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ABSTRACT
Recent popularity of smartphones drives rapid growth in the de-
mand for cellular network bandwidth. Unfortunately, due to the
centralized architecture of cellular networks, increasing the physical
backhaul bandwidth is challenging. While content caching in cel-
lular networks could be beneficial, little is known about the traffic
characteristics to devise a highly-effective caching strategy.

In this work, we provide insight into flow and content-level char-
acteristics of modern 3G traffic at a large cellular ISP in South Korea.
We first develop a scalable deep flow inspection (DFI) system that
can manage hundreds of thousands of concurrent TCP flows on
a commodity multicore server. Our DFI system collects various
HTTP/TCP-level statistics and produces logs for analyzing the ef-
fectiveness of conventional Web caching, prefix-based Web caching,
and TCP-level redundancy elimination (RE) without a single packet
drop at a 10 Gbps link. Our week-long measurements of over 370
TBs of the 3G traffic reveal that standard Web caching can reduce
download bandwidth consumption up to 27.1% while simple TCP-
level RE can save the bandwidth consumption up to 42.0% with a
cache of 512 GB of RAM. We also find that applying TCP-level RE
on the largest 9.4% flows eliminates 68.4% of the total redundancy.
Most of the redundancy (52.1%∼58.9%) comes from serving the
same HTTP objects while the contribution by aliased URLs is up to
38.9%.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network moni-
toring; C.2.m [Computer-Communication Networks]: Miscella-
neous

General Terms
Measurement, Performance

Keywords
Deep Flow Inspection, Cellular Networks, Caching, Redundancy
Elimination
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1. INTRODUCTION
Recent popularity of smartphones and tablet PCs drives the rapid

growth of the mobile data in cellular networks. The global cellular
data traffic is predicted to increase by 18 times in the next five
years, which is 3 times faster than the growth rate of the fixed IP
networks [20]. While many cellular ISPs are planning to invest tens
of billions of dollars to prepare their infrastructure [43], it is unclear
if the physical capacity will meet the future demand. As a status quo,
cellular ISPs curb the demand using pay-per-usage service plans or
by throttling access speed [45].

With increasing deployments of high-speed base stations and
femtocells [40], the wireless channel bandwidth to radio access net-
works (RANs) has improved over time. However, cellular networks
typically have a centralized architecture where all user traffic has
to traverse one of a few gateways at core networks (CNs) before
reaching the wired Internet [16, 22]. Centralization is necessary for
tracking the location of mobile devices, billing, and handovers, but
high traffic concentration at CNs could lead to potential congestion
as the number of base stations rapidly grows.

Caching popular contents in the backhaul networks is a cost-
effective solution that could increase the effective bandwidth. It is
especially attractive since deploying IP-based caching equipment
is getting easier in packet-switched 3G/4G networks [1]. While
there have been many works on the effectiveness of Web caching in
cellular backhaul links [22, 23] and at mobile devices [37, 38], rela-
tively little is known about the effectiveness of protocol-independent
redundancy elimination (RE) [13, 28, 42] or prefix-based Web
caching [15, 34, 35] in the cellular networks. Prefix-based Web
caching can address the redundancy from aliased Web objects in
addition to regular objects, which is increasingly popular for caching
aliased multimedia contents in the Internet. In this work, we com-
pare the efficacy of these caching strategies. Specifically, we explore
(a) the characteristics of modern cellular traffic that can impact the
caching strategies, (b) the fraction of redundancy that can be ad-
dressed by each caching scheme and the source of the redundancy,
and (c) system overheads of caching strategies in terms of cache
size and concurrent flow counts.

To find the answers to these questions, we analyze the TCP
flow and content-level characteristics of commercial 3G traffic at
a 10 Gbps backhaul link at one of the largest ISPs in South Korea
for one week. We choose to do online analysis as dumping packet
contents at high speed to disk for offline analysis is prohibitively
expensive. We develop Monbot, a scalable deep flow inspection
(DFI) system, that analyzes the network-level behavior and content-
level redundancy of every TCP flow in real time. One challenge
in Monbot lies in how it handles millions of packets per second,
maintaining hundreds of thousands of concurrent flows. We address



this problem by balancing the flow management and content anal-
ysis loads among multiple CPU cores with symmetric receive-side
scaling (symmetric RSS). Similar to RSS [33], symmetric RSS dis-
tributes the incoming packets to multiple CPU cores while ensuring
the packet order in each flow. But unlike RSS, it maps the packets in
the same TCP connection (i.e., packets in both upstream and down-
stream flows) to the same CPU core, obviating the need to share the
TCP context across different cores. This promises high scalability
on a multicore system by avoiding cross-core synchronization or
shared lock contention. Monbot also implements per-core memory
management for flow buffers and timeout-based buffer recycling,
which effectively reduces the memory footprint for a large num-
ber of concurrent flows. With these techniques, we could monitor
375.5 TBs of packets (8.3 billion flows) without a single packet drop
on a 12-core commodity server.

Our contributions are summarized as follows. First, we show
the design and implementation of Monbot that scalably manages
100Ks of active TCP flows at a 10 Gbps link. Monbot can be
easily extended to work as high-performance middleboxes such as
stateful firewalls, intrusion detection systems, or transparent RE
nodes. Second, we develop symmetric RSS that evenly distributes
the packets by their TCP connection at line rate. Symmetric RSS can
be applied to any commodity hardware-based system that needs to
maintain TCP flows in the high-speed networks. Third, we analyze
the characteristics of commercial 3G traffic both in the network
and content level using Monbot. Our findings are summarized as
follows.

• Commercial 3G traffic shows heavier dominance of HTTP
and TCP than in the wired Internet. 95.7% of the downlink
traffic uses TCP, and the HTTP traffic constitutes 74.6% of
all downstream bytes.

• Most TCP flows are small, but the majority of the transferred
bytes belong to large flows. That is, only 9.4% of the flows
are larger than 32 KB, but these flows contribute to 93.7%
of the transferred bytes. Monbot processes as many as 1.3
million new TCP connections per minute, and up to 270K
concurrent flows at any given time.

• The 3G traffic usage exhibits a strong diurnal pattern as in the
wired Internet. We see local bandwidth peaks in the morning
rush hour (8 - 9 am) and lunchtime (12 - 1 pm) every working
day. The daily bandwidth peak happens around 11 pm - 12 am,
mostly driven by video contents.

• With infinite cache, we find that up to 59.4% of the traffic
is redundant with TCP-level redundancy elimination (TCP-
RE). While standard Web caching achieves only 21.0∼27.1%
of bandwidth savings despite with infinite cache, TCP-RE
achieves 26.9∼42.0% bandwidth savings with only 512 GB
of memory cache. Prefix-based Web caching sits in between,
producing 22.4∼34.0% of bandwidth savings with infinite
cache.

• Unlike for enterprise traffic [13], TCP-RE for the 3G traffic
effectively lowers the bandwidth peaks in the morning time
and lunchtime. It also provides significant bandwidth savings
(30.7∼36.9%) during the peak usage in the night time.

• The chunk popularity follows strong Zipf distribution. The
LRU cache replacement is slightly better than FIFO in terms
of bandwidth savings.

• 52.1%∼58.9% of the redundancy is from serving the same
HTTP objects. Aliased objects contribute to 30.4%∼38.9%
of the redundancy.
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Figure 1: Overall 3G/4G cellular network architecture. (A) and (B)
are candidate locations for deploying caching middleboxes.

To the best of our knowledge, we analyze and report the largest
amount of the 3G cellular traffic on commodity hardware. We
believe our findings are useful in designing a middlebox-based
TCP-RE system with tunable parameters that control the level of
bandwidth savings and system overheads.

2. BACKGROUND
In this section, we provide the background on the structure of

cellular networks, and popular redundancy elimination approaches.

2.1 Modern Cellular Networks
Figure 1 shows the overall architecture of 3G Universal Mobile

Telecommunications System (UMTS) and 4G Long Term Evolution
(LTE) cellular networks. A radio access network (RAN) consists
of a set of base stations (called Node B in UMTS, and eNodeB in
LTE) and User Equipments (UEs). A UE communicates wirelessly
with a base station and the data is forwarded to a regional digital
unit aggregation point (DUA). There are tens to hundreds of DUAs
per ISP in South Korea that are connected to a cellular core net-
work. A S-gateway (S-GW) in LTE acts as a mobility anchor for UE
handovers between eNodeBs (or between LTE and other 3GPP net-
works), and forwards packets to P-gateway (P-GW), which serves
as a gateway router to IP networks (called public data networks
(PDNs)). A mobility management entity (MME) is in charge of
many control-plane tasks such as tracking and paging UEs, perform-
ing handovers between LTE core networks (CNs), authenticating
users, etc. Similar functionality is found in 3G UMTS where a
Serving GPRS Support Node (SGSN) takes the role of S-GW and
MME, and a Gateway GPRS Support Node (GGSN) acts as a P-GW
in LTE. Since 3G/4G networks use IP packets via GPRS Tunneling
Protocol (GTP) throughout its packet-switched domain, it is easy to
deploy IP-based caching/monitoring systems.

2.2 Available Caching Techniques
As shown in Figure 1, cellular networks have a centralized ar-

chitecture where all packets are concentrated at a few P-GWs or
GGSNs in a country. With the improvement of RAN technologies
and wider deployments of cell towers, it is predicted that the back-
haul links to CNs could become the next bottleneck[6, 9]. If we
can reduce redundant data transfers between DUAs and a CN, we
can increase the effective bandwidth in the backhaul networks. We
consider Web caching and protocol-independent RE as possible
caching solutions here.

Web caching is a popular technique that suppresses redundant
Web transfers. Since a large portion of the cellular traffic uses
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Figure 2: Overall architecture of Monbot

HTTP [22], we expect significant bandwidth savings as well as fast
response if Web caches are deployed at DUAs ((A) in Figure 1), or
near the gateways ((B) in Figure 1). However, it poses two problems.
First, standard Web caching cannot suppress duplicate objects that
are uncacheable or that have different URLs (i.e., aliases). It cannot
suppress the partial content overlap in similar objects as well. Sec-
ond, it is challenging to handle UE handovers across DUAs while
the content is being delivered. If a UE moves its attachment point
to another DUA, content from a Web cache at one DUA should be
re-routed to the new location, which is difficult since the route is
centrally managed by MME or SGSN.

Prefix-based Web caching alleviates the first problem of Web
caching by suppressing the aliased or duplicate objects that are un-
cacheable. A typical approach is to confirm an alias by comparing
the hash of the first N bytes of an object (called prefix key), and
the content-length fields. It assumes that two HTTP objects of
the same size have the same content if their prefix keys match. While
this potentially presents a correctness issue especially if N is small,
it is already widely used in the wired Internet to serve aliased mul-
timedia contents (e.g., aliased videos) [15, 34, 35]. Unfortunately,
little is known about its effectiveness and false positives, which we
study in Section 6.2.

Protocol-independent RE can address both of the problems of
Web caching at the cost of high engineering complexity and compu-
tational overheads. It assumes two middleboxes deployed at (A) and
(B) in Figure 1. (B) divides incoming content into small chunks, and
sends a stream of chunk hashes to (A). (A) reconstructs the original
content with those hashes, and delivers it to UEs. If any chunks are
cache misses at (A), (A) fetches the original content from (B), and
caches them for future references.

There are many variants of RE, but we use TCP-RE to compare
the effectiveness with other caching strategies. Unlike packet-level
RE, TCP-RE works over the content of each TCP flow. We reassem-
ble the segments in the same TCP flow and divide them into smaller
chunks (either fixed-sized or variable-sized) that serve as the unit of
caching. While TCP-RE has additional overhead to manage TCP
flows, it allows scalable cache management as well as flow-based
caching policies. We discuss packet-based RE and TCP-based RE
approaches in more detail in Section 6.4.

3. SCALABLE ANALYSIS OF REDUNDANT
TRAFFIC

In this section, we describe the design and implementation of
Monbot, a high-performance DFI system on commodity hardware.

At a high-level, Monbot produces three types of log data in real
time for later analysis – (1) TCP flow statistics, (2) HTTP request
/ response statistics, and (3) SHA-1 hashes of content chunks. We
primarily focus on the TCP and HTTP traffic since they take up the
majority of the total traffic volume.

While there are many high-end DPI solutions that produce various
protocol-level traffic statistics or dump packets to disk [2, 4, 8], we
do not know of any system that analyzes the content-level redun-
dancy in the high-speed 10 Gbps network. Dumping packets to disk
is not an option since our traffic volume for a week would require
more than 120 3 TB disks, not to mention the enormous time for
offline analysis. Instead, we focus on online analysis, which requires
high-performance packet capture, scalable flow management and
content hash calculation, and parallel disk I/O for writing the log
data. Monbot supports this goal on a pure commodity server without
any dedicated packet capture cards such as [3, 7].

One challenge of Monbot is to process a large amount of concur-
rent flows without a packet drop. Indeed, our measurement shows
that the system should handle 1.4 million packets per second and
270K concurrent TCP connections at peak. To cope with this scale,
Monbot exploits processing parallelism in modern multicore sys-
tems, making each core handle a partition of flows in parallel. To
avoid expensive inter-core communication, we also develop sym-
metric RSS that assigns both upstream and downstream packets that
belong to the same TCP connection to the same core. Our current
prototype has two 3.47 GHz hexacore Xeon X5690 CPUs in dual-
NUMA nodes with 144 GB of RAM and a dual-port 10 Gbps NIC
with the Intel 82599 chipset, and has 24 3TB SATA disks for storing
log data.

3.1 Parallel Flow Monitoring Architecture
Figure 2 shows the overall architecture of Monbot. Monbot

transparently receives IP packets from the monitored 10 Gbps link
(e.g., via port-mirroring), and distributes them to CPU cores with
symmetric RSS. For high-speed packet reception (RX), we use
PacketShader I/O engine (PSIO) [26]. PSIO is known for achieving
multi-10 Gbps packet I/O even for 64B packets by batch processing
of RX packets and efficient CPU cache usage.

The central goal of the Monbot design is to achieve high core
scalability. Given that the majority of the TCP flows are small (in
Section 5), it is important to efficiently handle small TCP control
packets in the same CPU core without any lock contention [27, 36].
Each CPU core in Monbot runs one DFI thread and two disk threads
pinned to it. The DFI thread is responsible for packet RX with PSIO,
and for producing TCP/HTTP flow statistics and content hashes.
Each disk thread buffers the logs passed from the DFI thread, and
writes them to its dedicated disk in batches. This way, all 12 CPU
cores and 24 disks are utilized in parallel completely independent
of each other.

To efficiently manage buffers for a large number of concurrent
flows while dealing with packet reordering from packet losses or
retransmissions1, Monbot also implements per-core memory pools
with different buffer sizes. Dynamically adjusting buffer sizes with
realloc() is prohibitively expensive as it incurs lock contention
across cores, and having a uniform buffer size risks either packet
losses or out of memory. Instead, each DFI thread pre-allocates
1
N -th of the total memory where N is the total number of cores,
and creates a set of memory pools with different buffer sizes (e.g.,
32 KB, 64 KB, ..., 2 MB). A new flow is assigned to the smallest
buffer, and moves to a larger buffer as more space is needed. Based

1When a flow with a large receive window (e.g., we see as large
as 16 MB) sees burst packet losses, a large gap in the buffer is
inevitable.



Algorithm 1 RSS Hash Computation Algorithm
function RSS_HASH(INPUT , RSK)

u_int32 ret = 0;
for each bit b in INPUT

if (b == 1) then ret = ret xor (left-most 32 bits of RSK);
shift RSK left by 1 bit;

end for
return ret;

end function

INPUT Field INPUT RSK
Bit Range Bit Range

Source IP (32 bits) 1 .. 32 1 .. 63
Destination IP (32 bits) 33 .. 64 33 .. 95
Source port (16 bits) 65 .. 80 65 .. 111
Destination port (16 bits) 81 .. 96 81 .. 127
Protocol (8 bits) 97 .. 104 97 .. 135

Table 1: RSK bit ranges that affect the portions of an IPv4 header for
RSS hash calculation

0x6d 0x5a 0x6d 0x5b 0x6d 0x5a 0x6d 0x5b
0x6d 0x5a 0x6d 0x5a 0x6d 0x5a 0x6d 0x5a
0xc6 ...

Table 2: Sample RSK that satisfies Equation (3)

on our observation that 90.6% of the total TCP flows are smaller
than 32 KB and short-lived, we assign 90% of the total memory to
32 KB buffers, and proportionally decrease the size of the memory
pools for larger buffer sizes. This way, Monbot can process 40K
concurrent flows per DFI thread, handling 480K concurrent TCP
flows with 12 cores.

3.2 Symmetric Receive-Side Scaling
RSS is a modern NIC feature that balances the packet processing

load across multiple CPU cores. It distributes incoming packets into
multiple hardware receive queues (RX queues) that are mapped to
each CPU core by running the Toeplitz hash function [30] on the
five tuples of IP packet headers (src/dest IPs, ports, and a protocol).
This way, packets in the same flow are accessed exclusively by a
core without lock contention.

However, RSS is not suitable for high-performance DFI mid-
dleboxes that monitor TCP connections in both directions, as the
packets in the same connection may end up in two different RX
queues, one for upstream packets and another for downstream pack-
ets, and accessing them requires acquiring locks. While one can
re-run hashing and distribute packets in software [5, 44], it not only
wastes CPU cycles but also loses the benefit of hardware-supported
RSS.

To overcome this limitation, we develop symmetric RSS that
maps the packets in the same connection into the same RX queue
regardless of their directions, by leveraging the existing RSS fea-
ture. More importantly, symmetric RSS does not modify the RSS
algorithm itself, thus it can still distribute the packets at line rate.
The basic idea is to produce the same RSS hash value even if the
src/dest IPs and ports are swapped.

Algorithm 1 shows the pseudo code of the Toeplitz hash function
that takes INPUT and RSK as inputs. INPUT is typically five tuples
of the IP header, and RSK is a 320-bits random secret value that gets
mixed with INPUT. Since the value of RSK can be configured when
activating NICs, we can craft the value of RSK that satisfies the
following condition where s and d represent source and destination

(e.g., sIP is a source IP), and p represents a one-byte protocol field
(e.g., TCP or UDP).

RSS_Hash(sIP : dIP : sPort : dPort : p,RSK)

= RSS_Hash(dIP : sIP : dPort : sPort : p,RSK) (1)

We can further limit the scope of Equation (1) with the follow-
ing observation, which derives Table 1 that shows RSK bit ranges
affecting each IP header field in RSS hash calculation.

OBSERVATION 1. For calculation of the nth bit of INPUT, only
the nth to (n+31)th bit range of RSK is used.

Plugging Table 1 into Equation (1) yields the following condition
where RSKA..B represents a bit range of RSK from the Ath bit to the
Bth bit.

RSK1..63 = RSK33..95, RSK65..111 = RSK81..127 (2)

By removing the overlapping regions from Equation (2), we obtain
the final condition as follows.

i) RSK1..15 = RSK17..31 = RSK33..47 = RSK49..63

= RSK65..79 = RSK81..95 = RSK97..111 = RSK113..127

ii) RSK16 = RSK48 = RSK80 = RSK96 = RSK112

iii) RSK32 = RSK64 (3)

One such example of RSK for IPv4 packets is shown in Table 2
where each byte is alternating except for the 4th, 8th, and 17th bytes.
This is because Equation (3) requires that each group of 16 bits
should be identical except for the 32nd and the 64th bit positions.
Similarly, we can further tweak this RSK to be used for both IPv4
and IPv6 packets with the following observation.

OBSERVATION 2. For calculation of the nth byte of INPUT, only
the nth to (n+4)th byte range of RSK is used.

This implies that if every odd byte of RSK has the same value, and
so does every even byte, we can ensure the byte-level symmetry in
RSS hash calculation.2 For example, we only need to replace 0x5b
with 0x5a in Table 2 to support IPv6 packets.

Evaluation. To confirm if symmetric RSS evenly balances TCP
connections, we analyze the number of flows handled by each core
on Monbot during the week-long measurement. Figure 3 presents
the maximum deviation, which is the maximum difference in the
number of flows processed by each core divided by the per-minute
average. We find that both algorithms behave almost the same. In
fact, as long as the IPs and ports are randomly distributed, we can
prove that the level of load balancing in symmetric RSS is not worse
than that in the original RSS [46].

The maximum deviations look somewhat high (9.5%) in both
algorithms because the distribution is skewed since the number of
CPU cores (12) is not a power of two. In fact, the first eight cores
receive about 9% more flows than the remaining four cores. The
deviation among the first 8 cores is less than 0.2% and so is for the
remaining 4 cores. Our simulation on 16 CPU cores confirms that
symmetric RSS bounds the deviations within 0.2% across all cores.

One concern with symmetric RSS is that one might craft an attack
such that all traffic is veered onto one or a few CPU cores. While
more thorough cryptanalysis is required, we think that brute-force
attacks are non-trivial since trying all 24-bit key space for RSK is

2More details can be found in our technical report [46].



Chapter 3. Symmetric RSS: Per core flow distribution
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Figure 3: Maximum deviation in the number of flows per core

time consuming and the attacker may not know how many cores are
employed for the system. We leave it as our future work.

Next, Figure 4 compares the packet RX performances of PSIO
with symmetric RSS (S-RSS), and PF_RING 5.5.1 with software
hashing (SW-RSS) that distributes the packets in the same connec-
tion to the same thread [5]. PF_RING uses RSS and distributes
the packets to CPU threads by zero copy. Both libraries support
interrupt and polling modes, and we use interrupt mode here. 3

To gauge the maximum performance, we add an extra 10 Gbps
NIC to the machine so that its maximum RX rate reaches 40 Gbps.
We use our own packet generator that blasts packets at 40 Gbps
regardless of packet size [26], and use only 8 CPU cores to avoid
RSS load imbalance. IPs and port numbers are randomly populated
in a packet, and for each packet, we send its corresponding ACK
packet by swapping IPs and port numbers. Except for 64B packets,
S-RSS achieves a 40 Gbps line rate for all packet sizes. In con-
trast, SW-RSS shows 1.5x∼2.8x lower performance than S-RSS at
64B∼256B packets, although its performance is close to 40 Gbps at
larger sizes.

4. DATASET
This section describes our measurement environment and the

limitations in our dataset.

Measurement Environment. We place Monbot at a core net-
work switch on GGSN in Seoul (as shown in Figure 1), which serves
as a gateway to IP networks. This point of presence (PoP) covers
the 3G traffic from half of all regions in South Korea served by the
ISP, which has 12.5 million 3G subscribers. Monbot monitored all
IP traffic at a 10 Gbps link from 12 pm on July 7th (Saturday) to
2 pm on July 14th (Sunday) in 2012. During the period, it logged
8.3 billion TCP connections from 1.8 million unique client IPs and
4.5 million unique server IPs, which amounts to 370 TBs in volume
or 590 billion packets. UEs use the shared private IP space (e.g.,
10.*.*.*) allocated by DHCP, and their IPs are NAT-translated to
public IPs after our measurement point while the server-side IPs are
seen as public at Monbot.

Monbot stores a log record for each TCP connection and HTTP
request. A TCP connection log includes source and destination IPs
and ports, start and end timestamps, amount of transferred bytes,
connection setup RTT, etc. A HTTP log includes a request URL,
host name, start and end timestamps of each request, content-type,
content-length, user-agent, and other caching-related header
fields. It also records SHA1 hashes of 8 different prefix sizes of
the response body, from 1 KB to 1 MB, as well as the hash of the
entire object to gauge the effectiveness of prefix-based Web caching.
Furthermore, Monbot handles HTTP pipelining and persistent con-
nections, and stores each HTTP session log.

3PF_RING polling mode did not improve performance.
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Figure 4: Packet RX performance of PSIO+S-RSS (S-RSS) vs.
PF_RING+S/W hashing (SW-RSS)

For content-level analysis, Monbot logs SHA1 hashes of fixed
4 KB content chunks for all of the downlink TCP traffic, except for
HTTP response headers. We exclude HTTP response headers since
some fields (e.g., Date) are dynamically regenerated regardless of
content. For any chunk / content that is smaller than 4 KB, we hash
the entire chunk / content. The total size of the logs is 1 TB for TCP
session logs, 2.8 TB for HTTP logs, and 11.4 TB for the content
chunk hashes.

Limitations. We summarize the limitations in our dataset here.
First, the 10 Gbps link being monitored is one of the flow-level
load-balanced links by equal-cost multi-path (ECMP). Due to this
setup, our dataset cannot capture all flows from a specific UE, but
all packets in the same connection are monitored. Also, we do not
have UE identifiers such as IMSI for client-side IPs, and a private
IP can be reused by another device. When we need to identify a
client, we use a heuristic that compares the IPs and the OS versions
in the HTTP user-agent field. This limitation, however, is only
subject to false positives in Figure 18(b), and all other findings
remain intact.

Second, while we did not see any packet loss at the NIC of
Monbot, we observe packet losses from switch-based mirroring. We
confirm this by seeing client-side ACKs for the packets that are not
captured by Monbot. We skip the TCP buffer region with a hole
for SHA1 hash calculation, and ignore the potential redundancy
for prefix-based Web caching when the incomplete region happens
within the prefix range. The skipped bytes due to incomplete regions
constitutes about 1.92% of the downlink traffic.

Finally, we use 4 KB fixed-sized chunking, which may miss some
redundancy that is otherwise observed with a smaller chunk size or
variable chunking methods. This choice was inevitable given the
limitation in the available storage space and CPU cycles. Since our
primary focus is to find if we can suppress a reasonable level of
traffic by a software-based RE system on commodity hardware for
10+ Gbps environments, we believe our findings are still useful for
practical RE systems design.

5. FLOW-LEVEL CHARACTERISTICS
In this section, we analyze TCP and application-level characteris-

tics of our traffic, and also discuss the performance requirements and
trade-offs of flow management overhead, latency, and throughput,
which shapes the design of caching middleboxes.

Protocol and Application Mix. We first analyze the overall
protocol composition in Table 3. As observed in other mobile
networks, the downlink traffic volume is much larger (13x) than
the uplink traffic volume [29]. TCP accounts for 95.7% of the
entire downlink traffic, implying most of the traffic is downloads
of content from servers to mobile devices. The remaining traffic is



IP Version Volume Volume Ratio # Packets Protocol Volume Volume Ratio # Packets # Packet Ratio
IPv4 Downlink 343.5 TB 91.5% 341,920,148,702 TCP 328.7 TB 95.7% 318,498,981,294 93.2%

IPv4 Uplink 25.6 TB 6.8% 243,711,521,675 UDP 14.1 TB 4.1% 21,543,090,962 6.3%
Others 6.4 TB 1.7% 20,140,919,576 ICMP 6.5 GB - 71,621,981 0.02%

Port Application Volume Volume # Flows Port Volume Volume # Flows # Uniq Server IPs / 7 days 4,502,812
(TB) Ratio(%) Ratio(%) (TB) Ratio(%) Ratio(%) # Uniq client IPs / 7 days 1,807,499

80 HTTP 256.2 74.6 78.1 ≥ 1024 59.6 17.4 10.8 # Uniq server IPs / hour 119,460
443 HTTPS 10.2 3.0 10.4 17600 9.7 3.6 0.01 # Uniq client IPs / hour 922,631
110 POP3 0.37 0.14 0.04 8405 3.8 1.4 0.01 # TCP flows 8,307,724,934
995 POP3 0.16 0.06 0.03 9000 3.5 1.3 0.02 # TCP concurrent flows 174,322
993 IMAP 0.30 0.11 0.20 8012 2.3 0.9 0.00 Payload unmergeable ratio 1.92%
554 RTSP 0.17 0.06 0.01 8008 2.3 0.8 0.00 # Total 4K chunks 87,330,807,203

Content-type Average Size # Flows Volume Volume (%) Cacheability Cacheability Web Cache Prefix Cache TCP-RE
(# Objects) (Volume) (Volume) (Volume) (Volume)

HTTP Total 34.5 KB 7,738,867,184 248.3 TB 100.0% 53.9% 40.7% 23.7% 27.7% 32.7%
Video 1982 KB 45,457,010 83.9 TB 33.8% 19.8% 35.9% 18.7% 20.0% 28.4%
Image 19.9 KB 3,748,164,242 69.4 TB 28.0% 83.4% 93.1% 66.8% 67.5% 53.1%
App 45.8 KB 1,413,098,511 56.3 TB 22.7% 22.2% 62.2% 21.9% 28.3% 61.6%
Text 11.0 KB 2,047,840,830 20.9 TB 8.5% 30.4% 44.0% 33.7% 37.6% 43.4%

Audio 1073 KB 16,707,509 16.8 TB 6.8% 12.6% 18.3% 7.0% 32.4% 39.5%
Etc 2.60 KB 467,599,082 1.1 TB 0.4% 5.2% 18.4% 6.3% 6.7% 20.2%

Table 3: Overall statistics of the 3G traffic trace
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Figure 5: 3G traffic volume for seven days (each point is a 1-hour average)

largely UDP (4.1%) and a tiny amount of ICMP and GRE (less than
10−5%) traffic.

Table 3 shows the contributions by various application proto-
cols identified by server-side port numbers. We observe that HTTP
(74.6%) and HTTPS (3.0%) dominate the traffic. However, the
dominance of HTTP in the cellular network is much heavier than in
broadband (57.6 %) [31]. We suspect that this is because most smart-
phone applications use HTTP as its communication protocol [32].
We also see the other traffic such as POP3, IMAP, RTSP, SSH, FTP,
and TELNET, but their individual contribution is less than 1%, with
the aggregate volume of only 3.7%. Remaining applications with
ports larger than 1023 account for non-negligible 17.4% of the traf-
fic. Further investigation shows that the top-ranked port (17600,
3.6%) is used for serving local P2P live video content [10]. We
also find that other ports are used only by specific IP subnet ranges,
implying that they are mainly custom protocols.

Figure 5 shows the hourly bandwidth consumption over the mea-
surement period. We observe a clear diurnal pattern where most
of the bandwidth usage happens during the daytime between 8 am
and 11 pm. The peak bandwidth is about 6 Gbps at 11 pm (7.5
Gbps as per-minute average), and the lowest bandwidth is 2 Gbps at
4 am, 3x smaller than the peak bandwidth. Interestingly, the band-
width demand during the weekend is slightly larger than that of the
weekdays. We also observe small peaks every weekday in the rush
hour (8 - 9 am) and during lunchtime (12 - 1 pm), which implies
that people use smartphones for Internet access while commuting
or having lunch. We further investigate the amount of traffic by
their HTTP content types in Figure 6. Interestingly, the numbers
(left plot) and byte volumes (right plot) of flows by each content

Percentile Concurrent Flows Created Flows Duration
(%) (# flows) (# flows/min) (sec)
1% 55,000 218,000 0.09
10% 67,000 288,000 0.17
50% 197,000 931,000 1.01
90% 237,000 1,087,000 11.01
99% 257,000 1,168,000 64.52

Average 174,000 812,000 6.52

Table 4: TCP flow statistics for a week. Flow counts are snapshotted
every minute.

type remain stable regardless of the time of the day, exhibiting self-
similarity [21]. Multimedia objects contribute to only 0.8% by the
flow count, but its byte volume constitutes 40.6% of the traffic. This
implies that caching solutions focusing on multimedia objects could
deal with a significant portion of traffic at a small flow management
cost.

TCP Flow Characteristics. We examine the characteristics of
the TCP flows more in depth, which can suggest the performance
requirements of middleboxes such as RE systems. Table 4 shows
TCP flow-level statistics for the entire week. We observe that the
number of concurrent flows changes dynamically from 50K (at 5 am)
to 270K (at 11 pm), and the number of newly-created TCP flows
per minute ranges from 0.2M to 1.3M. While most of the flows
are short-lived (1 second as median, 11 seconds as 90th%-tile), the
distribution has a long tail that spans more than one day.

Figure 7 analyzes the flow sizes by their number (left plot) and
by their byte volume (right plot) over seven one-hour time slots,
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Figure 6: The percentage of flows and byte volume by the HTTP content type
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Figure 7: Distributions of TCP flows by flow size over various time slots
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(a) Throughput by flow size
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(b) Advertised window size
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(c) Connection setup delay

Figure 8: Cumulative distribution of throughputs, advertised window sizes, and connection setup delays

aggregated for one week. On average, 60.6% of the flows are smaller
than 4 KB and only 9.4% of the flows are larger than 32 KB. In
contrast, the volume of the flows larger than 32 KB accounts for
90.3% of the total traffic. This implies that if TCP-RE systems
bypass these small flows (e.g., by checking the content-length
field), we can reduce almost 90% of the flow management overhead
while still covering more than 90% of the total volume. Similar to
Figure 6, flow size distributions also exhibit self-similarity.

TCP Performance. Figure 8(a) shows the throughput distribu-
tions of individual TCP flows grouped by the flow size between 10 -
11 pm for one week. Overall, the median throughput is 21.1 Kbps,
and even 90th%-tile is only 182.4 Kbps. The low throughput seems
to be because most flows are short-lived, and thus do not leave the
TCP slow-start phase. This is in line with Figure 8(b), which shows
the median advertisement window as only 16 KB. On the other hand,
for larger flows, we observe the maximum throughput of 13.6 Mbps
and the window size of up to 16.0 MB. Figure 8(c) also shows the
connection setup delay between client-side SYN and ACK, which
includes the round-trip time and server-side connection creation
overhead. We observe the minimum, median, and 99th%-tile delays
of 39 ms, 128 ms, and 3.19 seconds, respectively.

6. REDUNDANCY IN THE 3G TRAFFIC
In this section, we compare the effectiveness of standard Web

caching, prefix-based Web caching, and TCP-RE from various per-
spectives. We also discuss different RE designs for high-speed
cellular backhaul networks, and study the origin and temporality of
the redundancy.

6.1 Effectiveness of Web Caching
We measure the effectiveness of Web caching by simulating our

HTTP log trace. We follow the HTTP 1.1 standard [24] for caching,
and assume a log-based disk cache as in [17]. Overall, we find that
53.9% of the total objects are cacheable and they account for 40.7%
of the downlink traffic (by the byte volume) during the period. With
infinite Web cache, one can save 23.7% of the downlink bandwidth
for the week by standard Web caching.

Figure 9(a) shows daily bandwidth savings with various cache
sizes from 128 GB to 16 TB as well as infinite cache. The difference
in bandwidth savings slowly grows over time, but the working set
size is relatively small since even 512 GB cache, which fits in
memory, can provide bandwidth savings ratio of 18.6%. Figure 9(b)
shows the difference in bandwidth savings at different times of the
day, averaged for seven days. Morning rush hour (8 - 9 am), lunch
time (12 - 1 pm), and mid-afternoon (3 - 4 pm) produce relatively
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Figure 9: Bandwidth savings by standard Web caching

Chapter6. Redundancy by Content Type

Total Redundant DataB/W Savings

32.7% 

28.4% 

53.1% 

61.6% 

43.4% 
39.5% 

20.2% 

0%

20%

40%

60%

80%

100%

0

50

100

150

200

250

300

350

400

Total Video Image App Text Audio Etc

R
a

ti
o

 o
f 

T
o

ta
l 

V
o

lu
m

e 

D
a

ta
 S

iz
e 

(T
B

) 

Total

Redundant Data

B/W Savings

40.7% 35.9% 

93.1% 

62.2% 

44.0% 

18.3% 18.4% 
23.7% 

18.7% 

66.8% 

21.9% 

33.7% 

7.0% 6.3% 

0%

20%

40%

60%

80%

100%

0

50

100

150

200

250

300

350

400

Total Video Image App. Text Audio Etc
R

a
ti

o
 o

f 
T

o
ta

l 
V

o
lu

m
e
 

D
a
ta

 S
iz

e 
(T

B
) 

Total

Cachable Data

Redundant Data

Cachability

B/W Savings

(a) Web cache (infinite size)

Chapter6. Redundancy by Content Type

Total Redundant DataB/W Savings

32.7% 

28.4% 

53.1% 

61.6% 

43.4% 
39.5% 

20.2% 

0%

20%

40%

60%

80%

100%

0

50

100

150

200

250

300

350

400

Total Video Image App Text Audio Etc

R
a

ti
o

 o
f 

T
o

ta
l 

V
o

lu
m

e 

D
a

ta
 S

iz
e 

(T
B

) 

Total

Redundant Data

B/W Savings

40.7% 35.9% 

93.1% 

62.2% 

44.0% 

18.3% 18.4% 
23.7% 

18.7% 

66.8% 

21.9% 

33.7% 

7.0% 6.3% 

0%

20%

40%

60%

80%

100%

0

50

100

150

200

250

300

350

400

Total Video Image App. Text Audio Etc

R
a
ti

o
 o

f 
T

o
ta

l 
V

o
lu

m
e
 

D
a
ta

 S
iz

e 
(T

B
) 

Total

Cachable Data

Redundant Data

Cachability

B/W Savings

(b) TCP-RE (512GB)

Figure 10: Redundancy by content type with Web caching and TCP-RE
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Figure 11: Comparison of bandwidth savings by Web caching, prefix-based Web caching, and TCP-RE

larger bandwidth savings, while early morning (2 - 3 am, 6 - 7 am)
shows the smallest savings.

Figure 10(a) shows the breakdown of cacheability and cache
hit ratios by content types. Images produce the largest bandwidth
savings. 93.1% of the image bytes are cacheable, and 66.8% of them
lead to bandwidth savings. Applications are highly cachaeable as
well (62.2%), but their bandwidth savings ratio is limited to 21.9%.
Video takes up the largest traffic, but only 35.9% is cacheable with
18.7% of bandwidth savings. Audio exhibits the lowest cacheability,
and we suspect this is one of the reasons why rush hour peaks cannot
be suppressed by Web caching as much as TCP-RE as shown in
Figure 11.

6.2 Effectiveness of Prefix-based Caching
Prefix-based Web caching complements the weakness of standard

Web caching by serving aliased, or redundant but uncacheable con-
tent. It operates as standard Web caching for the HTTP requests, but
when a request is a cache miss, it compares the hash of the N-byte
prefix and the length of the response to confirm an alias. If the
aliased object is found in its cache, it stops downloading from the
origin, and delivers the leftover from its cache instead.

Prefix Key Size vs. False Positives. The prefix key size is crucial
for the effectiveness of prefix-based Web caching. In general, a
smaller prefix key size would produce more bandwidth savings at

the risk of having a higher false positive rate. On the other hand, a
larger prefix key size cannot suppress aliased objects that are smaller
than the key, so it produces smaller bandwidth savings, but with a
lower false positive rate.

Table 5 shows the number of false positives over various prefix
key sizes from 1 KB up to 1024 KB for all HTTP objects down-
loaded for the measurement period. Surprisingly, we find false
positives in every prefix key size while the number of false positives
decreases as the key size increases. We manually inspect some of
false positives. For small prefix keys, we find that many of them
are due to modifications on the texts (e.g., HTML pages or scripts
like CSS and Javascript) or metadata (e.g., timestamps). We also
find some large animated GIFs that have the same content up to the
1 MB prefix key size, but contain different image frames located
beyond 1 MB.

Bandwidth Savings. Figure 13 shows the bandwidth savings
with infinite cache across various content types. We choose 1 MB
as the prefix key size as it minimizes the false positives in our trace.
We perform similar simulations as in Web caching for 2 TB and
infinite cache sizes. Prefix-based Web caching saves 27.7% of the
downlink traffic (excluding the false positives) during the period,
improving Web caching by only 4%. While audio, application, and
video show 25.4%, 6.4%, 1.3% additional bandwidth savings than
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Figure 12: Original and estimated bandwidth usages by TCP-RE (512 GB cache)
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Figure 13: Bandwidth savings by prefix-based caching

Prefix Number of % of Size of % of
Key Size FP Object Total Object FP Object Total Traffic

1 KB 52,936,642 0.68% 3.79 TB 1.10%
4 KB 14,993,908 0.19% 3.49 TB 1.02%

16 KB 4,173,023 0.05% 2.93 TB 0.85%
128 KB 277,039 0.004% 0.60 TB 0.18%
256 KB 102,689 0.001% 0.33 TB 0.10%
512 KB 39,519 0.001% 0.25 TB 0.07%

1024 KB 24,732 0.0003% 0.19 TB 0.05%

Table 5: False positives for prefix-based Web caching

standard Web caching, respectively, other types are typically smaller
than 1 MB, and do not see further savings.

Finally, Figure 14 compares daily bandwidth savings of standard
and prefix-based Web caching. On the first day, prefix-based Web
caching with 2 TB cache shows slightly larger bandwidth savings
than Web caching with infinite cache. The difference between
standard and prefix-based Web caching with infinite cache stays
more or less the same (3∼4%) over time. This implies that (a)
the additional redundancy detected by prefix-based Web caching
is limited by a large prefix key size, and (b) old content may not
benefit from prefix-based Web caching as much as the new content
does.

6.3 Effectiveness of TCP-RE
We present the effectiveness of TCP-RE over the measurement

period in Figure 11 where we use the LRU cache replacement
algorithm with 512 GB chunk cache size. Overall, we find 30∼40%
of bandwidth savings most of the day (8 am - midnight) while it
drops below 20% early in the morning (4 - 6 am).

Figure 10(b) compares bandwidth savings by HTTP content type.
Video, image, application take up over 80% of the total HTTP traffic,
and contribute to 85% of the total bandwidth savings. Image and
application show high redundancy while the redundancy in video
is relatively lower. Compared with Web caching, however, more
redundancy is found for video since they are often uncacheable with
sessionID/userID embedded in their URLs (e.g., YouTube).

Redundancy at Peak Bandwidths. In general, the bandwidth
savings shows a positive correlation with the bandwidth usage, but
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Figure 14: Comparison of daily bandwidth savings by standard and
prefix-based Web caching

the peak times (10 - 11 pm) do not always yield higher redundancy.
Figure 11 indicates that the periodic bandwidth peaks in the rush
hour can be effectively suppressed by TCP-RE. The content types
that drive the local peaks are audio and text, which implies that many
users are listening to popular music or reading popular online news
while commuting. In contrast, these periodic bandwidth peaks can-
not be addressed by standard Web caching that saves 14.4∼18.2%
less bandwidth than TCP-RE. Further investigation shows that many
of those audio objects are from subscription-based music services,
and are set uncacheable. Similar periodic bandwidth spikes during
lunch time can also be effectively reduced by TCP-RE.

On the other hand, some bandwidth savings at 10 - 11 pm shows
a slightly negative correlation with the bandwidth usage (e.g., Mon.,
Tue., and Wed.) where a similar behavior is observed in enter-
prise traffic analysis [13]. Nevertheless, TCP-RE still promises
30.7∼36.9% bandwidth savings at the peak time in the 3G traffic.
Figure 12 shows the estimated bandwidth usage for the seven days
(called compressed bandwidth) after applying TCP-RE. Bandwidth
fluctuation is much smaller with TCP-RE, which effectively curbs
the usage below 5 Gbps.

Cache Size and Replacement Policy. We further investigate the
effect of different cache sizes and cache replacement algorithms
on bandwidth savings in TCP-RE. Due to the large volume of our
traces and the limitation in the available memory (144 GB) of our
machine, we divide the traces into 24 disks by chunk hash values
and calculate the bandwidth savings on one partition.

First, Figure 15(a) shows bandwidth savings for the first five
days 4 where each bar represents bandwidth savings for each day.
We increase the cache size from 4 GB to infinite, and use the LRU
cache replacement policy. Except for the infinite cache case, the
bandwidth savings stays more or less the same. The infinite cache
can find 48.9∼59.3% of the redundancy while even 4 GB cache
reduces the traffic by more than 10%. As expected, the bandwidth
savings grows as the cache size increases, but we observe diminish-

4Due to the the memory limitation, we could not simulate infinite
cache beyond the first five days.
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Figure 15: TCP-RE bandwidth savings by cache size and cache replacement algorithms
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Figure 16: Memory I/O performance on Monbot

ing gains. This is because the popularity of the chunks follows the
Zipf distribution, which we will discuss further in Section 6.5.

Next, we compare the impact of FIFO and LRU cache replace-
ment algorithms on the bandwidth savings for two practical cache
sizes that can be installed on currently available commodity servers.
Figure 15(b) suggests that LRU is slightly better (2.1∼2.3%) than
FIFO for the same cache size. It implies that the redundancy comes
mostly from temporal locality.

6.4 TCP-based RE vs. Packet-based RE
We discuss performance trade-offs of different RE system de-

signs, and their suitability in high-speed cellular backbone networks.
While we assume middlebox-based TCP-RE here, an alternative
approach is packet-level RE [14, 42], which detects candidate frag-
ments for RE within each IP packet, typically using content-based
fingerprinting functions [11, 13, 39]. Packet-level RE is simpler
because it does not manage TCP flows nor terminate the TCP con-
nections at middleboxes. Also, it can potentially find more re-
dundancy since it operates on smaller chunk sizes (e.g., 32 to 64
bytes [11, 13, 42]).

However, there are a few drawbacks with packet-level RE in high-
speed cellular backhaul networks. First, small chunks can easily
explode the index sizes in a high-speed network. For example, a 64B
average chunk size may require 64x more index entries than 4 KB
chunks for the same cache size. Second, a small chunk size would
incur a higher hashing and content reconstruction cost, and it stresses
the memory system which is typically the performance bottleneck
in memory-based RE. Figure 16 compares random memory read
and SHA1 hashing performances over various chunk sizes when all
12 cores on Monbot do only the memory operations. We run the
experiment five times and show the averages. Both random memory
read and SHA1 performances increases as the chunk size grows
and saturates at 4 KB. The 4 KB random read performance is 28.3x
and 14.2x larger than those of 64B and 32B chunks, presumably
due to much smaller TLB cache misses and page table operations.
From the Figure, it looks very challenging to achieve 10 Gbps RE
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Figure 17: TCP-RE bandwidth savings by flow size

performance with 32B or 64B chunks on a single machine. Similarly,
SHA1 performance of 4 KB chunks is 5.78x or 3.36x higher than
those of 32B or 64B chunks. Some previous work [11] reduces
the hashing overhead by maintaining a synchronized chunk cache,
but it would be challenging to be applied to cellular networks since
the packet routes can change abruptly due to user mobility. Finally,
it is difficult to enforce flow-based policies with packet-level RE.
Cellular ISPs may want to apply RE to only large file downloads or
to specific content types that exhibit high redundancy with a small
flow management overhead.

Instead, middlebox-based TCP-RE with fixed 4 KB chunks strikes
a balance between memory I/O costs and bandwidth savings, which
we think is reasonable for cellular backbone networks. It could even
reduce the flow management cost while still offering a reasonable
level of bandwidth savings by selectively processing flows. Fig-
ure 17 shows the cumulative distribution functions (CDFs) of the
redundancy and the number of flows for the flow size. It shows
that the largest 10% of the flows bring about 70% of the bandwidth
savings. That is, bypassing any HTTP responses smaller than 32 KB
could eliminate the cost of managing 90.6% of the flows while still
providing 31.6% of the bandwidth savings.

6.5 Source of Redundancy
We study the source of redundancy to help determine the effective

caching strategies and deployment options. First, we analyze the
source of the HTTP object-level redundancy. Specifically, we mea-
sure the fraction of redundancy from serving the same object with
the same URL (intra-content) and with different URLs (alias),
partial content overlap in the objects with the same URL (object
update) and with different URLs (inter-content). Second, we
measure the fraction of the redundancy in the communicating node
pair. We mark it same-pair if the redundancy is found from the
same client and server pair, same-server if it comes from the same
server but different clients, same-client if it comes from the same
client interacting with different servers, and diff-pair if the re-
dundancy is from different client and server pairs.
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Figure 18: Source of redundancy
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(a) Volume distribution by chunk popularity
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(b) Cache-hit interval distribution
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Figure 19: Temporal analysis of the most popular 1000 chunks

Figure 18(a) shows the results for five one-hour time slots that are
carefully chosen based on bandwidth usage. Each bar represents an
average for seven days. Interestingly, the behavior is similar across
all time slots. The intra-content redundancy shows 52.1∼58.9%
while alias contributes to 30.4∼38.9%. The redundancy from partial
content overlap is less than 9% most of the time. This implies
that Web caching is effective in addressing a large portion of the
redundancy while prefix-based Web caching with a small prefix key
size could suppress most of the redundancy if it can avoid false
positives.

For the node level analysis, we assume that it is the same client
if it uses the same IP, the same mobile device model, and the same
OS version in the user-agent field. If we detect the change of the
device model or the OS version, we assume that the IP is reassigned
and consider it as a different client. While this can bloat the actual
redundancy from a client, we find that the redundancy from the same
client (e.g., same-pair, same-client) is less than 21%, which implies
the client-side RE would produce limited bandwidth savings. This
is in contrast to the enterprise traffic where as much as 75% of the
redundancy is attributed to the intra-host traffic [11]. The majority of
the redundancy in our 3G traffic comes from downloading popular
contents from the same server.

Figure 18(b) shows the source of redundancy by the content type.
Overall, the major source of redundancy is from the same contents
(intra-content, alias) and from the same server (same-server, same-
pair). However, the contribution by aliases is much higher for media
contents such as video and audio than other contents since they are
usually served by multiple servers for load balancing. On the other
hand, we find that the contribution by partial content overlap (inter-
content, object update) and client-side RE (same pair, same-client)
is limited.

The redundancy in the non-HTTP traffic is 2.8∼12.9% in the time
slots, which is lower than that of the HTTP traffic. The top traffic
contributor is P2P video streaming that uses port 17600 [10] and the
SSL traffic, taking up 3.6% and 3.4% of the downlink traffic each.

Data Type 10-11 pm 11 pm-12 am 5-6 am 8-9 am
7/7 7/7 7/8 7/8

Chunks 0.7441 0.7512 0.7177 0.7490
Web Objects 0.8820 0.8799 0.8798 0.8755

Table 6: Zipf’s α values for one-hour time bins

We see that the P2P traffic with port 17600 significantly increases in
early morning (up to 8.8% in 4-6 am), which partly explains why
the bandwidth savings decreases during the time.

6.6 Temporality of Redundancy
We find that both HTTP objects and chunks follow the Zipf

distribution. Table 6 shows that the Zipf α values of Web objects
(0.88) are relatively larger than those of chunks (0.72∼0.75), but
we actually find that TCP-RE is more effective even with a smaller
cache size. This implies that the cache duration and the cacheability
of the HTTP objects set by the content providers may be suboptimal
in terms of bandwidth savings.

We also analyze the temporal locality of the chunks in the first
one hour of our measurement more closely. Overall, we find strong
temporal locality of the chunks. During the first hour, the most
popular 1% chunks represent 29.9% of the total downlink bytes in
the hour and the top 10% chunks represent 48.9% of the hourly vol-
ume as shown in Figure 19(a). Figure 19(b) shows the distribution
of hit intervals of the most popular 1,000 chunks in the first hour.
95.4% of all hits occur within 10 minutes while 99.0% of them are
within 33 minutes. Lastly, Figure 19(c) shows the distribution of
the lifespans (the time between the first and the last hits of the same
chunk) of the most popular 1,000 chunks in the first hour for the
remaining 7 days. We find that 64.4% of the chunks are accessed
throughout the seven days while 14.6% of them are used only on
the first day. We also find that there is no strong correlation between
the lifespan and the hit-count rank.

Motivated by the high temporal locality of chunks, we simulate
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Figure 20: TCP-RE bandwidth savings for caching for the most recent N minutes
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Figure 21: Required TCP-RE cache size for caching for the most recent N minutes

the effect of limited but realistic TCP-RE cache sizes. Figure 20
and Figure 21 show the bandwidth savings and required cache sizes
when caching chunks only for the most recent 10 to 60 minutes. We
achieve as much as 30∼40% of the bandwidth savings by caching
chunks for the most recent 10 minutes while caching for 60 minutes
increases the bandwidth savings by only 10% at the cost of linear
increase in the required cache size. That is, the high temporality of
the chunks greatly helps suppress the redundancy even with small
cache size but larger cache size would yield a marginal increase in
bandwidth savings.

One interesting finding is that the top two chunks consist of a
stream of 0x00 (chunk with all 0’s) and 0xFF (chunk with all 1s), and
they are used for various content types like image, app, and even text.
We suspect these are due to padding generated by commonly-used
libraries.

7. IMPLICATIONS FOR CACHING
MIDDLEBOXES

This section summarizes our key findings that could shape the
design of caching middleboxes for high-speed cellular backhaul
networks.

• Caching middleboxes should be able to efficiently manage
a large number of concurrent flows in high speed links. In
our data set, we observe up to 270K concurrent flows, 1.3M
new flows per minute, and about 7.5 Gbps peak per-minute
bandwidth usage.

• Unlike wired network traffic, our mobile network traffic incurs
several periodic spikes in bandwidth usage related to user
mobility during the day (e.g., rush hour, lunch time, and
midnight).

• Among different caching strategies, we find TCP-RE with
512 GB memory cache outperforms other approaches, and it
is even effective for suppressing peak bandwidth usage. While
prefix-based Web caching offers higher bandwidth savings
than standard Web caching, it comes with false positives that
severely limit its utility. Due to the Zipf-like distribution of
chunk popularity, LRU slightly outperforms FIFO.

• Packet-based RE may be unsuitable for high-speed cellular
backhaul links because of its high overhead on indexing and

memory I/Os. We also find that an end-host based caching
approach provides only limited bandwidth savings.

• Most flows are short-lived, but a small fraction of large flows
(e.g., video) dominate the entire traffic volume. This offers an
optimization opportunity for RE systems to reduce the flow
management cost while still providing a reasonable level of
bandwidth savings.

8. RELATED WORK
Our work is built upon previous research in many areas. In this

section, we relate our work to this previous work.

Scalable Traffic Analysis on Multicore Systems. Various ef-
forts exploited processing parallelism in multicore systems for scal-
able packet/flow management [25, 36, 41]. Sommer et al. build a
custom FPGA-based NIC that manages a large table indexed by five
tuples of a packet header, and dispatches packets to core-pinned
CPU threads based on the routing decision in the table entry [41].
For high scalability, they ensure the core affinity of packet pro-
cessing but allow event queues to exchange information between
threads. Fusco et al. present virtual capture devices for scalable
packet analysis on a commodity NIC [25]. They use RSS to dis-
tribute incoming packets to multiple RX queues, and virtualize a
physical NIC to provide multiple virtual devices for packet capture
threads. Affinity-accept focuses on core-scalable accept() on an
end node by removing lock contention and ensuring core affinity in
incoming TCP packet processing [36].

In comparison, Monbot achieves scalable TCP flow processing in
a middlebox using a commodity NIC. Monbot extends PacketShader
I/O engine [26] to process all packets in the same TCP connection
in the same core by symmetric RSS without lock contention or any
sharing of flow context across different cores.

Network Redundancy Elimination. There have been many
works that suggest redundancy suppression for WAN acceleration.
Spring et al. first present packet-level RE based on Rabin’s finger-
printing, and showed that 39% of the uncacheable Web traffic can be
saved [42]. More recently, Anand et al. report 59% and 31% of po-
tential bandwidth savings for small and large enterprise traffic [13].
They also find that over 75% of the savings are from intra-host
matches. Drawing from this fact, EndRE suggests pushing the RE
cache to clients [11]. Other proposals include deploying network-



wide RE by carefully coordinating the router cache [14], and sup-
porting RE as a primitive service in the IP-layer [12]. Furthermore,
PACK [47] shows the power of chunk prediction in reducing the
redundant traffic for cloud traffic. Ihm et al. find 42.0∼50.6% of
the redundancy in the CoDeeN content distribution network Web
traffic [28].

We find that the cellular network traffic could also benefit from
significant bandwidth savings by TCP-RE. Unlike the enterprise
traffic, our measurements show that the redundancy in the intra-
host traffic is rather limited, and the middlebox-based approach
would bring higher redundancy suppression in the cellular backhaul
networks. Furthermore, our work deals with one or two orders of
magnitude larger traffic than previous works [13, 23], showing the
daily redundancy pattern, flow dynamics, and detailed comparison
of effectiveness of various caching strategies.

Web Caching in Cellular Networks. Erman et al. report 68.7%
of the HTTP objects are cacheable with 33% of the cache hit ratio in
their two-day measurements in a 3G cellular network in 2010 [22].
While the fraction of cacheable objects is smaller (53.9%) in our
measurement, the cache hit ratio is similar (38.3%). Another work
finds that 36% of the 3G traffic is attributed to video streaming, and
24% of the bytes can be served from HTTP cache [23]. Our numbers
match the volume of the traffic (33.8%), but the video bandwidth
savings in Web cache is smaller in our trace (18.7%). However, we
show that TCP-RE could increase the bandwidth savings further by
9.7% for video. Qian et al. report that Web caching on smartphones
(e.g., browser or application cache) could be ineffective due to the
lack of support for Web caching or library bugs [38]. More recently,
Qian et al. measure the effectiveness of Web caching, file com-
pression, delta encoding, and packet-level RE using packet traces
collected from 20 mobilephone users for 5 months [37]. They find
that combining all of the four methods could reduce the cellular
traffic by 30%. In comparison, our middlebox-based TCP-RE pro-
vides the similar bandwidth savings without any modification of the
server and the client. In addition, we believe packet-level RE that
they use is difficult to deploy in practice since it is challenging to
synchronize the RE cache due to device mobility.

Breslau et al. report that the popularity of Web objects follows the
Zipf distribution [18]. We see the same trend in our 3G Web traffic
with α = 0.88. This suggests that even a small cache reduces a large
amount of Web traffic, which is implied in Figure 9(a). Chunk-level
popularity shows smaller α values, but it is more effective than Web
caching even with a smaller cache size.

TCP Performance in Cellular Networks. The TCP perfor-
mance of the live cellular networks has been measured in previ-
ous research. Chesterfield et al. report an average throughput of
350 Kbps and 200 ms of delays in early 3G UMTS networks in
2004 [19]. Later, Jurvansuu et al. report an effective bandwidth of
1 Mbps and 61 ms of delays in HSDPA networks in 2007 [29].

In contrast, our measurements show that the average throughput
is only 111.92 Kbps because the majority of the TCP flows are
small and they do not leave the slow start phase. For flows larger
than 1 MB, however, the average bandwidth is 0.95 Mbps, and the
maximum throughput we observe reaches 13.6 Mbps.

9. CONCLUSION
Caching in the cellular networks is an attractive approach that can

address the backhaul congestion in core networks. By monitoring
8.3 billion flows of 3G backhaul traffic for one week, we have com-
pared the benefits and trade-offs of promising caching solutions. We
have found that TCP-RE is the most effective in terms of bandwidth
savings and cache size overhead. It gives 14% additional bandwidth

savings compared to standard Web cache, with only 512 GB memory.
Prefix-based caching is effective with a small key size, but we find
that it produces false positives even with a large prefix size such as
1 MB. We have also shown the flow-level characteristics of modern
3G traffic, which should be useful for provisioning the capacity of
the networks or for designing various middleboxes for cellular net-
works. Finally, we have presented Monbot, a high-performance DFI
system on commodity hardware that scalably manages hundreds of
thousands of concurrent flows by balancing the load across CPU
cores with symmetric RSS. We believe Monbot and symmetric RSS
could serve as a basis for flow managing middleboxes in high-speed
networks.
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