
dleboxes track L4 flow states without terminating the
TCP connections, often perform deep-packet inspection
on flow-reassembled data, or detect anomalous behavior
in TCP packet retransmission.

Unfortunately, developing flow management features
for every new middlebox is very tedious and highly error-
prone. As a result, one can find a long list of bugs related
to flow management even in popular middleboxes [30–
32, 34–36]. What is worse, some middleboxes fail to
implement critical flow management functions. For exam-

ple, PRADS [12] and nDPI [9] perform pattern match-
ing, but they do not implement flow reassembly and
would miss the patterns that span over multiple pack-
ets. Similarly, Snort’s HTTP parsing module had long
been packet-based [61] and vulnerable to pattern evasion
attacks. While Snort has its own sophisticated flow man-
agement module, it is tightly coupled with other internal
data structures, making it difficult to extend or to reuse.

A reusable middlebox networking stack would signifi-
cantly improve the situation, but no existing packet pro-
cessing frameworks meet the requirements of general-
purpose flow management. Click [27, 37, 46] encour-
ages modular programming of packet processing but its
abstraction level is restricted to layer 3 or lower layers.
iptables [5] along with its conntrack module sup-
ports TCP connection tracking, but its operation is based
on individual packets instead of flows. For example, it
does not support flow reassembly nor allows monitoring
fine-grained TCP state change or packet retransmission.
libnids [8] provides flow reassembly and monitors both
server and client sides concurrently. Unfortunately, its
reassembly logic is not mature enough to properly handle
multiple holes in a receive buffer [17], and it does not pro-
vide any control knob to adjust the level of flow manage-
ment service. Moreover, the performance of iptables
and libnids depends on the internal kernel data struc-
tures that are known to be heavyweight and slow [43, 57].
Bro [55] provides flow management and events similar
to our work, but its built-in events are often too coarse-
grained to catch arbitrary conditions for middleboxes other
than NIDS. While tailoring the event system to custom
needs is possible through Bro’s plugin framework [60],
writing a plugin requires deep understanding of internal
data structures and core stack implementation. In addition,
Bro scripting and the implementation of its flow manage-
ment are not designed for high performance, making it
challenging to support multi-10G network environments.

2.2 Requirements and Approach
By analyzing various networking features of flow-
processing middleboxes, we identify four key require-
ments for a reusable networking stack.
R1: Middleboxes must be able to combine information
from multiple layers using the stack. For example, an
NIDS must process each individual packet, but also be
able to reconstruct bytestreams from TCP flows for precise
analysis. A NAT translates the address of each IP packet,
but it should also monitor the TCP connection setup and
teardown to block unsolicited packets.
R2: The networking stack must keep track of L4 states
of both end-points, while adjusting to the level of state
management service that applications require. Tracking
per-flow L4 state embodies multiple levels of services.
Some applications require full TCP processing including



reassembling bi-directional bytestreams; others only need
basic session management, such as sequence number track-
ing while a few require single-side monitoring without
bytestream management (e.g. TCP/UDP port blockers).
Thus, we must dynamically adapt to application needs.
R3: The networking stack must provide intuitive abstac-
tions to cater middlebox developers’ diverse needs in a
modular manner. It must provide flow-level abstractions
that enable developers to easily manipulate flows and pack-
ets that belong to the flow. It should enable separation of
its services from the application logic and allow develop-
ers to create higher-level abstraction that goes beyond the
basic framework. Unfortunately, current middlebox appli-
cations often do not decouple the two. For instance, Snort
heavily relies on its customized stream1 preprocessing
module for TCP processing, but its application logic (the
detection engine) is tightly interlaced with the module. A
developer needs to understand the Snort-specific stream
programming constructs before she can make any updates
on flow management attributes inside the detection engine.
R4: The networking stack must deliver high performance.
Many middleboxes require throughputs of 10+ Gbps han-
dling hundreds of thousands of concurrent TCP flows even
on commodity hardware [2, 41, 42, 44, 62].

Our main approach is to provide a well-defined set of
APIs and a unified networking stack that hides the imple-
mentation details of TCP flow management from custom
application logic. mOS consists of four components de-
signed to meet all requirements:
• mOS networking API is designed to provide packet-

and flow-level abstractions. It hides the details of all
TCP-level processing, but exposes information from
multiple layers (R1, R2, and R3), encouraging devel-
opers to focus on the core logic and write a modular
code that is easily reusable.

• Unified flow management: mOS delivers a compos-
able and scalable flow management library (R2 and
R4). Users can adjust flow parameters (related to buffer
management etc.) dynamically at run time. Moreover,
it provides a multi-core aware, high performing stack.

• User-defined events: Applications built on mOS are
flexible since the framework provides not only a set of
built-in events but also offers support for registering
user-defined events (R1 and R3).

• User-level stack: mOS derives its high performance
from mTCP [43] that is a parallelizable userspace
TCP/IP stack (R4).

3 mOS Programming Abstractions
In this section, we provide the design and the usage of
the mOS networking API and explain how it simplifies
stateful middlebox development.

1The stream module spans about 9,800 lines of code in Snort-
3.0.0a1 version.
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Figure 1: Interaction between mOS and its application

3.1 Monitoring Socket
The key abstraction that mOS exposes is a monitoring
socket, which abstracts a middlebox’s tap-point on a pass-
ing TCP flow or IP packets. Conceptually, it is similar
to a Berkeley socket, but they differ in the operating se-
mantics. First, a stream monitoring socket 2 represents
a non-terminating midpoint of an active TCP connection.
With a stream monitoring socket, developers write only
high-level actions for an individual connection while un-
derlying networking stack automatically tracks low-level
TCP flow states of both client and server 3. Second, a mon-
itoring socket can monitor fine-grained TCP-layer opera-
tions while a Berkeley socket carries out coarse-grained,
application-layer operations. For example, a monitoring
socket can detect TCP or packet-level events such as ab-
normal packet retransmission, packet arrival order, abrupt
connection termination, employment of weird TCP/IP
options, etc., while it simultaneously supports reading
flow-reassembled data from server or client.

Using the monitoring socket and its API functions
(listed in Appendix A), one can write custom flow actions
in a modular manner. First, a developer creates a ‘passive’
monitoring socket (similar to a listening socket) and binds
it to a traffic scope, specified in a Berkeley packet filter
(BPF) syntax. Only those flows/packets that fall into the
scope are monitored. Note that there is no notion of “ac-
cepting” a connection since a middlebox does not engage
in a connection as an explicit endpoint. Instead, one can
express when custom action should be executed by setting
up flow events as described in Section 3.2. All one needs
is to provide the event handlers that perform a custom
middlebox logic, since the networking stack automatically
detects and raises the events by managing the flow con-
texts. When an event handler is invoked, it is passed an
‘active’ monitoring socket that represents the flow trigger-
ing the event. Through the socket, one can probe further
on the flow state or retrieve and modify the last packet
that raised the event. Figure 2 shows a code example that
initializes a typical application with the mOS API.

3.2 Modular Programming with Events
The mOS API encourages modular middlebox program-
ming by decomposing a complex application into a set
of independent <event, event handler> pairs. It supports
two classes of events: built-in and user-defined events.

2Similarly, a raw monitoring socket represents IP packets.
3We call a connection initiator as client and its receiver as server.



Event Description

MOS_ON_PKT_IN In-flow TCP packet arrival
MOS_ON_CONN_START Connection initiation (the first SYN packet)
MOS_ON_REXMIT TCP packet retransmission
MOS_ON_TCP_STATE_CHANGE TCP state transition
MOS_ON_CONN_END Connection termination
MOS_ON_CONN_NEW_DATA Availability of new flow-reassembled data
MOS_ON_ORPHAN Out-of-flow (or non-TCP) packet arrival
MOS_ON_ERROR Error report (e.g., receive buffer full)

Table 1: mOS built-in events for stream monitoring sockets.
Raw monitoring sockets can use only MOS_ON_PKT_IN raised
for every incoming packet.

Built-in events represent pre-defined conditions of notable
flow state that are automatically generated in the process
of TCP flow management in mOS. Developers can cre-
ate their own user-defined events (UDEs) by extending
existing built-in or user-defined events.
Built-in event: Built-in events are used to monitor com-
mon L4 events in an active TCP connection, such as
start/termination of a connection, packet retransmission,
or availability of new flow-reassembled data. With a state
transition event, one can even detect any state change in a
TCP state transition diagram. Table 1 lists eight built-in
events that we have drawn from common functionalities of
existing flow-processing middleboxes. These pre-defined
events are useful in many applications that require basic
flow state tracking. For example, developers can easily
write a stateful NAT (or firewall) with only packet arrival
and connection start/teardown events without explicitly
tracking sequence/acknowledgment numbers or TCP state
transitions. Also, gathering flow-level statistics at a net-
work vantage point can be trivially implemented in only a
few lines of code as shown in Appendix B.
User-defined event: For many non-trivial middlebox ap-
plications, built-in events are insufficient since they often
require analyzing L7 content or composing multiple con-
ditions into an event. For example, an event that detects 3
duplicate ACKs or that monitors an HTTP request does
not have built-in support.

UDEs allow developers to systematically express such
desired conditions. A UDE is defined as a base event and
a boolean filter function that specifies the event condition.
When the base event for an UDE is raised, mOS fires
the UDE only if the filter function is evaluated to true.
mOS also supports a multi-event filter function that can
dynamically determine an event type or raise multiple
events simultaneously. This feature is useful when it has
to determine the event type or trigger multiple related
events based on the same input data.

UDEs bring three benefits to event-driven middlebox
development. First, new types of events can be created in
a flexible manner because the filter function can evaluate
arbitrary conditions of interest. A good filter function,
however, should run fast without producing unnecessary

1 static void
2 mOSAppInit(mctx_t m)
3 {
4 monitor_filter_t ft = {0};
5 int s; event_t hev;
6

7 // creates a passive monitoring socket with its scope
8 s = mtcp_socket(m, AF_INET, MOS_SOCK_MONITOR_STREAM, 0);
9 ft.stream_syn_filter = "dst net 216.58 and dst port 80";

10 mtcp_bind_monitor_filter(m, s, &ft);
11

12 // sets up an event handler for MOS_ON_REXMIT
13 mtcp_register_callback(m,s,MOS_ON_REXMIT,MOS_HK_RCV,OnRexmitPkt);
14

15 // defines a user-defined event that detects an HTTP request
16 hev = mtcp_define_event(MOS_ON_CONN_NEW_DATA, IsHTTPRequest, NULL);
17

18 // sets up an event handler for hev
19 mtcp_register_callback(m, s, hev, MOS_HK_RCV, OnHTTPRequest);
20 }

Figure 2: Initialization code of a typical mOS application. Due
to space limit, we omit error handling in this paper.
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Figure 3: Abacus event-action diagram

side effect. Second, UDEs provide easy extensibility. One
can create new events by extending any existing ones,
including another UDE. For example, a developer can
define a UDE that detects a YouTube [23] video request
by extending a generic HTTP request UDE (e.g., using
hev in Figure 2 as a base event). Third, it encourages
code reuse. One can share a well-designed set of event
definitions as a UDE library, and 3rd party developers
can implement their own event handlers. For example,
an open-source NIDS can declare all corner cases in flow
management as a UDE library while 3rd party can provide
custom actions to address each case.

3.3 Programming a Custom Middlebox
We show how one can build a custom flow-processing
middlebox application using the mOS API and events. We
pick Abacus [39] as an example here since it represents
the needs of a real-world custom middlebox. Abacus is a
cellular data accounting system that detects a “free-riding”
attack by TCP-level tunneling. It has been reported that
some cellular ISPs do not account for TCP retransmission
packets [39], and this attack enables free-riding on cellular
data by appending fake TCP headers that look like packet
retransmission. The attack detection requires comparing
the payload of original and retransmitted packets either by
buffering a sliding window or sampling some bytes [39].

Writing Abacus with the mOS API is straightforward.
First, we draw an event-action diagram that captures its
main operations as shown in Figure 3. It represents the
normal data as a built-in event (e2, new data event) and
registers a per-flow accounting function (f b) for the event.



To detect the free-riding attack, we extend a built-in event
(retransmission) to define a fake retransmission event (e3).
The filter function (FTFAKE ), as shown in Figure 4, de-
termines whether the current packet retransmission is le-
gal. In the code, mtcp_getlastpkt() retrieves the meta-
data (pkt_info structure) and the payload of the packet
that triggers the retransmission event. mctx_t represents
the thread context that the mOS stack is bound to and
sock identifies the active flow that the packet belongs to.
Then, the code uses mtcp_ppeek() to fetch the original
flow-reassembled data at a specified sequence number
offset and compares it with the payload if the sequence
number ranges match. In case of partial retransmission,
it calls mtcp_getsockopt() to retrieve non-contiguous
TCP data fragments (frags) from a right flow buffer and
compares the payload of the overlapping regions. If any
part is different from the original content, it returns true
and e3 is triggered, or otherwise it returns false. When
e3 is triggered, f a is executed to report an attack, and stops
any subsequent event processing for the flow.

While Abacus is a conceptually simple middlebox, writ-
ing its flow management from scratch would require lots
of programming effort. Depending on a middlebox, at
least thousands to tens of thousands of code lines are re-
quired to implement basic flow management and various
corner cases. The mOS API and its stack significantly save
this effort while it allows the developer to write only the
high-level actions in terms of events. Drawing an event-
action diagram corresponds well to the application design
process. Also, it better supports modular programming
since the developer only needs to define their own UDEs
and convert filters and event handlers into functions.

4 mOS Design and Implementation
In this section, we present the internals of mOS. At a
high-level, mOS takes a stream of packets from a network,
classifies and processes them by the flow, and triggers
matching flow events. Inside event handlers, the appli-
cation runs custom logic. mOS supports TCP flow state
management for end-hosts, scalable event monitoring, ex-
tended flow reassembly, and fine-grained resource man-
agement. It is implemented by extending mTCP [43]. In
total, it amounts to 27K lines of C code, which includes
11K lines of the mTCP code.

4.1 Stateful TCP Context Management
Automatic management of TCP contexts is the core func-
tionality of mOS. For flow management, mOS keeps track
of the following L4 states of both end-points: (1) TCP con-
nection parameters for tracking initiation, state transition,
and termination of each connection, (2) a payload reassem-
bly buffer and a list of fragmented packets for detecting
new payload arrival and packet retransmission. We further
explain the payload reassembly buffer in Section 4.3.

1 static bool
2 IsFakeRexmit(mctx_t mctx, int sock, int side, event_t event,
3 struct filter_arg *arg)
4 {
5 struct pkt_info pi;
6 char buf[MSS];
7 struct tcp_ring_fragment frags[MAX_FRAG_NUM];
8 int nfrags = MAX_FRAG_NUM;
9 int i, size, boff, poff;

10

11 // retrieve the current packet information
12 mtcp_getlastpkt(mctx, sock, side, &pi);
13

14 // for full retransmission, compare the entire payload
15 if (mtcp_ppeek(mctx, sock, side, buf,
16 pi.payloadlen, pi.offset) == pi.payloadlen)
17 return memcmp(buf, pi.payload, pi.payloadlen);
18

19 // for partial retransmission, compare the overlapping region
20 // retrieve the data fragments and traverse them
21 mtcp_getsockopt(mctx, sock, SOL_MONSOCKET, (side == MOS_SIDE_CLI) ?
22 MOS_FRAGINFO_CLIBUF : MOS_FRAGINFO_SVRBUF, frags, &nfrags);
23

24 for (i = 0; i < nfrags; i++) {
25 if ((size = CalculateOverlapLen(&pi, &(frags[i]), &boff, &poff)))
26 if (memcmp(buf + boff, pi.payload + poff, size))
27 return true; // payload mismatch detected
28 }
29 return false;
30 }

Figure 4: A filter function that detects fake retransmission. Cal-
culateOverlapLen() retrieves the size of sequence number over-
lap of the current packet and each fragment in a receive buffer.
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Figure 5: Packet processing steps in mOS

We design the TCP context update in mOS to closely re-
flect the real TCP state machine by emulating the states of
both end-hosts. Tracking the flow states of both end-hosts
is required as each side may take on a different TCP state.
Figure 5 illustrates our model. When a packet arrives,
mOS first updates its TCP context for the packet sender 4

and records all flow events that must be triggered. Note
that event handlers are executed as a batch after the TCP
context update. This is because intermixing them can pro-
duce an inconsistent state as some event handler may mod-
ify or drop the packet. Also, processing sender-side events
before the receiver side’s is necessary to strictly enforce
the temporal order of the events. After sender-side stack
update, mOS repeats the same process (update and trigger
events) for the receiver-side stack. Any events relating to
packet payload (new data or retransmission) are triggered
in the context of a receiver since application-level data is
read by the receiver. In addition, packet modification (or
drop) is allowed only in the sender-side event handlers as
mOS meticulously follows the middlebox semantics. The
only exception is the retransmission event, which is pro-
cessed just before receiver context update. This is to give

4Note that both server and client can be a packet sender.



e1 

e2 

e3 

e4 

e5 

e6 

FT4 FT6 

FT5 

FT2 

Built-in event 

Filter function 

UDE 

Event handler 

Event dependency 

Base event pointer 

(a) Global event dependency forest (d-forest)

IF1 

id1 = h(e2+f2)⊕h(e5+f5) 

e3 e1 

e4 

e5 

e2 

f5 

f2 

Socket s1  
registers 
f6 on e6 

s1 

IF2 

id2 = id1⊕h(e6+f6) 

IF1 
e3 e1 

e4 

e5 

e2 

f5 

f2 

e1 

e2 

f2 

e3 

e4 

e5 

f5 

e6 

f6 

s2 s1 

Event invocation forests  

Monitoring sockets s2 

(b) Dynamic event registration upon event invocation forests (i-forests)

Figure 6: mOS’s event management. s1 and s2 originally share the same event invocation forest (i-forest), IF1. If s1 registers an
event handler, f6, then IF2 is created. If s2 repeats the same registration later, then s2 simply moves its i-forest pointer to IF2.

its event handler a chance to modify or drop the packet
if the retransmission turns out to be malicious. While a
receiver-side event handler cannot modify the packet, it
can still reset a connection in case it detects malicious
intrusion attempts in reassembled payload.

4.2 Scalable Event Management
mOS applications operate by registering for flow events
and providing custom actions for them. For high per-
formance, it is critical to have scalable event manage-
ment with respect to the number of flows and user-defined
events. However, a naïve implementation introduces a
serious scalability challenge because mOS allows events
to be registered and de-registered on a per-flow basis for
fine-grained control. A busy middlebox that handles 200K
concurrent flows and 1,000 UDEs per flow 5 amounts to
managing a billion events 6, which would require large
amount of memory and consume huge memory bandwidth.
mOS provides an efficient implementation of internal data
structures and algorithms designed to address the scalabil-
ity challenge.
Data structures: Note UDEs form a tree hierarchy with
its root being one of the eight built-in events. Thus, mOS
maintains all custom flow event definitions in a global
event dependency forest (d-forest) with eight dependency
trees (d-trees). Figure 6(a) shows an example of a d-forest.
Each node in a d-tree represents a UDE as a base event
(e.g., parent node) and its filter function. Separate from
the d-forest, mOS maintains, for each monitoring socket,
its event invocation forest (i-forest) that records a set of
flow events to wait on. Similar to the d-forest, an i-forest
consists of event invocation trees (i-trees) where each i-
tree maintains the registered flow events derived from
its root built-in event. Only those events with an event
handler are being monitored for the socket.
Addressing scalability challenge: If each socket main-
tains a separate i-forest, it would take up a large memory
footprint and cause performance degradation due to redun-
dant memory copying and releasing of the same i-forest.
mOS addresses the problem by sharing the same i-forest

5Not unreasonable for an NIDS with thousands of attack signatures.
6200K flows x 5,000 event nodes, assuming a UDE is derived from

four ancestor base events on average.

with different flows. Our observation is that flows of the
same traffic class (e.g., Web traffic) are likely to process
the same set of events, and it is highly unlikely for all
sockets to have a completely different i-forest. This im-
plies that we can reduce the memory footprint by sharing
the same i-forest.

When an active socket (e.g., individual TCP connection)
is created, it inherits the i-forest from its passive monitor-
ing socket (e.g., listening socket) by keeping a pointer to it.
When an event is registered or de-registered for an active
socket, mOS first checks if the resulting i-forest already
exists in the system. If it exists, the active socket simply
shares the pointer to the i-forest. Otherwise, mOS creates
a new i-forest and adds it to the system. In either case, the
socket adjusts the reference count of both previous and
new i-forests, and removes the i-forest whose reference
count becomes zero.

The key challenge lies in how to efficiently figure out
if the same i-forest already exists in the system. A naïve
implementation would require traversing every event node
in all i-forests, which does not scale. Instead, we present
an O(1) solution here. First, we devise a novel i-forest
identification scheme that produces a unique id given an
i-forest. We represent the id of an i-forest with m i-trees as:
t1 ⊕ t2 ⊕ ...⊕ tm, where tk indicates the id of the k-th i-tree
and ⊕ is a bitwise exclusive-or (xor) operation. Likewise,
the id of an i-tree with n leaf event nodes is defined as:
h(e1+ f1)⊕h(e2+ f2)⊕ ...⊕h(en+ fn), where h is a one-
way hash function, + is simple memory concatenation,
and ei and fi are the ids of the i-th event and its event
handler, respectively. Note that the ids of a distinct event
and its event handler are generated as unique in the system,
which makes a distinct i-forest have a unique id with a
high probability with a proper choice of the hash function.
We include the id of an event handler in hash calculation
since some event can be registered multiple times with a
different handler. Calculating the new id of an i-forest
after adding or removing an event becomes trivial due to
the xor operation. Simply, new-id = old-id ⊕ h(e+ f )
where e and f are the ids of the event and its event handler
that need to be registered or deregistered. The fast id
operation enables efficient lookup in the invocation forest
hash table.
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Figure 7: (a) When the receive buffer is full, mOS raises MOS_-
ON_ERROR to notify the application. (b) At overwriting, the inter-
nal read pointer is adjusted. (c) mtcp_getsockopt() exports
data fragments caused by out-of-order packets.

Deterministic ordering of event handler execution: A
single packet arrival can trigger multiple events for a flow.
Thus, the order of event handler execution must be pre-
defined for deterministic operation. For this, we assign
a fixed priority for all built-in events. First, packet ar-
rival events (MOS_ON_PKT_IN and MOS_ON_ORPHAN) are
processed because they convey the L3 semantics. Then,
MOS_ON_CONN_START is triggered followed by MOS_ON_-
TCP_STATE_CHANGE and MOS_ON_CONN_NEW_DATA. Fi-
nally, MOS_ON_CONN_END is scheduled to give a chance to
other events to handle the flow data before connection ter-
mination. Note, all built-in events are handled after TCP
context update with an exception of MOS_ON_REXMIT, a
special event triggered just before receive-side TCP con-
text update.

All derived events inherit the priority of their root built-
in event. mOS first records all built-in events that are
triggered, and ‘executes’ each invocation tree in a forest
by the priority order of the root built-in events. ‘Executing’
an invocation tree means traversing the tree in the breadth-
first search order and executing each node by evaluating
its event filter and running its event handler. For example,
events in F2 in Figure 6(b) are traversed in the order of e1
→ e2 → e3 → e4 → e6 → e5.

4.3 Robust Payload Reassembly
Many middleboxes require L7 content scanning for detect-
ing potential attack or application-specific patterns. mOS
supports such applications with robust payload reassembly
that handles a number of sophisticated cases.
Basic operation: mOS exposes mtcp_peek() and
mtcp_ppeek() to the application for reading L7 data in a
flow. Similar to recv(), mtcp_peek() allows the appli-
cation to read the entire bytestream from an end-host. In-
ternally, mOS maintains and adjusts a current read pointer
for each flow as the application reads the data. mtcp_-
ppeek() is useful for retrieving flow data or fragments at
an arbitrary sequence number.
Reassembly buffer outrun: Since TCP flow control ap-
plies between end-hosts, the receive buffer managed by
mOS can become full while new packets continue to arrive
(see Figure 7 (a)). Silent content overwriting is undesirable
since the application may not notice the buffer overflow.
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Figure 8: mOS performance over the number of events triggered
per each packet. Performance measured with 192K concurrent
connections fetching HTTP objects using a 60Gbps link. Event
filters/handlers do minimal operation.

Instead, mOS raises an error event to explicitly notify the
application about the buffer overflow. The application
can either drain the buffer by reading the data or enlarge
the buffer. Otherwise, mOS overwrites the buffer with
the new data, and adjusts the internal read pointer(see
Figure 7 (b)). To notify the application about the overwrit-
ing, we make mtcp_peek() fail right after overwriting.
Subsequent function calls continue to read the data from
the new position. Notifying the application about buffer
overflow and overwriting allows the developer to write
correct operations even at corner cases.
Out-of-order packet arrival: Unlike the end-host TCP
stack, some middlebox applications must read partially-
assembled data, especially when detecting attack scenarios
with out-of-order or retransmitted packets. mOS provides
data fragment metadata by mtcp_getsockopt(), and
the application can retrieve payload of data fragment by
mtcp_ppeek() with a specific sequence number to read
(see Figure 7 (c)).
Overlapping payload arrival: Another issue lies in how
to handle a retransmitted packet whose payload overlaps
with the previous content. mOS allows to express a flexi-
ble policy on content overlap. Given that the update policy
differs by the end-host operating systems [53], mOS sup-
ports both policies (e.g., overwriting with the retransmitted
payload or not) that can be configured on a per-flow basis.
Or a developer can register for a retransmission event and
implement any custom policy of her choice.

4.4 Fine-grained Resource Management
A middlebox must handle a large number of concurrent
flows with limited resources. mOS is designed to adapt its
resource consumption to the computing needs as follows.
Fine-grained control over reassembly: With many con-
current flows, the memory footprint and memory band-
width consumption required for flow reassembly can be
significant. This is detrimental to those applications that
do not require flow reassembly. To support such applica-
tions, mOS allows disabling or resizing/limiting the TCP
receive buffer at run-time on a per-flow basis. For ex-
ample, middleboxes that rely on IP whitelisting modules
(e.g. Snort’s IP reputation preprocessor [18]) can use this
feature to dynamically disable buffers for those flows that
arrive from whitelisted IP regions.
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Figure 9: mOS application threading model

Uni-directional monitoring: Some middleboxes may
want to monitor only the client-side requests or others
deployed before server farms may be interested only in
the ingress traffic. In such a case, developers can turn off
TCP state management of one side. Disabling the TCP
stack of one side would ignore raising events, stack update,
and flow reassembly.
Dynamic event management: The number of registered
events affects the overall performance, as shown in Fig-
ure 8. When a large number of UDEs are naïvely set up
for all flows, it degrades the performance due to frequent
filter invocations. To address this, the mOS API supports
dynamic cancellation of registered events. For example,
one can stop scanning the flow data for attack signatures
beyond a certain byte limit [51]. Alternatively, one can
register for a new event or switch the event filter depending
on the characteristics of each flow. Such a selective appli-
cation of flow events provides flexibility to the developers,
while minimizing the overall resource consumption.
Threading model: mOS adopts the shared-nothing
parallel-processing architecture that effectively harnesses
modern multi-core CPUs. Figure 9 shows the threading
model of mOS. At start, it spawns n independent threads,
each of which is pinned to a CPU core and handles its
share of TCP flows using symmetric receive-side scaling
(S-RSS) [63]. S-RSS maps all packets in the same TCP
connection to the same RX queue in a network interface
card (NIC), by making the Toeplitz hash function [47]
produce the same value even if the source and destination
IP/port pairs on a packet are swapped. This enables line-
rate delivery of packets to each thread as packet classifica-
tion is done in NIC hardware. Also, it allows each mOS
thread to handle entire packets in a connection without
sharing flow contexts with other threads, which avoids ex-
pensive inter-core locks and cache interference. We adopt
flow-based load balancing as it is reported to achieve a
reasonably good performance with real traffic [63].

mOS reads multiple incoming packets as a batch but pro-
cesses each packet by the run-to-completion model [28].
mOS currently supports Intel DPDK [4] and netmap [57]
as scalable packet I/O, and supports the pcap library [20]
for debugging and testing purposes. Unlike mTCP, the
application runs event handlers in the same context of the
mOS thread. This ensures fast event processing without
context switching.

Appl Modified SLOC Output

Snort 2,104 79,889 Stateful HTTP/TCP inspection
nDPI 765 25,483 Stateful session management
PRADS 615 10,848 Stateful session management
Abacus - 4,639 → 561 Detect out-of-order packet tunneling

Table 2: Summary of mOS application updates. Snort’s SLOC
represents the code lines that are affected by our porting.

5 Evaluation
This section evaluates mOS by answering three key ques-
tions: (1) Does the mOS API support diverse use cases of
middlebox applications? (2) Does mOS provide high per-
formance? (3) Do mOS-based applications perform cor-
rect operations without introducing non-negligible over-
head?

5.1 mOS API Evaluation
For over two years of mOS development, we have built
a number of middlebox applications using the mOS API.
These include simple applications such as a stateful NAT,
middlebox-netstat, and a stateful firewall as well as port-
ing real middlebox applications, such as Snort [58], nDPI
library [9], and PRADS [12] to use our API. Using these
case studies, we demonstrate that the mOS API supports
diverse applications and enables modular development
by allowing developers to focus on the core application
logic. As shown in Table 2, it requires only 2%-12% of
code modification to adapt to the mOS framework. More-
over, our porting experience shows that mOS applications
have clear separation of the main logic from the flow man-
agement modules. We add a prefix ‘m’, to the name of
mOS-ported application (e.g., Snort → mSnort).
mSnort3: We demonstrate that the mOS API helps
modularize a complex middlebox application by porting
Snort3 [16] to using mOS. A typical signature-based NIDS
maintains a set of attack signatures (or rules) and examines
whether a flow contains the attack patterns. The signatures
consist of a large number of rule options that express vari-
ous attack patterns (e.g., content, pcre), payload type (e.g.,
http_header) and conditions (e.g., only_stream and to_-
server). To enhance the modularity of Snort, we leverage
the monitoring socket abstraction and express the signa-
tures using event-action pairs.

To transform the signatures into event-action pairs, we
express each rule option type as a UDE filter, and synthe-
size each rule as a chain of UDEs. We use three synthetic
rules shown in Figure 10 as an example. For example, the
http_header rule option in rule (c) corresponds to the
filter function FTHT T P that triggers an intermediate event
ec1. ec1 checks FTAC2 for string pattern matching and
triggers ec2, which in turn runs PCRE pattern matching
(FTPCRE ), triggers ec3 and finally executes its event han-
dler ( fA). Note, Snort scans the traffic against these rules
multiple times: (a) each time a packet arrives, (b) when-



ever enough flow data is reassembled, and (c) whenever
a flow finishes. (b) and (c) are required to detect attack
patterns that spread over multiple packets in a flow. These
naturally correspond to the four mOS built-in events (e1
to e4) in Figure 10.

One challenge in the process lies in how one represents
the content rule option. The content rule option speci-
fies a string pattern in a payload, but for efficient pattern
matching, it is critical that the payload should be scanned
once to find all the string patterns specified by multiple
rules. To reflect this need, we use a multi-event filter func-
tion that performs Snort’s Aho-Corasick algorithm [24].
Given a message, it scans the payload only once and raises
distinct events for different string patterns.

We have implemented 17 rule options (out of 45 op-
tions7) that are most frequently used in Snort rules. Our
implementation covers HTTP attack signatures as well as
general TCP content attack patterns. The actual implemen-
tation required writing a Snort rule parser that converts
each rule into a series of UDEs with filter functions so
that mSnort3 can run with an arbitrary set of attack sig-
natures. In total, we have modified 2,104 lines out of
79,889 lines of code which replaces the Snort’s stream5
and http-inspect modules that provide flow manage-
ment and HTTP attack detection, respectively.

mSnort3 benefits from mOS in a number of ways. First,
we find that each UDE is independent from the internal
implementation of flow management, which makes the
code easy to read and maintain. Also, the same filter func-
tion is reused to define different intermediate UDEs since
it can be used to extend a different base event. This makes
the rule-option evaluator easier to write, understand, and
extend. In contrast, Snort’s current rule-option evaluator,
which combines the evaluation results of multiple rule
options in a rule, is a very complex recursive function that
spans over 500 lines of code. Second, since the attack
signatures are evaluated in a modular manner, one can
easily add new rule options or remove existing ones with-
out understanding the rest of the code. In contrast, such
modification is highly challenging with existing stream5
and http-inspect modules since other Snort’s modules
heavily depend on internal structures and implementation
of the two. Third, rules that share the same prefix in the
event chain would benefit from sharing the result of event
evaluation. Say, two rules are represented as e1 → e2 →
e3 → e4, and e1 → e2 → e3 → e5 → e6. mOS ensures to
evaluate up to e3 only once and shares the result between
the two rules. Fourth, mSnort3 can now leverage more
fine-grained monitoring features of mOS such as setting
a different buffer size per flow or selective buffer man-
agement. These features are difficult to implement in the
existing code of Snort3.

7Remaining options are mostly unrelated to HTTP/TCP protocols.

e1 MOS_ON_PKT_IN 

e2 MOS_ON_ORPHAN 

e3 MOS_ON_CONN_END 

e4 MOS_ON_CONN_NEW_DATA 

FTSTM FilterOnlyStream() 

FTHTTP FilterHTTPHeader() 

FTAC1 FilterACGlobalMatch() 

FTAC2 FilterACHTTPMatch() 

FTFDIR FilterFlowDirection() 

FTPCRE FilterPCREMatch() 

fA 
ACTION_LogMessage() 

Rule (b) 
alert tcp any any -> any any (msg:“B”; content: “pat1”; 
flow: to_server, only_stream, established; pcre: “/pcre1/”) 
 

[event chain] e4  eb1  eb2  eb3  eb4  fA 
 
Rule (c) 
alert tcp any any -> any any (msg:“C”; content: “pat2”; 
http_header; pcre:“/pcre2/”) 
 

[event chain] e4  ec1  ec2  ec3  fA 
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Rule (a) 
alert tcp any any -> any any (msg:“A”; content: “pat3”; 
flow: stateless, pcre:“/pcre1/”) 
 

[event chain] e2  ea1  ea2  ea3  fA 
 

eb3 

ea3 eb4 

eb2 

ea2 

FTPCRE 

Figure 10: mSnort event-action diagram of sample rules. Key-
words in a rule (e.g., ‘content’ and ‘pcre’) are translated into
a chain of multiple UDEs. String search (‘content’ option) is
performed first. ‘only_stream’ inspects only flow-reassembled
data. The ‘msg’ string is printed out at fA if the input data meets
all rule options.
mAbacus: The original Abacus code is based on Mon-
bot [63], a home-grown flow monitor for analyzing the
content-level redundancy. Abacus reuses the packet I/O
and flow management modules of Monbot, while disabling
irrelevant features like content hashing. Although the core
logic of Abacus is simple, its original implementation
requires understanding low-level flow management and
modifying 1,880 lines (out of 4,808 lines) of the code.
We write mAbacus from a clean slate and in a top-down
approach. mAbacus exploits the monitoring socket ab-
straction to monitor TCP packet retransmission, flow cre-
ation/termination and payload arrival events for account-
ing purpose. Compared to the original version, mAbacus
brings two extra benefits. First, it correctly detects re-
transmission over fragmented segments from out-of-order
packets in a receive buffer. Second, one can disable a
receive buffer of any side in a single line of code , while
original Abacus requires commenting out 100+ lines of
its flow processing code manually. The new implementa-
tion requires only 561 lines of code. This demonstrates
that mOS hides the details of TCP flow management and
allows application developers to focus on their own logic.
mHalfback: Halfback [50] is a transport-layer scheme
designed for optimizing the flow completion time (FCT).
It relies on two techniques: (i) skipping the TCP slow start
phase to pace up transmission rate at start, and (ii) perform-
ing proactive retransmission for fast packet loss recovery.
Inspired by this, we design mHalfback, a middlebox ap-
plication that performs proactive retransmission over TCP
flows. mHalfback has no pacing phase, since a middlebox
cannot force a TCP sender to skip the slow start phase.
Instead, mHalfback provides fast recovery of any packet



loss, so that it transparently reduces the FCT without any
modification of end-host stacks. The main logic of mHalf-
back is as follows: (i) when a TCP data packet arrives,
mHalfback holds a copy of the packet for future retrans-
mission. (ii) when a TCP ACK packet comes from the
receiver, mHalfback will retransmit data packets (up to a
certain threshold). mHalfback calls mtcp_getlastpkt()
to hold the packet, and mtcp_sendpkt() for proactive
retransmission. When the volume of per-flow data ex-
ceeds a retransmission threshold (e.g., [50] uses 141 KB),
it deregisters the packet arrival event for the flow, so that
any packet beyond the threshold would not be retransmit-
ted. Likewise, mHalfback stops monitoring a flow when
its connection is closed. Connection closure is easily de-
tected with the state change built-in event. With the help
of mOS monitoring socket, mHalfback implementation
requires only 128 lines of code.
mnDPI library: nDPI [9] is an open-source DPI library
that detects more than 150 application protocols. It scans
each packet payload against a set of known string patterns
or detects the protocol by TCP/IP headers. Unfortunately,
it neither performs flow reassembly nor properly handles
out-of-order packets. We have ported nDPI (libndpi) to
use the mOS API by replacing their packet I/O and apply-
ing UDEs derived from 4 built-in events as in mSnort3.
Our porting enables all applications that use libndpi to
detect the patterns over flow-reassembled data. This re-
quires adding 765 lines of code to the existing 25,483
lines of code.
mPRADS: PRADS [12] is a passive fingerprinting tool
that detects the types of OSes and server/client applica-
tions based on their network traffic. It relies on PCRE [13]
pattern matching on TCP packets for this purpose. Like
nDPI, PRADS does not perform flow reassembly. Fur-
thermore, despite its comprehensive pattern set, the imple-
mentation is somewhat ad-hoc since it inspects only the
first 10 (which is an arbitrarily set threshold) packets of
a flow. mPRADS employs 24 UDEs on MOS_ON_CONN_-
NEW_DATA to detect different L7 protocols in separate
event handlers. This detects the patterns regardless of
where the pattern appears in a TCP connection. We mod-
ify only 615 lines out of 10,848 lines to update mPRADS.

5.2 mOS Performance
We now evaluate the performance of mOS, including the
flow management and event system.
Experiment setup: We evaluate mOS applications on
a machine with dual Intel E5-2690 v0 CPUs (2.90GHz,
16 cores in total), 64 GB of RAM, and 3 dual-port Intel
82599 10G NICs. For flow generation, we use six pairs of
clients and servers (12 machines) where each pair commu-
nicates via a 10G link through an mOS application. Each
client/server machine is equipped with one Intel Xeon
E3-1220 v3 CPU (4 core, 3.10 GHz), 16 GB of RAM, and
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Figure 12: Performance at dynamic event registration

a Intel 10G NIC. All machines run Linux kernel version
3.13 and use Intel’s DPDK v16.04.
Synthetic workload: The client spawns many concur-
rent flows that download HTTP objects of the same size
from a server. When an object download completes, the
client fetches another object so that the number of concur-
rent connections stays the same. Both the client and server
are implemented with mTCP [43] for high performance,
and all six pairs can generate up to 192K concurrent flows.
Microbenchmarks: Figure 11(a) shows the performance
of mOS applications when the clients fetch HTTP objects
(64 bytes or 8 KB) with 192K concurrent connections.
packetcount counts the number of packets per each
flow (by using a MOS_ON_PKT_IN event handler) while
stringsearch performs keyword string search over flow-
reassembled data (by using a MOS_ON_CONN_NEW_DATA
event handler). We observe that the performance almost
linearly scales over the number of CPU cores, and both
applications achieve high throughputs despite a large num-
ber of concurrent flows when multiple CPU cores are em-
ployed. At 16 cores, packetcount produces 19.1 Gbps
and 53.6 Gbps for 64 bytes and 8 KB objects, respectively
while stringsearch achieves 18.3 Gbps and 44.7 Gbps
for 64 bytes and 8 KB, respectively. Figure 11(b) shows
the flow completion time for the two mOS applications.
mOS applications add 41 ∼ 62 us of delay to that of a
direct connection (without any middlebox) for 64-byte
objects and 81 ∼ 170 us of latency for 8 KB objects. We
believe the latency stretch is reasonable even when a mid-
dlebox operates in the middle.

Figure 11(c) compares the performances of application
packetcount under various levels of resource consump-
tion. Depending on the file size, selective resource config-
uration improves the performance by up to 25% to 34%
compared with the full flow management of both sides.
Not surprisingly, disabling the entire state update of one
side provides the biggest performance boost, but skip-
ping flow buffering also brings non-trivial performance
improvement. This confirms that tailoring resource con-
sumption to the needs of a specific middlebox application
produces significant performance benefit.
Efficient i-forest management: Figure 12 compares the
performance of stringsearch as it dynamically regis-
ters for an event. Clients download 4KB objects with
192K concurrent flows. When the application finds the



1.2  1.1  
3.5  2.9  3.9  3.7  

15.4  
11.8  

19.1  18.3  

53.6  

44.7  

0

10

20

30

40

50

60

   1       4      16    1       4      16

T
h

ro
u

g
h

p
u
t 

(G
b

p
s)

 

(# of CPU cores) 

Counting packets     Searching for a string 

64B

8KB

(a) mOS multicore scalability

65.3  

106.3  
127.4  122.7  

203.4  

293.0  

0

50

100

150

200

250

300

Direct 
connection 

Counting 
packets 

Searching 
for a string 

F
lo

w
 c

o
m

p
le

ti
o

n
 t

im
e 

(u
s)

 

64B

8KB

(b) Flow completion time

17.5  19.9  

29.0  32.8  

47.1  

22.3  
24.9  

38.8  
43.6  

59.6  

0

10

20

30

40

50

60

 64  256 1K 4K 16K

T
h

ro
u

g
h

p
u
t 

(G
b

p
s)

 

File size (B) 

full flow management
w/o client buf management
w/o buf management
w/o client side
w/o client side, w/o server buf mgmt. 

(c) Performance under selective resource consumption

Figure 11: Microbenchmark experiments with a standalone middlebox.

target string, it registers for an extra event with the socket
to inspect the data further. We have the server inject the
target string for 50% of object downloads, and vary the
number of initial registered events per socket from 32 to
1024. A naïve implementation would take a snapshot of
the invocation forest and copy the entire forest to dynami-
cally register for an event. In contrast, our algorithm looks
up the same invocation forest and spawns a new one only
if it does not exist. Our algorithm outperforms the naïve
implementation by 15.4 to 26.8 Gbps depending on the
number of event nodes, which confirms that fast identifica-
tion of the same forest greatly enhances the performance
at dynamic event registration.
Memory footprint analysis: Each TCP context takes up
456 bytes of metadata and starts with a 8 KB flow buffer.
So, 192K concurrent flows would consume about 3.2 GB
with bidirectional flow reassembly. For i-forest manage-
ment, an event node takes up 128 bytes. Thus, monitoring
4,000 events per connection (e.g., Snort) would consume n
* 512 KB, if the application ends up generating n distinct i-
forests for updating events for k times during its operation
(typically, k >> n). In contrast, a naïve implementation
would consume k * 512 KB, which would use 98 GB if all
192K flows update their i-forest dynamically (k = 192K).
Handling abnormal traffic: We evaluate the behavior of
mOS when it sees a large number of abnormal flows. We
use the same test environment, but have the server transmit
the packets out of order (across the range of sender’s trans-
mission window) at wire rate. We confirm that (a) mOS
correctly buffers the bytestream in the right order, and (b)
its application shows little performance degradation from
when clients and servers directly communicate.

5.3 mOS Application Evaluation
We verify the correctness of mOS-based middleboxes and
evaluate their performance with real traffic traces.
Correct flow reassembly: We test the correctness of
mnDPI, mPRADS, and mAbacus under lightweight load
with 24K concurrent flows, downloading 64KB HTTP
objects. We randomly inject 10 different patterns where
each pattern crosses over 2 to 25 packets in different flows
and see if mnDPIReader (a simple DPI application using

Application original + pcap original + DPDK mOS port

Snort-AC 0.51 Gbps 8.43 Gbps 9.85 Gbps
Snort-DFC 0.78 Gbps 10.43 Gbps 12.51 Gbps
nDPIReader 0.66 Gbps 29.42 Gbps 28.34 Gbps
PRADS 0.42 Gbps 2.05 Gbps 2.02 Gbps
Abacus - - 28.48 Gbps

Table 3: Performance of original and mOS-ported applications
under a real traffic trace. Averaged over five runs.

libndpi) and mPRADS detect them. We repeat the test for
100 times, and confirm that mnDPI and mPRADS success-
fully detect the flows while their original versions miss
them. We also inject 1K fake retransmission flows and
find that mAbacus successfully detects all such attacks.
Performance under real traffic: We measure the perfor-
mance of original applications and their mOS ports with
a real network packet trace. The trace is obtained from a
large cellular ISP in South Korea and records 89 million
TCP packets whose total size is 67.7 GB [63]. It contains
2.26 million TCP connections and the average packet size
is 760 bytes. We replay the traffic at the speed of 30
Gbps to gauge the maximum performance of mOS-ported
applications. We use the same machines as in Section 5.2.

Table 3 compares the performances of Snort, nD-
PIReader, PRADS, and Abacus. Snort-DFC uses a more
efficient multi-string matching algorithm, DFC [33], in-
stead of the Aho-Corasick algorithm (Snort-AC). Original
applications (except Abacus) use the pcap library by de-
fault, which acts as the main performance barrier. Porting
them to use the DPDK library greatly improves the per-
formance by a factor of 4.9 to 44.6 due to scalable packet
I/O. mOS-based applications deliver comparable perfor-
mances to those of DPDK-ports while mOS ports provide
code modularity and correct operation in pattern match-
ing. This confirms that mOS does not incur undesirable
performance overhead over DPDK-ported applications.

mSnort is actually slightly faster than Snort+DPDK.
This is mainly due to the improved efficiency of mOS’s
flow management over Snort’s stream5. Our profiling
finds that the stream5 module incurs more memory ac-
cesses per packet on average. Compared to others, PRADS
shows much lower performance because it naïvely per-
forms expensive PCRE pattern matching on the traffic.
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Figure 14: Average flow completion time by packet loss ratio

The flow management overhead in mnDPIReader and
mPRADS is small, representing only about 1 to 4% of
performance change.
Performance under packet loss: We evaluate mHalf-
back by injecting Web traffic into a lossy network link. We
test with the same topology used in the original paper [50]
as shown in Figure 13. Figure 14 compares average FCT
of a direct connection (Figure 13(A)) and of a connection
via Halfback proxy (Figure 13(B)) under various packet
loss rates. We find that mHalfback significantly reduces
the FCT with the help of fast loss recovery. When testing
with flows that download 100 KB under 5% packet loss,
mHalfback brings 20% to 41% FCT reduction. While
this is lower than 58% FCT reduction reported by the
original paper, it is promising as it does not require any
modification on the server.

6 Related Work
We discuss previous works that are related to mOS.
Flow management support: libnids [8] is a flow-level
middlebox library that can be used for building middle-
box applications but it does not provide comprehensive
flow reassembly features [17, 22]. Bro [55] provides an
event-driven scripting language for network monitoring.
mOS differs from Bro in its programming model. mOS is
designed to write broader range of network applications
and provides an API that allows more fine-grained con-
trol over live connections. A mOS middlebox developer
can dynamically register new events per flow at any stage
of a connection life cycle, a flow’s TCP receive buffer
management can be disabled at run-time, and monitoring
of any side (client or server) of the flow can be disabled
dynamically. Bro does not offer such features.
Modular middlebox development: Click [46] provides
a modular packet processing platform, which allows de-
velopment of complex packet forwarding applications by
chaining elements. Click has been a popular platform
in research community to implement L3 network func-
tion prototypes [26, 29, 45, 49, 52]. mOS, on the other
hand, provides comprehensive, flexible flow-level abstrac-

tions that allow mapping a custom flow-level event to a
corresponding action, and is suitable for building L4-L7
monitoring applications. CliMB [48] provides a modular
TCP layer composed of Click elements, but its TCP-based
elements are designed only for end-host stacks; whereas
mOS facilitates programming middleboxes.

xOMB [25] is a middlebox architecture that uses pro-
grammable pipelines that simplify the development of
inline middleboxes. Although xOMB shares the goal of
simplifying development of flow-level middleboxes, its
system is focused on an L7 proxy, which uses BSD sockets
to initialize and terminate connections. mOS focuses on
exposing flow-level states and events for general-purpose
monitoring applications without the ability to create new
connections. CoMb [59] aims to provide efficient resource
utilization by consolidating common processing actions
across multiple middleboxes; while mOS cuts down en-
gineering effort by combining common flow-processing
tasks on a single machine dataplane.
Scalable network programming libraries: Several high-
speed packet I/O frameworks have been proposed [4, 14,
40, 57]. However, extending these frameworks to sup-
port development of stateful middlebox applications re-
quires significant software engineering effort. mOS uses
mTCP [43], a scalable user-level multicore TCP stack
for stateful middleboxes. The performance scalability
of mOS comes from mTCP’s per-thread socket abstrac-
tion, shared-nothing parallel architecture, and scalable
packet I/O. IX [28] and Arrakis [56] present new network-
ing stack designs by separating the kernel control planes
from data planes. However, both models only provide
endpoint networking stacks. There are a few on-going
efforts that provide fast-path networking stack solutions
[1, 11, 15, 21] for L2/L3 forwarding data planes. We be-
lieve mOS is the first fast-path networking stack which
provides comprehensive flow-level monitoring capabili-
ties for L4-L7 stateful middleboxes. Modnet [54] provides
modular TCP stack customization for demanding applica-
tions, but only for end host stack.

7 Conclusion
Modular programming of stateful middleboxes has long
been challenging due to complex low-level protocol man-
agement. This works addresses the challenge with a
general-purpose, reusable networking stack for stateful
middleboxes. mOS provides clear separation of inter-
face and implementation in building complex stateful mid-
dleboxes. Its flow management module provides accu-
rate tracking of the end-host states, enabling the devel-
oper to interact with the system with a well-defined set
of APIs. Its flow event system flexibly expresses per-
flow conditions for custom actions. The mOS source
code is available at https://github.com/ndsl-kaist/
mos-networking-stack.

https://github.com/ndsl-kaist/mos-networking-stack
https://github.com/ndsl-kaist/mos-networking-stack
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Appendix A

/* monitoring socket creation/closure, scope setup (see Figure 2) */

int mtcp_socket(mctx_t mctx, int domain, int type, int protocol);

– Create a socket. The socket can be either regular TCP socket (type = MOS_SOCK_STREAM),

– a TCP connection monitoring socket (type = MOS_SOCK_MONITOR_STREAM) or a raw packet monitoring socket (type = MOS_SOCK_MONITOR_RAW).

int mtcp_bind_monitor_filter(mctx_t mctx, int sock, monitor_filter_t ft);

– Bind a monitoring socket(sock) to a traffic filter (ft). ft limits the traffic monitoring scope in a BPF syntax.

int mtcp_getpeername(mctx_t mctx, int sock, struct sockaddr *addr, socklen_t *addrlen);

– Retrieve the peer address information of a socket (sock).

– Depending on the size of addrlen, one can get either server-side or both server and client-side address information.

int mtcp_close(mctx_t mctx, int sock);

– Close a socket. Closing a monitoring socket does not terminate the connection but unregisters all flow events for the socket.

/* event manpulation (see Figure 2 and Section 3.2) */

event_t mtcp_define_event(event_t ev, filter_t filt, struct filter_arg *arg);

– Define a new event with a base event (ev) and a filter function (filt) with a filter argument (arg).

event_t mtcp_alloc_event(event_t parent_event); /
int mtcp_raise_event(mctx_t mctx, event_t child_event);

– Define a follow-up event for a filter that can trigger multiple (child) events.
– Raise a child event for a multi-event filter.
int mtcp_register_callback(mctx_t mctx, int sock, event_t ev, int hook, callback_t cb);

– Register (or unregister) an event handler (or a callback function) (cb) for an event (ev) in the context of a monitoring socket (sock).

– hook specifies when the event should be fired. It can be fired after updating packet sender’s TCP context (MOS_HK_SND)

– or after updating packet receiver’s TCP context (MOS_HK_RCV) or MOS_NULL, which does not care.
/* current packet information and modification (see Figure 4) */

int mtcp_getlastpkt(mctx_t mctx, int sock, int side, struct pkt_info *pinfo); /
int mtcp_setlastpkt(mctx_t mctx, int sock, int side, off_t offset, byte *data, uint16_t datalen, int option);

– mtcp_getlastpkt() retrieves the information of the last packet of a flow (sock and side).

– mtcp_setlastpkt() updates the last packet with data at offset bytes from an anchor for datalen bytes.

– option is the anchor for offset. It can be one of MOS_ETH_HDR, MOS_IP_HDR, MOS_TCP_HDR or MOS_TCP_PAYLOAD.

int mtcp_sendpkt(mctx_t mctx, int sock, const struct pkt_info *pkt);

– Send a self-constructed TCP packet (pkt) for a given flow (sock).

/* flow-reassembled buffer reading (see Figure 4 and Section 4.3) */

ssize_t mtcp_peek(mctx_t mctx, int sock, int side, char *buf, size_t len); /
ssize_t mtcp_ppeek(mctx_t mctx, int sock, int side, char *buf, size_t count, off_t seq_off);

– Read the data in a TCP receive buffer of sock. side specifies either client or server side.

– mtcp_ppeek() is identical to mtcp_peek() except that it reads the data from a specific offset(seq_off) from the initial sequence number.

/* TCP flow monitoring and manipulation (see Figures 4 & 7) */

int mtcp_getsockopt(mctx_t mctx, int sock, int level, int optname, void *optval, socklen_t *optlen); /
int mtcp_setsockopt(mctx_t mctx, int sock, int level, int optname, void *optval, socklen_t optlen);

– Retrieve (or set) socket-level attributes.
/* per-flow user-level metadata management */

void *mtcp_get_uctx(mctx_t mctx, int sock); /
void mtcp_set_uctx(mctx_t mctx, int sock, void *uctx);

– Retrieve (or store) a user-specified pointer (uctx) associated with a socket (sock).

/* initialization routines */

mctx_t mtcp_create_context(int cpu); /
int mtcp_destroy_context(mctx_t mctx);

– Create (or destroy) a mOS context and associate it with a cpu id.

int mtcp_init(const char *mos_conf_fname);

– Initialize mOS with the attributes in a configuration file (mos_conf_fname). Called one time per process.

Table 4: The current mOS networking API. More detail is found in mOS manual pages: http://mos.kaist.edu/index_man.html.

http://mos.kaist.edu/index_man.html


Appendix B

1 // count # of packets in each TCP flow
2 static void // callback for MOS_ON_PKT_IN
3 OnFlowPkt(mctx_t m, int sock, int side, event_t event,
4 struct filter_arg *arg)
5 {
6 if (side == MOS_SIDE_CLI)
7 g_pktcnt[sock]++;
8 }
9

10 // count # of packet retransmissions in each TCP flow
11 static void // callback for MOS_ON_REXMIT
12 OnRexmitPkt(mctx_t m, int sock, int side, event_t event,
13 struct filter_arg *arg)
14 {
15 g_rexmit_cnt[sock]++;
16 }
17

18 // count # of client-initated TCP connection teardown
19 static void // callback for MOS_ON_TCP_STATE_CHANGE
20 OnTCPStateChange(mctx_t m, int sock, int side, event_t event,
21 struct filter_arg *arg)
22 {
23 if (side == MOS_SIDE_CLI) {
24 int state; socklent_t len = sizeof(state);
25 mtcp_getsockopt(m, sock, SOL_MONSOCKET,
26 MOS_TCP_STATE_CLI, &state, &len);
27 if (state == TCP_FIN_WAIT_1)
28 g_cli_term++;
29 }
30 }
31

32 // print the statistics and reset counters
33 // count total # of completed flows
34 static void // callback for MOS_ON_TCP_CONN_END
35 OnFlowEnd(mctx_t m, int sock, int side, event_t event,
36 struct filter_arg *arg)
37 {
38 if (sock != MOS_SIDE_CLI) return;
39

40 TRACE_LOG("TCP flow (sock=%d) had %d packets, rexmit: %d\n",
41 sock, g_pktcnt[sock], g_rexmit_cnt[sock]);
42 g_pktcnt[sock] = 0; g_rexmit_cnt[sock] = 0;
43 g_total_flows++;
44 }

Figure 15: Code examples with mOS built-in event handlers.
With only 2∼5 lines of code, one can gather various flow-level
statistics in a middlebox.
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