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ABSTRACT

As high-speed networks are becoming commonplace, it is increas-
ingly challenging to prevent the attack attempts at the edge of the
Internet. While many high-performance intrusion detection systems
(IDSes) employ dedicated network processors or special memory to
meet the demanding performance requirements, it often increases the
cost and limits functional flexibility. In contrast, existing software-
based IDS stacks fail to achieve a high throughput despite modern
hardware innovations such as multicore CPUs, manycore GPUs,
and 10 Gbps network cards that support multiple hardware queues.

We present Kargus, a highly-scalable software-based IDS that
exploits the full potential of commodity computing hardware. First,
Kargus batch processes incoming packets at network cards and
achieves up to 40 Gbps input rate even for minimum-sized packets.
Second, it exploits high processing parallelism by balancing the
pattern matching workloads with multicore CPUs and heterogeneous
GPUs, and benefits from extensive batch processing of multiple
packets per each IDS function call. Third, Kargus adapts its resource
usage depending on the input rate, significantly saving the power in
a normal situation. Our evaluation shows that Kargus on a 12-core
machine with two GPUs handles up to 33 Gbps of normal traffic
and achieves 9 to 10 Gbps even when all packets contain attack
signatures, a factor of 1.9 to 4.3 performance improvements over
the existing state-of-the-art software IDS. We design Kargus to be
compatible with the most popular software IDS, Snort.
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1. INTRODUCTION

The demand for a high-speed intrusion detection system (IDS) is
increasing as high-bandwidth networks become commonplace. The
traffic aggregation points in the regional ISPs are already handling
tens of Gbps of Internet traffic, and many large enterprise and cam-
pus networks are adopting 10 Gbps links for Internet connection. 4G
mobile communication technologies such as Long-Term Evolution
(LTE) employ IP packets for internal routing while the traffic is
aggregated into a few central points whose bandwidth requirements
often exceed a multiple of 10 Gbps. Securing the internal networks
has become a common and crucial task that constantly deals with
flash crowds and external attacks.

Detecting malicious attack patterns in the high-speed networks
entails a number of performance challenges. The detection engine
is required to monitor the network traffic at line rate to identify
potential intrusion attempts, for which it should execute efficient
pattern matching algorithms to detect thousands of known attack
patterns in real time. Reassembling segmented packets, flow-level
payload reconstruction, and handling a large number of concurrent
flows should also be conducted fast and efficiently, while it should
guard against any denial-of-service (DoS) attacks on the IDS itself.

Today’s high-performance IDS engines often meet these chal-
lenges with dedicated network processors [1}[3]l, special pattern
matching memory [30]], or regular expression matching on FP-
GAs [12]]. However, these hardware-based approaches limit the
operational flexibility as well as increase the cost. In contrast,
software-based IDSes on commodity PCs lessen the burden of cost
and can extend the functionalities and adopt new matching algo-
rithms easily. However, the system architecture of the existing
software stacks does not guarantee a high performance. For exam-
ple, Snort [40]], the most widely-used software IDS, is unable to read
the network packets at the rate of more than a few Gbps, and is de-
signed to utilize only a single CPU core for attack pattern matching.
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Figure 1: Typical Intrusion Detection Process in a Signature-based IDS

More recent IDS solutions like Suricata [9]] and SnortSP [8] employ
multiple CPU cores, but the performance improvement is marginal
mainly due to suboptimal usage of modern commodity hardware
advancements. To the best of our knowledge, there is no software
IDS that can handle 10 Gbps traffic for minimum-sized IP packets.
This implies that the software solution itself can be the target of a
DDoS attack with a massive stream of small packets.

In this paper, we present Kargus, a highly-scalable software IDS
architecture that fully utilizes modern hardware innovation, e.g.,
multiple CPU cores, non-uniform memory access (NUMA) archi-
tecture, multiqueue 10 Gbps network interface cards (NICs), and
heterogeneous processors like graphics processing units (GPUs).
Two basic techniques that we employ for high performance are (i)
batch processing and (ii) parallel execution with an intelligent load
balancing algorithm, as elaborated more next. First, we extensively
apply batch processing from packet reception, flow management, all
the way to pattern matching. Fetching multiple packets from a NIC
at a time significantly reduces per-packet reception (RX) overhead
and allows a high input rate up to 40 Gbps even for minimum-sized
packets. In addition, in Kargus, each pattern matching function han-
dles a batch of packets at a time. This function call batching allows
efficient usage of CPU cache and reduces repeated function call
overheads as well as improves GPU utilization for pattern matching.
Second, we seek high processing parallelism by balancing the load
of flow processing and pattern matching across multiple CPU and
GPU cores. We configure NICs to divide the incoming packets by
their corresponding flows into the queues affinitized to different
CPU cores, and have each CPU core process the packets in the same
flow without any lock contention. We also devise a load balancing
algorithm that selectively offloads pattern matching tasks to GPU
only if CPU is under heavy computation stress. Processing with
CPU is preferable in terms of latency and power usage, but excessive
workloads could swamp the CPU, which would miss the chance to
inspect the packets at a high load. Our load balancing algorithm
dynamically adjusts the offloading threshold, enabling us to achieve
both low latency and low power usage at a reasonable input rate, but
quickly switch to using GPUs when the workload exceeds the CPU
capacity.

Our contributions are summarized as follows:

1) We present an IDS design that scales to multiple tens of Gbps re-
gardless of the packet size. On a dual-CPU Intel X5680 platform
with 12 processing cores and two NVIDIA GTX 580 GPUs, Kar-
gus achieves 25 Gbps for 64B packets and reaches 33 Gbps for
1518B packets from packet capture to pattern matching. Com-
pared with MIDeA [47]], a GPU-accelerated multicore IDS en-
gine, Kargus shows a factor of 1.9 to 4.3 performance improve-
ments by the per CPU-cycle metric.

2) We analyze the performance bottleneck at each stage of packet
handling: packet capture, pattern matching, and load balanc-
ing across CPU and GPU. Moreover, we present an intelligent

load balancing algorithm that dynamically adjusts the resource
consumption according to the input workload and reduces both
detection latency and power usage when the input rate can be
handled by the CPU alone. GPUs are utilized only when the
aggregate throughput can be further improved at the cost of in-
creased power consumption and latency. For easy deployment,
we design Kargus to be functionally compatible with Snort and
its configuration files.

2. BACKGROUND

We provide the brief background of a signature-based IDS that
is widely deployed in practice. We focus on the design of a typical
software-based IDS and popular pattern matching algorithms that
are currently in use, and how we exploit GPU for attack string
pattern matching.

2.1 Signature-based IDS Architecture

Figure [I] shows the functional components of a typical IDS
through which each incoming packet is processed. The IDS reads
packets, prepares them for pattern matching, runs a first-pass multi-
string pattern matching for potential attacks, and finally evaluates
various rule options and confirms if a packet or a flow contains one
or more known attack signatures.

2.1.1 Packet Acquisition and Preprocessing

The first step that an IDS takes is to read incoming packets us-
ing a packet capture library. Existing packet capture libraries in-
clude pcap [45] and ipfirewall [25]]. While these libraries provide
a common interface, their performance is often suboptimal in the
high-speed networks with multi-10 Gbps input rates. This is mainly
because they process the packets one by one, i.e., read one packet
at a time from a NIC, allocate a memory chunk for each packet,
wrap the packet with a heavy kernel structure (called sk_buff in
Linux), and pass it to the user-level IDS. It is reported by [22] that
50-60% of the CPU time is spent on per-packet memory allocation
and deallocation in this approach.

Recent packet capture libraries such as PF_RING [19]], netmap [38]],
and PacketShader 1/0 engine [22] avoid these problems by batch-
processing multiple packets at a time. To remove per-packet memory
allocation and deallocation overheads, they allocate large buffers
for packet payloads and metadata, and recycle them for subsequent
packet reading. They also use receive-side scaling (RSS) [31] by
affinitizing each RX queue to a CPU core, removing the lock con-
tention from concurrent queue access from multiple CPU cores.
RSS distributes the incoming packets into multiple RX queues by
hashing the five tuples of IP packets (src/destination IP/port and the
protocol). This allows the packets in the same flow to be enqueued
into the same NIC queue, ensuring in-order processing of the pack-
ets in the same flow while having multiple CPU cores process them
in parallel without serial access to the same RX queue.
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Figure 2: An attack rule of a typical signature-based IDS. The
detection engine categorizes the attack rules based on the port
numbers.

After reading the packets, the IDS prepares for matching against
attack patterns. It reassembles IP packet fragments, verifies the
checksum of a TCP packet, and manages the flow content for each
TCP connection. It then identifies the application protocol that each
packet belongs to, and finally extracts the pattern rules to match
against the packet payload.

2.1.2  Attack Signature Matching

Once flow reassembly and content normalization is completed,
each packet payload is forwarded to the attack signature detection
engine. The detection engine performs two-phase pattern matching.
The first phase scans the entire payload to match simple attack
strings from the signature database of the IDS. If a packet includes
one or more potential attack strings, the second phase matches
against a full attack signature with a regular expression and various
options that are associated with the matched strings. This two-phase
matching substantially reduces the matching overhead in the second
phase, bypassing most of innocent packets in the first phase.

Phase 1: Multi-string pattern matching. The first phase matches a
set of simple strings that potentially lead to a real attack signature.
In Snort, the attack signatures are organized in port groups based
on the source and destination port numbers of the packet. Only the
attack signatures associated with the relevant port group are matched
against the packet content, reducing the search space.

Most IDS engines adopt the Aho-Corasick algorithm [11] for
multi-string pattern searching. The Aho-Corasick algorithm repre-
sents multiple pattern strings in a single deterministic finite automata
(DFA) table. Its DFA follows the transition function, 7 : S x ¥ — §
where S and ¥ are the sets of states and alphabets, respectively.
Since the computation consists of a series of state machine tran-
sitions for an input character stream, the Aho-Corasick algorithm
provides O(n) time complexity regardless of the number of string
patterns, where n is the size of the input text. The Aho-Corasick
algorithm constructs a DFA in a form of ‘trie’. The trie manages
the normal links that follow the pattern string as well as the failure
links that lead to a state where the next input character resumes
after failing to match the pattern. The failure links are coalesced by
those patterns that share the same string prefixes. This allows the
Aho-Corasick algorithm to perform multi-pattern matching without
backtracking. There are several alternative multi-pattern matching
algorithms such as Boyer-Moore [39] or Wu-Manber [42]], but only
the Aho-Corasick algorithm ensures the equal performance for the
worst and average cases. This makes the algorithm highly robust
to various attacks, which is the main reason why the Aho-Corasick
algorithm is one of the most widely-used algorithms for intrusion
detection [33].

In practice, the majority of normal packets are filtered in the
multi-string matching phase. Therefore, the performance of an IDS
in a normal situation is determined by the execution time of the
Aho-Corasick algorithm. Under attacks, however, the second phase
is likely to become the performance bottleneck.

Phase 2: Rule option evaluation. If packets are caught in the
string matching phase, they are evaluated further against a full

attack signature relevant to the matched string rule. Full attack
signatures are described in terms of the rule options in Snort, as
exemplified in Figure[2] Snort-2.9.2.1 supports 36 rule options other
than ‘content’, which specifies a string pattern matched in the first
phase. Other popular rule options include ‘distance’, ‘within’,
‘offset’, ‘nocase’ and ‘pcre’. pcre stands for Perl-Compatible
Regular Expression [|6], which allows a flexible attack pattern in a
regular expression supported by Perl 5. The pcre option is typically
evaluated last since it requires a full payload scan. Unlike multi-
string pattern matching, each PCRE option is implemented as a
separate DFA table, so it requires payload scanning twice to confirm
a match (string and PCRE matching).

To reduce the waste in memory bandwidth, it would be desirable
to combine string and PCRE matching into one scan. One problem
with merging multiple PCRE options into one DFA is that it would
lead to state explosion. While there have been many works that
address the DFA state explosion problem [13}/35,41], they are rarely
used in practice because (a) it is difficult to integrate other rule
options into a table, (b) some PCRE options (such as a back link)
cannot be represented by a DFA, and (c) it often becomes a barrier
to further performance improvement by GPU, since the proposed
solutions involve state management that requires frequent branching.

2.2 Employing GPU for Pattern Matching

High-speed pattern matching in an IDS often makes the CPU
cycles and memory bandwidth the bottlenecks. With a large number
of processing cores and high memory bandwidth, GPU can fur-
ther improve the performance of pattern matching. For example,
NVIDIA’s GTX 580 has 512 processing cores and 192 GB/s of the
peak memory bandwidth, which has 39.9x more raw processing
capacity and 6x more memory bandwidth compared with a 3.33
GHz hexacore Intel CPU.

Modern GPU achieves high throughputs by parallel execution
of many concurrent threads. Its execution model is called Single
Instruction Multiple Threads (SIMT), where the same instruction
stream is shared by a unit of multiple threads (called a warp, which
is 32 threads in NVIDIA’s CUDA programming library) while each
thread works on different data in parallel. Toward high performance,
it is important for the threads to take the same execution path since
any deviation (even by one thread) would serialize the execution of
all the other threads. Also, the memory access by the threads should
be contiguous enough to maximally benefit from the high memory
bandwidth. For this reason, a complex algorithm that requires high
execution-flexibility could produce suboptimal performance, often
much lower than that of the CPU version.

Both Aho-Corasick and PCRE matching algorithms run DFA
transition with an input text, and one can exploit high parallelism
by launching multiple threads that share the same execution path.
However, employing GPU is not free since CPU has to spend its
cycles to offload the workload to GPU and to get the result back
from it. Preparing the metadata for GPU pattern matching consumes
both CPU cycles and host memory bandwidth. Also, performing
DMA copy of packet payloads and metadata to GPU memory would
increase memory access contention, which could slow down other
memory-intensive CPU tasks such as reading packets from NICs,
preprocessing, and CPU-based pattern matching. We analyze these
factors and leverage the offloading cost to ensure both CPU and
GPU cycles are well-spent for high pattern matching performance.

3. SYSTEM PLATFORM

Throughout this paper, we base our measurements on a machine
with two 3.33 GHz Intel X5680 CPUs and two NVIDIA GTX
580 GPUs. Our IDS platform has 24 GB physical memory with
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Figure 3: Overall architecture of Kargus on a dual-NUMA machine with two hexacore CPUs and two GPUs
FUNCTION | TIME % | MODULE
acsmSearchSparseDFA_Full 51.56 | multi-string matching threads as the number of CPU cores, and affinitizes each thread
List_GetNextState 13.91 | multi-string matching to a CPU core. Threads are divided into IDS engine threads and
mSearch 9.18 | multi-string matching GPU-dispatcher threads. An IDS engine thread reads the incoming
in_chksum_tcp 2.63 preprocessing packets from multiple NIC RX queues, and performs the entire IDS

Table 1: A profiling result of CPU-intensive functions in Snort-
2.9.2.1 monitoring 1518B TCP packets at 20 Gbps input rate

12 GB local memory per each NUMA domain and has two dual-
port 10 Gbps Intel NICs with the 82599 chipsets. We use our own
IDS workload generator that we have developed for this work from
another machine with the same hardware specification except the
GPUs. Our IDS workload generator can produce TCP packets
with a random payload at 40 Gbps regardless of the packet size.
Unless specified otherwise, our throughput numbers include the
14B Ethernet frame header size and the 20B frame overhead (8B
preamble and 12B interframe gap), and a packet size in this paper
refers to the Ethernet frame size. Including the Ethernet frame
header and overhead is necessary to show the line rate for small
packet sizes.

4. ARCHITECTURE

In this section, we explain the basic architecture of Kargus. Kar-
gus achieves a high performance in pattern matching by applying
the principle of batch processing and parallel execution at each stage
of packet processing. It consists of multiple CPU threads where
each thread reads and processes packets from NIC queues affinitized
to it by RSS. The thread mainly uses its affinitized CPU core for
string and PCRE matching, and additionally it offloads packets to
GPU when its own CPU core is overloaded. We present the fast
packet capture library, function call batching and NUMA-aware
data placement in this section, and a load balancing algorithm that
adaptively harnesses both CPU and GPU cores in the next section.

4.1 Process Model

Figure@illustrates the overall layout of Kargus. Kargus adopts
a single-process multi-thread architecture. It launches as many

tasks, e.g., preprocessing, multi-string matching, and rule option
evaluation in its thread. When it detects that its own CPU core is
overloaded, it offloads the pattern matching workloads to a GPU-
dispatcher thread.

The multi-thread model provides a number of benefits over the
multi-process model adopted by earlier works [37,/47]. First, it
allows efficient sharing of attack signature information among the
threads. The entire ruleset of Snort-2.9.2.1 amounts to 1 GB when it
is loaded, and having a separate copy per process would be wasteful,
otherwise they need to set up a shared memory or access it via
IPC. Second, employing GPUs in multiple processes would require
each process to reserve a portion of GPU memory for its own DFA
tables. For this reason, MIDeA [47] uses a compact version of Aho-
Corasick DFA (called AC-Compact), which incurs a performance
hit. Third, multiple threads would collect a bunch of packets for
short time, and would saturate the GPU more quickly. This would
reduce the service latency and allow better utilization of the GPU.

An alternative to the one-thread-do-all model is pipelining [4,5l/7].
In the pipelining model, threads are divided into I/O and analyzer
threads. That is, some threads are dedicated to packet capture and
flow management, while the others focus on pattern matching of the
received packets. While this architecture is suited for the existing
packet capture libraries that do not exploit multiple RX queues, it
tends to produce a suboptimal performance due to inefficient CPU
utilization. Pipelining suffers from heavy cache bouncing due to
the frequent passing of packets between I/O and analyzer threads.
Also, the CPU cores of the I/O threads are often underutilized
since the pattern matching speed of the analyzer threads is typically
slower than the input rate of the I/O threads at high-speed networks.
Table [A.1] shows the top four functions that consume most CPU
cycles in a single-threaded Snort-2.9.2.1 with a 3,111 HTTP attack
rules under 20 Gbps input rate of 1518B TCP packets. The top
three functions are called at multi-string pattern matching, which




ezzEz PCAP polling E=xIPF_RING DNA E==3 PSIO
—=X—PCAP polling CPU%  —o—PF_RING DNACPU% -0~ PSIOC

o

o

U %

40 N
g, R %3 - 100
235 Q 0
<) \ N .S
530 \ \ N 802
= N N =
S5 \ N N S
S N N | 608
320 — N N g
= N N =
=15 - N \ §%’% - 40D
[=)) \Q\;\: -}
£10 ==y - - \ N 2
2 N .50 NN - 200
S5 | N2 = = A

e ]
& 0 0.9 || \ &1‘% L o

2 o i ey 04 1919

Figure 4: Packet reception performance and CPU utilization of
various packet I/0 libraries

is the primary bottleneck in this workload. This implies that the
pipelining model would eventually slow down the I/O threads if the
analyzer threads cannot catch up with the input rate. On the contrary,
the one-thread-do-all model avoids this problem since it naturally
adjusts the pattern matching throughput to its own input rate.

4.2 High-Performance Packet Acquisition

A high-performance IDS requires the capability of capturing
incoming packets fast with few packet drops. Since existing packet
capture libraries (e.g., pcap and ipfirewall) are not designed for
multi-10 Gbps networks, they become the first obstacle to high
performance regardless of the performance of the pattern matching.

To boost the packet capture performance, we use the I/O Engine
(PSIO) from the PacketShader software router [22]. PSIO drastically
improves the packet RX performance by batch processing multiple
packets from NICs. It allocates a large contiguous kernel buffer
per each RX queue (e.g., 8 MB) at driver initialization and moves
multiple packets from a RX queue to the corresponding buffer in
a batch. When the packets are consumed by a user application,
it reuses the buffer for the next incoming packets, obviating the
need to deallocate the buffer. This effectively reduces memory
management and [/O MMU lookup overheads per packet, which
is the main bottleneck of other packet capture libraries. Moreover,
PSIO removes most of redundant fields of the sk_buff structure
tailored to IDS packet processing needs, and prefetches the packet
payload to the CPU cache while moving the packets to a user-level
buffer, allowing the applications to benefit from the CPU cache
when processing the received packets. We modify the original PSIO
to map the flows in one connection to the same RX queue regardless
of their direction. The basic idea is to modify the initial seeds of RSS
such that the RSS hashes of the packets in the same TCP connection
take on the same value regardless of the direction [48]]. We add
a callback function to feed the received packets to the payload
inspection part.

PF_RING provides the similar batching benefit, and its Direct
NIC Access (DNA) extension allows the NIC to move the packets
directly to the kernel bufter without CPU intervention. However,
PF_RING DNA limits each thread to tap on at most one RX queue,
reducing the load balancing opportunity when an IDS monitors
multiple 10 Gbps ports. Distributing the packets in the user-level
threads/processes could mitigate the problem. However, it would
not only contaminate the CPU cache but also increase the IPC
overhead. In addition, PFE_RING DNA depends on application-level
polling, which wastes CPU cycles and increases power consumption
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Figure 5: Speedups with function call batching. The input rate
is 40 Gbps with innocent and malicious traffic

regardless of the input load. In contrast, PSIO allows a NAPI-like
functionality in the user level and it blocks when there is no packet
to process.

Figure [d compares the RX performance of various packet capture
libraries, with a 40 Gbps input rate. PCAP shows less than 7 Gbps
regardless of the packet size since it suffers from high per-packet
memory management and copy overheads. PF_RING and PSIO
mostly show the line rate over the various packet sizes, but the CPU
consumption of PF_RING is 100% due to polling. In comparison,
the CPU consumption of PSIO ranges from 29.6% (64B) to 16.6%
(1518B).

4.3 Function Call Batching

The function call overhead becomes significant when an IDS deals
with a massive number of RX packets. For example, to achieve
10 Gbps with 64B packets, the IDS has to handle 14.88 million
packets per second. Calling a series of pattern matching functions
for each packet would increase the function call overhead and would
reduce the overall throughput.

To remedy this problem, Kargus ensures that packets are passed
from one function to another in a batch, where only when a packet
needs to take a different path, it diverges on the function call. In
a typical IDS, each packet travels through common functions like
decode (), preprocess (),manage_flow (), ahocorasick_match ()
after it is read. When an IDS engine thread in Kargus reads a batch
of packets from RX queues, it passes the batch to these functions
as an argument instead of calling them repeatedly for each packet.
This effectively reduces the per-packet function call overhead from
the packet acquisition module to the rule option evaluation module.
The advantage of the function call batching becomes pronounced
especially for small packets. Figure[5]shows the performance gain
of function call batching in Kargus over the iterative function calls
from packet reception to rule option evaluation. We generate inno-
cent and attack traffic at the rate of 40 Gbps. We observe that the
function call batching is most effective at 64B packets, producing
a20% to 90% speedup over the iterative counterpart. As expected,
as the packet size becomes larger, the bottleneck shifts to pattern
matching from function call overheads, which reduces the benefit
from batched function calls.

4.4 NUMA-aware Data Placement

When the packet reception is no longer a bottleneck, memory
access becomes the key factor that dominates the IDS performance.
The NUMA architecture is becoming popular with multi-CPU sys-
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Figure 6: Speedups from removing shared globally variables.
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tems, which helps reduce memory contention by dividing the physi-
cal memory among the CPUs. However, achieving high memory-
access performance on a NUMA system requires the application
to carefully place the data to minimize the cross-domain memory
access, because remote memory access tends to incur 40-50% more
latency and 20-30% lower bandwidth compared to local memory
access [22].

Kargus adopts a symmetric architecture per each NUMA domain.
As shown in Figure[3] an IDS engine thread reads and handles the
packets only from the NICs attached to the same NUMA domain,
and offloads pattern matching workloads to the in-node GPU device.
This eliminates expensive NUMA domain crossing of the packet
workloads, which allows s linear performance growth with the num-
ber of NUMA domains. We have also removed all global variables
that are shared by the IDS engine threads, and aligned the packet
metadata boundary to the 64B CPU cache line. Figure[6]shows the
effect of removing shared global variables, which gives 1.5 to 2.7x
speedups with 64B packets. As with function call batching, we can
see that the remote memory access overhead is significant for small
packet sizes.

4.5 GPU-based Pattern Matching

Pattern matching typically consumes the most processing cycles
in an IDS. It is heavily memory-intensive since every byte of the
received packets is scanned at least once. For example, one CPU
core in our platform produces only about 2 Gbps for multi-string
pattern matching even if it is fully devoted to it. With 12 CPU
cores, it is challenging to achieve more than 20 Gbps since they
have to spend cycles on other tasks such as packet capture and flow
management as well as pattern matching.

GPU is known to be well-suited for compute or memory-intensive
workloads with a large array of processing cores and high mem-
ory bandwidth. It is particularly effective in processing multiple
flows/packets at a batch due to its SIMT execution model. To exploit
the massively-parallel execution capacity, Kargus collects incoming
packets in parallel from multiple IDS engine threads, and offloads
them to GPU together via a single GPU-dispatcher thread per each
NUMA domain. The GPU-dispatcher thread is responsible for han-
dling all GPU workloads from the CPU in the same NUMA domain,
and communicates only with the in-node GPU device.

We implement GPU-based pattern matching in Kargus as follows.
For Aho-Corasick multi-string pattern matching, we port the DFA
tables in each port group to GPU and implement state transition
functions as simple array operations on the table. At initialization,
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Figure 7: Multi-string pattern matching performance. We use
one NVIDIA GTX 580 card for GPU and one Intel X5680 CPU
core for CPU
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Figure 8: PCRE pattern matching performance in CPU and
GPU. We use one NVIDIA GTX 580 card for GPU and one
Intel X5680 CPU core for CPU

Kargus stores the DFA tables at the global memory of a GPU device
and shares them with all pattern matching GPU threads. Each GPU
thread takes one packet at a time, and scans each byte in the payload
by following the DFA transition function. Since accessing the global
memory is expensive, we store the packet payloads at texture mem-
ory, which prefetches and caches the sequentially-accessed content
from the global memory. This improves the pattern matching per-
formance by about 20%. Also, a GPU thread fetches 16 bytes of the
payload at a time (via the uint4 data type supported by the NVIDIA
CUDA library), as suggested by [47]]. For PCRE pattern matching,
we take the standard approach of converting each PCRE to a DFA
table. We first transform each PCRE to an NFA form by Thomp-
son’s algorithm [27]] and apply the subset construction algorithm to
convert an NFA to a DFA table. We find that there exist complex
PCREs that generate too many DFA states (called state explosion),
but over 90% of the Snort-2.9.2.1 PCREs can be converted to a
table with less than 5,000 states. In Kargus, GPU handles PCREs
with less than 5,000 states while CPU handles the rest. For both
GPU pattern matching, we use the concurrent copy and execution
technique [22}[26/47|] that overlaps the DMA data transfers between
the host and device memory with GPU code execution itself. We use
multiple CUDA streams in the GPU-interfacing thread to implement
this.

Figure[7]compares the performance of multi-string pattern match-
ing for a CPU core and a GPU device, with 1518B packets. The
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Figure 9: Latency for total packet processing and for only pat-
tern matching with CPU and GPU

GPU performance increases as the batch size grows since more GPU
processing cores are utilized with a larger batch size. We find that
reducing the DFA table entry to 2 bytes from 4 bytes almost doubles
the throughput, which confirms that the GPU memory access is
the main bottleneck. The GPU performance is saturated at 8,192
packets with 39.1 Gbps, which would require 18.2 CPU cores at
3.33 GHz to reach that. Figure[§]shows the performance of PCRE
matching. The performance of GPU saturates at 1,024 packets with
8.9 Gbps, showing a factor of 17.1 improvement over a CPU core.
Interestingly, the performance of GPU PCRE matching is not com-
parable to that of multi-string matching even if they implement the
same DFA transitions. This is because PCRE matching requires
each packet to follow a different PCRE DFA table in most cases
and the similar performance degradation is seen with the CPU im-
plementation. In contrast, multi-string matching shares the same
Aho-Corasick DFA table across all threads in most cases, benefiting
from lower memory contention.

S. LOAD BALANCING

Kargus employs load balancing for two different cases. First, it
is applied to incoming flows across CPU cores with help of RSS,
where the incoming packets are classified into different NIC queues
by hashing the five tuples (src/dst IPs, port numbers, and protocol)
and affinitizing each NIC queue to a CPU core. Second, load balanc-
ing between CPU and GPU is enforced to utilize extra processing
capacity of GPU when Kargus cannot handle the high input rates
with CPU alone. We have elaborated the load balancing across CPU
cores in Section[d.2] so we focus only on the load balancing between
CPU and GPU here.

5.1 Only CPU for Small Packets

Our experiments show that unconditional GPU-offloading is not
always beneficial for the following reasons. First, employing GPU
requires the additional usage of CPU and memory resources. GPU
offloading necessitates metadata preparation for pattern matching
and copying the packet payload into a page-locked memory that
is DMA’ed to GPU memory. Preparing the metadata and payload
copying consumes CPU cycles, and DMA operations would increase
memory access contention. The increased memory contention inter-
feres with other memory-intensive CPU tasks, e.g., packet acquisi-
tion from NICs, preprocessing, and CPU-based pattern matching.
Second, GPU typically consumes more energy than CPU. For exam-
ple, one NVIDIA GTX 580 device consumes 244 Watts [34) while
an Intel Xeon 5680 CPU consumes 130 Watts [24] at peak. This
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Figure 10: Breakdown of the packet processing latency

implies that we can save power if we use only CPU for the input
rates that can be handled by CPU alone.

GPU-offloading sacrifices extra CPU cycles and memory access
that could be used to do pattern matching with CPU otherwise. It
implies that there exists a threshold of a packet size under which
utilizing only CPU is always beneficial (irrespective of the input
load). For example, CPU produces a better multi-string matching
performance for any packets smaller than 82B on our platform.
One might attempt to determine the threshold by comparing GPU
and CPU pattern matching latencies, but it turns out that a naive
approach will not successfully find the accurate threshold.

Figure 0] shows the latencies for various packet sizes for multi-
string pattern matching. Given a packet size, we measure the latency
for 10 million packets. GPU pattern matching latency refers to the
entire time for GPU offloading. It includes the time for preparing
metadata, copying the payloads to a page-locked memory, DMA
copying to GPU, executing the GPU kernel, and receiving the results
from GPU. CPU pattern matching time refers to the time to run the
Aho-Corasick algorithm in CPU. These two lines cross only at 64B,
and one might think that offloading packets of any size to GPU is
always beneficial. However, total latencies suggest that offloading
any packets smaller than 82B is detrimental. Total latency includes
the time for the common CPU operations such as flow management,
memory allocation and copying of received packets, etc.

To figure out why we have the discrepancy, we analyze the time
for the common CPU operations in more detail. Figure[I0]shows the
latency breakdown for the common operations. It shows that when
GPU is used for pattern matching, the latencies for the common
operations increase by a factor of 1.8 to 2.0 compared with those
of the CPU-only version. This is because the host memory access
contention increases, where GPU-offloading would involve constant
DMA copying between the host memory and the GPU memory.

5.2 Dynamic GPU Offloading

We now move on to the case when the packet size is larger than
the threshold, where dynamic GPU offloading becomes important
due to energy efficiency. The goal of our algorithm is to use GPU
only if CPU is unable to handle the input rates, and use CPU for low
latency and better power utilization otherwise.

We introduce the notion of workload queues, each of which is
associated with one IDS engine thread. The state of a workload
queue evolves over cycles, where during each cycle the following
operations are performed: (a) Each IDS engine thread reads a batch
of packets from its RX queues (the number of packets read at a time
is called RX batch size), (b) enqueues them into the associated work-
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Figure 11: Dynamic GPU offloading algorithm

load queue, and (c) dequeues a unit of packets from the workload
queue for pattern matching. The maximum RX batch size is set to
128 packets in our implementation to maximize the CPU cache effi-
ciency. For a larger value than 128, the CPU cache would overflow
and often lead to noticeable performance degradation. Note that
the numbers of enqueued and dequeued packets at a time can differ,
and consequently the input and output rates of the queue differ over
cycles. Especially, the output rate is controlled by the number of
dequeued packets at a time in our algorithm.

As depicted in Figure[TT] at each cycle, the algorithm detects the
overloading status of a CPU core by examining the queue size based
on three thresholds, o, B, and Y. Given a cycle, either CPU or GPU
(but not both) is used for pattern matching depending on the status of
the work queue. X and Y refer to the numbers of packets dequeued
at one cycle for CPU and GPU pattern matching, respectively. First,
when the queue is in the interval [0,f], only CPU is utilized for
pattern matching, where the engine thread dequeues 64 packets at
maximum, a much lower output rate than the maximum input rate.
The rationale is that CPU can handle low input rates whose average
RX batch size is smaller than 64 packets over time. We have 3
to absorb temporary fluctuation in the input rates. The queue size
reaching B implies that CPU alone is not able to satisfy the input
rates. Spending CPU cycles on pattern matching in this state is
detrimental since it should spend more cycles to read the packets
from NICs to avoid packet drops. Thus, we start using GPU, but
we set Y (96) to slightly smaller than the maximum RX batch size
(128). If we set Y to 128, the queue will be drained quickly if the
average RX batch size is close but smaller than 128. This would
create frequent oscillations between the two modes even if the input
rates cannot be handled by CPU. When the input rate stays very
high for an extended period, the queue size eventually reaches v, and
we set ¥ to the maximum RX batch size. If the dequeued packets
are fully processed by GPU, the queue would start to decrease and
reach 3, and we set ¥ to 96 again. If the input rate is close to 128,
we keep on using GPU while the queue size is in the interval [B,7].
If the input rate goes down, so that the queue size reaches o, then
pattern matching only on CPU is conducted.

6. IMPLEMENTATION

We have implemented Kargus using Snort-2.9.2.1 as our code
base. Kargus reuses the existing Snort code such as Aho-Corasick
and PCRE matching and rule option evaluation modules, and reads
unmodified Snort attack signature rule files. We have modified
single-process Snort to launch a thread for each IDS engine, and
have replaced Snort’s packet acquisition model with a PSIO-based
callback function. Both IDS engine and GPU-dispatcher threads can
be configured with the numbers of available CPU cores and GPU
devices on the platform, by a LUA [10] start-up script supported by
SnortSP. We have also applied function call batching by rendering
each function to take a batch of packets as an argument.
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Figure 12: IDS throughputs for innocent content at a 40 Gbps
input rate

The most invasive modification has been made to the Snort’s flow
metadata structure, where we reduce its size from 2,976 to 192 bytes
by removing most redundant fields that include (1) header values
that can be retrieved from the raw packet, and (2) fields that are used
to gather bookkeeping statistics. We align the size to the CPU cache
line boundary and eliminate the chance of false sharing with other
CPU cores. We do this because we find that the large flow metadata
reduces the CPU cache efficiency. We implement our own flow
management module that detects attack patterns for merged TCP
segments that are delivered out of order. Currently, Kargus provides
analyzing support for HTTP and TCP rules, and integration with
other Snort modules is in progress.

To test the Kargus’ performance under various scenarios, we
have developed a simple IDS workload generator that produces
TCP packets at any transmission rate up to 40 Gbps regardless of
the packet size. The current version also extracts the content and
pcre options from the Snort rules and generates an attack packet that
contains the signature. We use PSIO for efficient packet transmission
and implement the pattern string generation based on the content
and PCRE options. Kargus consists of 72,221 lines of code in total:
14,004 lines of our code and 58,217 lines of ported Snort code. Our
code includes 4,131 lines of packet generator code, 2,940 lines of
Snort-rule-to-DFA-table converter code for GPU, and 530 lines of
GPU kernel code for PCRE/multi-string matching.

7. EVALUATION

We evaluate the performance of Kargus under various conditions
using the synthetic TCP traffic generated by our workload generator.
Also, we measure the performance with the real HTTP traffic traces
collected at one LTE backbone link at a large mobile ISP in South
Korea. Finally, we gauge the power saving from the CPU/GPU load
balancing at various input rates.

7.1 Synthetic TCP Workloads

Figure[I2]shows the throughputs of Kargus over different packet
sizes with synthetic TCP workloads. We use the same platforms
mentioned in Section[3] and generate TCP packets with a destination
port 80 that contain random content without any attack signatures.
This experiment would measure the performance of packet reception,
preprocessing, and multi-string pattern matching in an signature-
based IDS. We compare the performances of Kargus, Kargus-CPU-
Only, Snort-PF_RING, and MIDeA with all HTTP rules in Snort-
2.9.2.1. Kargus-CPU-Only uses all 12 CPU cores for IDS engine
threads while Kargus uses 10 cores for the engine threads and the
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Figure 13: IDS throughputs for malicious content at a 40 Gbps
input rate

remaining two cores for GPU-dispatcher threads. We use the default
setup for Snort, but disable the flow management module since the
incoming TCP packets have random sequence numbers without
connection establishment. For MIDeA, we draw the numbers for
a similar test from their paper, and normalize them to reflect the
available CPU cycles of our platform and to include the Ethernet
frame overhead and header size. We use 128 as the maximum RX
batch size, and offload 1K packets per engine in a batch to GPU for
pattern matching.

Kargus shows 19.0 to 33.2 Gbps over the packet sizes. It improves
the performance of MIDeA by a factor of 1.9 to 4.3. Compared with
PF_RING-based Snort, it shows 2.7x to 4.5x performance improve-
ment. Except for 64B, Kargus presents increasing performance as
the packet size grows. The performance of 64B packets is domi-
nated by non-payload overheads since the analyzed TCP payload
is only 6 bytes per packet while the overhead is 78 bytes (40B for
IP/TCP headers, 18B for Ethernet header and CRC and 20B frame
overhead). The shaded portion at 64B represents the performance of
analyzed TCP payloads, and we can see that the portion increases at
128B. The reason why Kargus shows lower performance than the
CPU-only version at 64B is that the latter uses extra two cores for
pattern matching. For the packet sizes larger than 64B, the through-
put of Kargus-CPU-Only stays at 13 Gbps, which is the maximum
performance achievable by only CPU cores. In comparison, Kargus
shows 1.4x to 2.4x performance improvement with GPU offloading.

The reasons why Kargus achieves better performance are as fol-
lows. First, it uses an improved packet capture library that does not
incur polling overhead and the remaining CPU cycles can be con-
verted for other tasks that gear towards performance improvement.
Second, it effectively converts the performance improvements from
both GPUs without data crossing overhead over different NUMA
domains. Also, the memory footprint of Kargus is much smaller
with its multi-threaded model than MIDeA with a multi-process
model. Third, it extensively applies function call batching through
the packet analysis path and fixes some of core data structures to be
more CPU-cache friendly.

Figure [I3|show the throughputs of Kargus when we control the
portion of attack packets by 25%, 50%, and 100%, for various
packet sizes. In this case, the PCRE rules are triggered as part
of rule option evaluation, and it significantly increases the pattern
matching overheads. As expected, the performance degrades as the
packet size becomes smaller as well as the attack portion increases.
For example, for 64B packet size, the performance ranges from 9.0
Gbps to 17.1 Gbps, depending on the attack portion. Even when
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Figure 14: Power consumption by Kargus when 1518B packets
are monitored at various input rates

Total number of packets 109,263,657
Total number of TCP sessions 845,687
Average packet size 808 bytes
Performance of Kargus 25.2 Gbps

Table 2: Statistics on the real traffic traces

we have 100% attack traffic, Kargus shows over 10 Gbps when the
packet size is larger than 1024 B. It shows 12.4 Gbps and 12.5 Gbps
at 1024B and 1518B, respectively.

We also measure the per-packet latency in Kargus. At 10 Gbps
input rate, Kargus shows 13 microseconds from packet reception to
multi-string pattern matching for 1518B packets, but it increases to
640 microseconds at 33 Gbps input rate. This is because Kargus uses
only CPU at 10 Gbps input rate, but it incurs a buffering overhead
for GPU offloading at 33 Gbps input rate.

7.2 Performance Under Real Traffic

We measure the performance of Kargus by replaying the real
traffic traces gathered at a 10 Gbps LTE backbone link at one of
the largest mobile ISPs in South Korea. We have three traces with
different time frames, and each trace covers 30 minutes to 1 hour of
full IPv4 packets captured at the link. The total number of packets
we replay is 109.3 million with 845K TCP sessions, which takes up
84 GB of physical memory. Before replaying the traces, we load the
entire packets to the memory and make sure that the packets in the
same TCP connection are transmitted to the same 10 Gbps NIC port
in the Kargus machine while evenly distributing the flows among
all four NIC interfaces.

To gauge the peak performance of Kargus, we have our workload
generator replay the packets as fast as possible, generating the traffic
at the speed of 40 Gbps. Kargus achieves 25.2 Gbps, which is
17% lower than that of the synthetic workload with 800B packets
in Figure [I2] Our profiling results reveal that the performance
degradation is mainly attributed to the inflated flow management
module. That is, additional memory allocation, packet copying,
and multi-string pattern matching in the assembled flow buffer to
detect attack signatures that span multiple packets in the same flow
consume extra CPU cycles. We suspected that GPU kernel execution
with diverse packet sizes would reduce the throughput since GPU
threads in a CUDA warp have to wait until the execution of a thread
with the largest packet size. But we find that GPU pattern matching
increases the latency only by 1.8% with the real traffic, implying



that the overall performance degradation due to GPU is marginal
even with diverse packet sizes.

7.3 Power Consumption

Figure [T4] shows the energy efficiency of Kargus contributed
by dynamic GPU offloading. We plot the power consumption for
different incoming traffic rates. The packet size is set to 1518B and
we tested Kargus with dynamic GPU-offloading, Kargus without
load balancing (i.e., unconditional GPU offloading, Kargus w/o LB)
that either uses polling or not. Kargus with polling and no load
balancing is a version of Kargus which polls the NIC queues for
packet acquisition. We show the polling version to understand the
power usage of the IDS that uses a I/O library like PF_RING.

Opverall, Kargus with polling consumes the largest power because
it uses full CPU cycles regardless of input rates. The gaps from
other schemes decrease as the input rates increase, as expected. The
power efficiency gain of Kargus over Kargus w/o LB increases with
decreasing input rates, because for the high input rates, Kargus
offloads most of pattern matching workloads to GPU to maximize
the analysis throughput. For example, the energy gain for 10 and 20
Gbps is about 14% and 19% compared with the polling version of
Kargus, 7.5% to 8.7% compared with Kargus w/o LB.

8. RELATED WORK

We discuss previous works that are related to Kargus, but due to
the large volume, we do not attempt to cover a complete set.

Pattern matching on specialized hardware: There are many works
that improve the performance of an IDS through specialized hard-
ware such as FPGAs, network processors, ASICs, and TCAMs.
Clark et al. store the entire 1,500 rules of Snort 2.0 into a single

one-million-gate FPGA [18]], and extend the work by pre-filtering

packets with a network processor before pattern matching on FPGA

for higher performance [|17]]. Baker et al. demonstrate an FPGA im-
plementation of the Knuth-Morris-Pratt algorithm for string match-
ing [[12], and Lee et al. extract the common prefixes that are shared

by many patterns to efficiently utilize the limited FPGA resources,
and use multiple FPGAs in parallel for higher performance [29].
Mitra et al. use direct compilation of PCREs into VHDL blocks

and onto the FPGA to enhance the performance while maintaining

the compatibility with Snort rule sets [[32]]. Tan et al. implement

a high-throughput Aho-Corasick engine on an ASIC [44]. Similar

related works [15,/16] implement hardware-based string matching

co-processors for Snort running at the speed of 7 Gbps. Some works

employ TCAMs for parallel pattern matching. TCAM compares a

given input string against all the occupied pattern entries in parallel,
and returns the matched entry. In [49]], only string matching is per-
formed in TCAM, which is extended to regular expressions in [30].
While TCAM enables a memory lookup to take constant time for any

input, regardless of the number of entries, it has some drawbacks:

(i) the limited size of TCAM restricts the maximum DFA table size,
(i) TCAM’s performance becomes restricted when packet capturing

and preprocessing consumes a large portion of CPU cycles as in

high-speed networks, because TCAM does not provide additional

computation resources as FPGA or ASIC processors do, and (iii)

it is challenging to avoid contentions in a multicore system, which

could degrade overall system utilization and performance. In com-
parison to these hardware approaches, Kargus shows that one can

build a multi-10Gbps software IDS even on commodity hardware if

we exploit parallelism and batching with multiple CPU cores and

GPUs.

Pattern matching algorithm enhancement: Since regular expres-
sions are the de-facto language that specifies modern attack signa-

tures, many algorithms have tackled improving the performance
of regular expression evaluation. Most works focus on addressing
DFA state explosion as well as reducing the number of state transi-
tions. D2FA [41] compresses the number of DFA state transitions
by postponing input processing at certain DFA states and removing
redundant state transitions. Hybrid-FA [[13]] proposes a hybrid DFA
that combines the desirable properties of NFA and DFA for small
states and fast transitions. XFA [35]] reduces the number of DFA
states by running per-state computation with a small set of variables
that characterize the state. The evaluation of XFA on a G80 GPU
is promising [36], but direct performance comparison with Kargus
is difficult due to hardware and rule set difference. In comparison,
Kargus adopts the Snort approach that uses Aho-Corasick DFAs
for multi-string pattern matching, which acts as a first-pass filter,
and maintains a separate DFA for each PCRE. This significantly
reduces the need for PCRE matching as most innocent flows bypass
this stage. While this approach requires multiple payload scans for
attack attempts, it allows simpler GPU implementations with high
throughputs, and it becomes easy to evaluate advanced rule options.

Clustered IDS engines: To cope with the growing network link
capacities, IDSes (e.g. Bro [46])) are now being deployed in a cluster.
In a typical setup, one server acts as a front-end node that captures
ingress traffic while the remainders serve as distributed packet pro-
cessing nodes. While clustering provides scalable performance, it
may incur additional processing overheads due to inter-node commu-
nication and lock contentions between shared packet queues across
multiple servers. Another central issue lies in load balancing among
the back-end IDS nodes. Kruegel et al. adopt a static load balanc-
ing algorithm to scatter packets across IDS nodes based on flow
properties [28]. The SPANIDS [43] load balancer employs multiple
levels of hashing and incorporates feedbacks from the IDS nodes to
distribute packets over the servers using FPGA-based switches. We
believe that Kargus can be easily extended to support clustering.

Software-based IDS on commodity hardware: Modern multi-
core architectures have enabled development of high-performance
software-based IDSes. SnortSP [§8]], multi-core Suricata [9]] are some
of the initial attempts that utilize multiple CPU cores for pattern
matching. Para-Snort [14] extends SnortSP for better utilization of
the multicore architecture. It has a pipelining structure, where a
data source module and processing modules are dedicated to each
CPU core. While the design is intuitional, it presents a few perfor-
mance problems as mentioned earlier: (i) it could incur considerable
CPU cache bouncing due to frequent traversal of packets among the
cores and (ii) it leads to unbalanced CPU utilization due to different
processing speeds across the modules.

GPUs have been used to improve the performance of IDS pattern
matching. Gnort [21] is a modification of Snort to utilize GPU
for string matching using Aho-Corasick algorithm. Huang et al.
modify the Wu-Manber algorithm in order to run string matching on
GPU [23]. However, it is reported that the Aho-Corasick algorithm
outperforms the Wu-Manber algorithm in terms of worst-case perfor-
mance [33]]. MIDeA [47] is the closest work to Kargus. It improves
the packet reception performance with PF_RING on a 10 Gbps NIC
and scales the performance of Aho-Corasick multi-string pattern
matching with GPUs. While MIDeA reports 70 Gbps multi-string
pattern matching performance with two GPUs, their overall IDS per-
formance numbers are still limited to less than 10 Gbps. To further
scale the overall performance, Kargus makes many different design
choices. It takes the multi-thread model instead of the multi-process
model, which eliminates GPU memory waste for redundant DFA
tables, and could allow load balancing among CPU cores. We find
function call batching and NUMA-aware packet processing greatly
help in processing small packets, and present power-efficient load



balancing among CPU cores and GPUs. Kargus also implements
PCRE matching and compares the IDS performances with varying
levels of attack traffic.

Kargus benefits from recent works on high-performance software
routers. RouteBricks [20] and PacketShader [22] exploit multiple
CPU cores for parallel execution. PacketShader scales the router
performance with GPUs, and applies batching to packet I/O and
router applications. Kargus takes the similar approach, but it applies
batching and parallelism in the context of an IDS, and effectively
uses computation resources for power efficiency.

Packet acquisition enhancement: Fast packet acquisition is a cru-
cial component in high-performance IDSes. Some of recent re-
search efforts include PF_RING [19], PSIO [22], and netmap [38]].
PF_RING exports a shared memory of packet rings in kernel to
user-level applications, and its direct NIC access (DNA) extension
allows the NIC to move packets to ring buffers directly without CPU
intervention. However, each thread can bind on no more than one
RX queue with DNA. Libzero for DNA [2] distributes the packets
read from one RX queue to other applications with the zero copy
mechanism. In comparison to PF_RING, PSIO allows threads to
read packets directly from multiple RX queues in different NICs,
thus it does not need to distribute the packets among the threads.
It also bypasses heavy kernel structures, and provides a blocking
packet input mode. Netmap is similar to PSIO in terms of tech-
niques (linear, fixed size packet buffers, multiple hardware queues,
lightweight metadata), and it supports traditional event system calls
such as select ()/poll().

9. CONCLUSION

We have presented Kargus, a high-performance software IDS on
a commodity server machine. Kargus dramatically improves the
performance by realizing two key principles: batching and paral-
lelism. We have shown that batching in receiving packets allows
a high input rate by reducing the per-packet CPU cycle and mem-
ory bandwidth cost. Function call batching and pattern matching
with GPUs also lead to efficient usage of the computing resources,
minimizing the waste in processing cycles. Kargus exploits high
parallelism in modern computing hardware by efficiently balancing
the load of flows across multiple CPU cores and by employing a
large array of GPU processing cores. The end result is impressive,
summarized as: Kargus achieves 33 Gbps for normal traffic, and 9
to 10 Gbps even when all traffic is malicious.

Our analysis of the cost for GPU offloading suggests that one
needs to be careful about the usage of GPU for pattern matching. We
find that blind offloading often produces a poor performance if the
offloading cost exceeds the CPU cycles required for the workload,
which frequently occurs for small size packets. Even when the
offloading cost is small for large size packets, it is beneficial to use
CPU due to power saving and latency reduction when the workload
level is satisfied by the CPU capacity. We have developed a simple,
yet energy-efficient GPU offloading algorithm and have shown that
it nicely adapts to the input rate, and effectively reduces the power
consumption accordingly.
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