
Practicalizing Delay-Tolerant Mobile Apps with Cedos

YoungGyoun Moon, Donghwi Kim, Younghwan Go, Yeongjin Kim,
Yung Yi, Song Chong, and KyoungSoo Park

Department of Electrical Engineering, KAIST
Daejeon, Republic of Korea

{ygmoon, dhkim, yhwan}@ndsl.kaist.edu, yj.kim@netsys.kaist.ac.kr,
{yiyung, songchong}@kaist.edu, kyoungsoo@ee.kaist.ac.kr

ABSTRACT
Delay-tolerant Wi-Fi offloading is known to improve overall mo-
bile network bandwidth at low delay and low cost. Yet, in reality,
we rarely find mobile apps that fully support opportunistic Wi-Fi
access. This is mainly because it is still challenging to develop
delay-tolerant mobile apps due to the complexity of handling net-
work disruptions and delays.

In this work, we present Cedos, a practical delay-tolerant mobile
network access architecture in which one can easily build a mo-
bile app. Cedos consists of three components. First, it provides a
familiar socket API whose semantics conforms to TCP while the
underlying protocol, D2TP, transparently handles network disrup-
tions and delays in mobility. Second, Cedos allows the develop-
ers to explicitly exploit delays in mobile apps. App developers
can express maximum user-specified delays in content download
or use the API for real-time buffer management at opportunistic
Wi-Fi usage. Third, for backward compatibility to existing TCP-
based servers, Cedos provides D2Prox, a protocol-translation Web
proxy. D2Prox allows intermittent connections on the mobile de-
vice side, but correctly translates Web transactions with traditional
TCP servers. We demonstrate the practicality of Cedos by porting
mobile Firefox and VLC video streaming client to using the API.
We also implement delay/disruption-tolerant podcast client and run
a field study with 50 people for eight weeks. We find that up to
92.4% of the podcast traffic is offloaded to Wi-Fi, and one can
watch a streaming video in a moving train while offloading 48%
of the content to Wi-Fi without a single pause.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Wireless communication

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Delay-Tolerant Networking; Mobility; Wi-Fi Offloading
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
MobiSys’15, May 18–22, 2015, Florence, Italy.
Copyright 2015 ACM 978-1-4503-3494-5/15/05 ...$15.00.
http://dx.doi.org/10.1145/2742647.2742664.

1. INTRODUCTION
Wi-Fi has become the most popular secondary network interface

for high-speed mobile Internet access on mobile devices. Many
mobile apps support the “Wi-Fi only” mode that allows the users to
shun expensive cellular communication while enjoying high band-
width and low delay. In addition, cellular ISPs are actively de-
ploying Wi-Fi access points (APs) to further increase the mobile
Internet access coverage [1, 2, 3].

However, current Wi-Fi usage is often statically bound to the lo-
cation of mobile devices. While this “on-the-spot” Wi-Fi offloading
is still effective, recent studies suggest that one can further extend
the benefit of Wi-Fi access if we allow delay tolerance between net-
work connections [4, 5]. The basic idea is to hold off using cellular
networks in the absence of Wi-Fi service and to resume the data
transfer when the device meets the next Wi-Fi AP. For example, [5]
reveals that Wi-Fi offloading ratio, the fraction of data offloaded to
Wi-Fi from cellular networks, could be increased to 93.7% if we
allow only one hour of delay between Wi-Fi connections.

Despite the great potential of delay-tolerant Wi-Fi offloading,
existing mobile apps rarely support disrupted network operations.
This is mainly because the burden of handling network disrup-
tion or delay is placed solely on app developers. In reality, it is
challenging to build delay-tolerant mobile apps. Existing network
stacks are clumsy at addressing network disruptions/delays since
they are designed to work in real-time environments. Moreover,
popular servers are unfriendly to delay-tolerant apps that intermit-
tently download the content in multiple networks. We find that
many popular mobile apps do not properly address network switch-
ings and few apps correctly handle a few minutes of delay between
network connections.

Delay tolerance in mobile Internet access requires addressing
two mobility events: network disruption and delay between net-
work connections. We refer to network disruption as an event that
a mobile device switches from one network to another due to user
mobility. Network disruption often results in IP address change,
which forces the termination of on-going TCP connections. To re-
cover from a network disruption event, mobile apps should be pro-
grammed to resume from the last downloaded offset or to download
the content from the start in a separate connection. Unfortunately,
download resumption cannot be a general option since the content
could be dynamically generated or the application layer protocol
may not support it. Re-downloading from the start is also unde-
sirable since it wastes network bandwidth and power consumption.
Exploiting a long delay (e.g., a few hours) between preferred net-
work connections is another major issue. To maximize the Wi-Fi
usage opportunity, a mobile app may want to resume network trans-
fer only when the mobile device is within the Wi-Fi coverage. But
at the same time, it may want to avoid an indefinite delay but to

Disruption Test Delay Test Opportunistic
Type App Task Result Task Result Wi-Fi Offloading
SNS Twitter [6] Upload a photo 3 Resume Upload a photo 3 Resume 7 No consideration

Facebook [7] 7 Fail if D > 5 min
Podcast Podcast Addict [8] Download 5MB or 3 Resume Download 5MB or 3 Resume 7 “Wi-Fi only” (W1, W3)

BeyondPod [9] larger podcast file larger podcast file 7 Fail if D > 2 min 7 “Wi-Fi only” (W2)
Podcast Republic [10] 7 Fail if D > 1 min 7 “Wi-Fi only” (W3)

Media YouTube [11] Stream video 3 Resume Stream video 7 Playback interrupts 7 No consideration
streaming Post comment 7 Fail for non-HD movies

TuneIn Radio [12] Stream audio 3 Resume Stream audio 7 Playback interrupts 7 No consideration
Tune into channel 7 Fail

MXPlayer [13] Stream video 3 Resume Stream video 7 Playback interrupts
Google Play Movie [14] 7 Fail
VLC [15]

Web Chrome [16] Download 100MB file 7 Fail Download 100MB 7 Fail if D > 5 min 7 No consideration
browsing Load static web page 7 Fail file

OperaMini [17] Download 100MB file 3 Resume 7 Fail if D > 1 min
Load static web page 7 Fail

Online eBay [18] Load page 7 Fail Load page 7 Fail if D > 1 min 7 No consideration
shopping Amazon [19] Load page 7 Fail Load page 7 Fail if D > 30 sec

Play demo song 7 Fail Play demo song 7 Fail
Google Play Book [20] Load ebook 7 Fail Load ebook 7 Fail if D > 1 min 7 “Wi-Fi only” (W1, W3)

* ‘Fail’ means no download resumption nor re-downloading. D refers to delay.
Table 1: Behavior of popular mobile apps at mobility events

continue the transfer with a cellular network if the delay exceeds
a certain threshold. To the best of our knowledge, no existing so-
lutions support a long delay of network unavailability in the same
TCP connection.

In this work, we bridge the gap between theory and practice in
delay-tolerant Wi-Fi offloading. We propose Cedos, a practical
delay-tolerant mobile network architecture for mobile apps. Cedos
eases the development of a mobile Internet app with three salient
features. First, it provides a familiar socket-like API whose se-
mantics conforms to TCP in stationary environments. Developers
write the code just like they do with the Berkeley socket API, but
the underlying protocol below the API, D2TP, transparently han-
dles mobility events such as network disruptions or delays. Sec-
ond, Cedos network API explicitly exposes how to handle delays
between network connections. Developers may express a deadline
and a content size with the API, and D2TP completes the content
download in time while exploiting the Wi-Fi network as much as
possible. Also, the API provides real-time buffer management such
that the transport layer automatically switches between cellular and
Wi-Fi networks depending on the buffer availability. This allows to
build a streaming application that maximizes opportunistic Wi-Fi
usage without risk of being interrupted in the middle of stream-
ing. Third, for backward compatibility, Cedos provides a protocol
translation Web proxy, D2Prox. D2Prox manages the delay-tolerant
HTTP connections with mobile clients while it downloads the con-
tent from the origin Web server using TCP. It also caches popular
content to reduce the bandwidth consumption on the server side.

This paper makes two key contributions. First, while many pre-
vious works address challenges in delay-tolerant networking and
Wi-Fi offloading, Cedos provides the first comprehensive solution
to delay-tolerant mobile app development and deployment. There
are many works that separate the host identity from its location [21,
22, 23, 24, 25, 26], but they do not provide network stack abstrac-
tion. TCP migrate [27] and Serval [28] support host mobility in
a TCP connection, but they neither allow long delays nor expose
an API to maximize opportunistic network access. Wiffler [4] ex-
ploits the delay in Wi-Fi offloading, but their network API does not
conform to the TCP semantics. The goal of Cedos is to popular-
ize delay-tolerant Wi-Fi offloading while significantly reducing the
complexity of app development and deployment.

Second, we demonstrate the practicality of Cedos by porting ex-
isting mobile apps, VLC streaming client [29] and Mobile Fire-
fox [30], with different network usage patterns. Not surprisingly,
we find that large, non-interactive file downloads benefit the most
from Cedos, but our real-time buffer management helps maximize
Wi-Fi offloading opportunities even for real-time video streaming.
In our evaluation with Cedos-vlc, we find that almost half (48%)
of the streaming video is delivered via opportunistic Wi-Fi access
without a single playback pause on a moving train. The benefit for
short, interactive Web flows with Cedos-firefox is modest due to
noticeable delay in network switching (e.g., seconds), but we find
that porting process is straightforward since the Cedos network API
is similar to Berkeley socket API.

Along with porting existing apps, we build our first delay-tolerant
podcast app, ReadyCast [31], to demonstrate the utility of delay-
tolerance in real world. Unlike real-time podcast apps, ReadyCast
allows “download reservation” with a user-specified deadline, and
the content is made ready by the time the user wants. We have con-
ducted a field study with 50 ReadyCast users for 8 weeks, and we
find that Cedos does help download most of the podcast contents
(92.4%) via opportunistic Wi-Fi access. Moreover, D2TP success-
fully saves 38% of the data that would have to be re-downloaded
due to natural network disruptions from user mobility.

2. MOBILE APP BEHAVIOR AT MOBILITY
In this section, we examine how existing mobile apps react to

mobility events. We select 15 popular mobile apps 1 from Google
Play [32] that might benefit from delay-tolerant Wi-Fi access. We
report their behaviors on network disruption and during the delay
at network unavailability.

Methodology: We install each app on a Nexus 5 smartphone [33],
running Android v4.4. The device is connected to the Internet ei-
ther via a Wi-Fi AP in our lab or through an LTE connection to a
local cellular ISP. To simulate a network disruption event, we had
the device use the Wi-Fi AP initially, but forced it to turn off the Wi-
Fi interface to use the LTE interface. This event simulates moving
the device from a Wi-Fi network to a cellular network, which re-
sults in IP address change. For a delay test, we had the device use
1We use the latest version of each app as of November 2014.

Cellular Network

Estimated Transfer
Duration via 3G/4G

≤ 10min

Downloaded: 80%
Remaining: 3hr

Downloaded: 80100%
Remaining: 10min

Disruption

Wi-Fi

Wired Network

D2Prox

Downloaded: 080%
Remaining: 6hr

D2TP

Server

D2Sched/D2BufMgr
Rem. deadline Rem. cont. size

3hr 20 MB
10min 20 MB

Flow ID IPend

A X.X.X.X

B Y.Y.Y.Y

Flow
State

Wi-Fi / Cellular
Link

B Z.Z.Z.Z

Handle IP migration

Mobile Apps (e.g., podcast downloader, streaming player)

PAUSE RESUME

①

② ③

d2tp_socket();
d2tp_connect();

①

d2tp_setsockopt(); d2tp_read();

Pause flow
(delayed offload)

Resume flow
(deadline guarantee)

② ③

②

③

Figure 1: Cedos delayed data offloading architecture. D2TP handles both disruption and long delay. D2Sched schedules the flows for delayed Wi-Fi
offloading (e.g., downloads a file as much as possible via a Wi-Fi connection, and the remaining 20% via LTE to finish within the deadline).

the Wi-Fi AP, but unplugged the cable of the AP to simulate net-
work unavailability. We replugged the cable after 10, 30, 60, 120,
300, 3600 seconds of delay. This process does not change the IP
address of the device, but injects a period of Wi-Fi network unavail-
ability. Finally, we examine the apps that support Wi-Fi offloading
via “Wi-Fi only” mode by toggling the option during data transfer.
Since we do not have access to source code for majority of the mo-
bile apps, we report only qualitative behavior of each app. During
each test, we had the device download or upload data whose size is
large enough to be interrupted by the mobility event.

Findings: Table 1 summarizes the results of our experiments. We
find that many mobile apps do not handle network disruptions prop-
erly while notable exceptions are social networking service (SNS)
apps, some media streaming apps, and podcast apps. All apps use
standard TCP/IP protocols, so we notice that their TCP connection
terminates when the host IP address changes. For graceful oper-
ation at network disruption, the developers have to write code to
re-initiate a TCP connection to resume the data transfer, but that
seems to be often neglected in mobile apps. What is surprising
is that some mobile Web browser does not support download re-
sumption even if HTTP supports range queries. In media stream-
ing, app behavior varies - MXPlayer [13] and YouTube apps [11]
resume video streaming even after IP address change, but VLC [15]
and Google Play Movie [14] get stuck. Interestingly, posting com-
ments in the YouTube app is not disruption-tolerant while its video
streaming is. The disparity comes from the fact that the develop-
ers have to handle each case differently without the support from
the transport layer. In contrast, all three podcast apps handle short
network disruptions well. We think that podcast app developers are
better-prepared for frequent network disruptions at large file down-
load, and handle this case well.

The behavior for the delay test, however, is more disappointing.
Except Twitter [6] and Podcast Addict [8], all apps fail to resume
data transfer in a few minutes of network unavailability. We also
find that all media streaming apps pause the playback during the
delay. Since none of them support the “Wi-Fi only” mode, a de-
sirable action would be to automatically switch to the cellular in-
terface and to resume streaming if Wi-Fi access becomes unavail-
able. Twitter and Podcast Addict handle both network disruptions
and delays well, but they do not support download deadline as dis-
cussed shortly.

Lastly, we have investigated if the apps support opportunistic Wi-
Fi offloading. We find that some apps allow the “Wi-Fi only” mode,
but none of them support any notion of download deadline. With-
out a deadline, a download in the “Wi-fi only” mode would wait
indefinitely when there is no Wi-Fi connectivity. We further ana-

lyze how the apps behave with the “Wi-Fi only” option. We try
turning on the option while downloading through an LTE interface
and try turning it off while downloading via LTE network. No apps
that support the “Wi-Fi only” mode handle these two cases cor-
rectly. They either continue with the cellular interface (W1) or end
up with a download failure in the former case (W2). Or they do
not resume the transfer by switching to the cellular interface in the
latter case (W3).

In summary, we find that many popular mobile apps neither prop-
erly handle mobility events nor their behavior is consistent across
app types. This is because the current network API assumes real-
time operation and app developers have to write the action on their
own. The goal of our work is to ease their burden by transparently
handling the mobility events in the transport layer while providing
the flexible knob to control the behavior with a familiar API.

3. DESIGN
In this section, we present the design of Cedos, a practical delay-

tolerant networking architecture for mobile apps. Cedos transpar-
ently addresses mobility events in a new transport layer while it al-
lows flexible control between opportunistic Wi-Fi and cellular net-
work usage.

3.1 Overall Architecture
Figure 1 shows the overall architecture of Cedos. Cedos-based

mobile app initiates a D2TP connection to D2Prox which relays
downloading content from the TCP server to the app. D2TP is a
TCP-like transport layer protocol, but it transparently masks net-
work disruptions and delays. D2Prox works as a protocol translator,
allowing client-side mobility while it supports backward compati-
bility to TCP-based servers. We assume that a mobile device can
move around, and transfer data intermittently in multiple networks
while the server is at a fixed location. Each D2TP connection is
characterized by a maximum-allowed delay, deadline, and a pre-
ferred network interface (e.g., Wi-Fi). Until the deadline, D2TP
strives to transfer as much data as possible through the preferred
network, even by intentionally delaying the transmission if the pre-
ferred network is unavailable.

For connections without a deadline or near deadline expiration,
D2TP uses any available interface to complete the data transfer.
D2Sched analyzes the current network status (available bandwidth
and interfaces) together with a deadline and a content size, and de-
cides if a flow should transfer data, wait for the preferred interface,
or switch to a faster network. For dynamic content whose size is
unknown (e.g., video stream), D2BufMgr calculates an appropriate
deadline and size by analyzing the minimum throughput required

ACK

RST

SYN+ACK (Flow ID, Host ID)

SYN
(Flow ID = X, Host ID, Deadline)

(1) Flow ID Conflict

C S

(2) Valid Flow ID

SYN
(Flow ID = Y, Host ID, Deadline)

(a) Flow creation

SYN + Public-Key (n, e)

ACK

SYN+ACK + ENC(key)

Encrypt per-conn.

secret key

Extract key via

private key decryption

C S

(b) Secret key sharing

Figure 2: Initialization of D2TP connection

to maintain the app’s QoE (e.g., bitrate), and chooses how a flow
should transfer data similar to D2Sched.

3.2 D2TP: Transport Layer for Mobile Apps
D2TP is a transport layer protocol for mobile apps, providing

TCP-like, reliable data transfer in stationary environments but it
hides network disruptions and allows delays when a mobile device
is on the move. We choose to take the transport layer approach,
hiding the mobility events from the application layer. This decision
presents two advantages. First, it frees the mobile app develop-
ers from directly dealing with network disruptions or delays while
providing a flexible knob to control the deadline. The rationale is
that the developers need to focus on the core program logic rather
than to keep track of the latest offset of an interrupted content or
whether a network interface is on or off. Second, having this mech-
anism inside the transport layer allows providing more information
as to delay-induced transmission with D2Sched and D2BufMgr, ex-
plained later. Maintaining the amount of data that has been trans-
ferred through Wi-Fi and cellular interfaces allows a more informed
decision whether to transmit or not at any given time.

The key enabler for D2TP disruption tolerance is in the separa-
tion of a connection from its network attachment as in [21, 23,
26]. Our contribution here is to implement the mechanism in a
purely end-to-end fashion and to make it easy to use in real mo-
bile networks. Specifically, each D2TP connection is identified by
a persistent flow id and a host id that do not change in the course
of mobility. When a mobile device moves to another network, it
resumes the connection with the flow and host ids from where it
left off. One downside may be the overhead of keeping track of
many idle connections at the D2TP server, but we keep the con-
nection metadata small enough to maintain as many as one million
concurrent flows for less than 1 GB memory.

3.2.1 Connection setup and teardown
D2TP is similar to TCP except it requires an explicit connection

resumption process when the network is available again after dis-
ruption. Connection teardown may occur explicitly or implicitly
depending on the user-defined deadline.

Connection setup: Figure 2(a) shows how a mobile client estab-
lishes a D2TP connection with a server. The client first sends a
SYN packet, but unlike TCP, the SYN packet must include a flow
id and a client-side host id as its option fields. The host id is de-
fined as a 20-byte SHA-1 hash of the MAC address of the cellular
interface. The flow id is the least significant 4 bytes of the SHA-
1 hash of the host id and a microsecond-granularity timestamp at
connection setup. Since the purpose of the id pair is to identify the
connection between the client and the server, the pair needs to be
unique only on the two machines during connection lifetime. The

C S
Data Transfer

Deadline Timeout

Disruption

Retransmit 15 times

(1) Teardown (no deadline)

(2) Connection Teardown

(a) Teardown at disruption

C S

Reconnect
DATA or ACK

(receive-window > 0)

Detect Address Change
CHG (nonce)

RSP (HMAC-SHA1_key{nonce})
Valid Flow ID Ownership

AUTH

(b) Challenge-and-response

Figure 3: Flow handling in mobile environments

SYN packet may include a deadline specified in seconds, as a 4-
byte option field. When it is missing, the connection falls back to a
normal TCP connection.

If the server already holds a D2TP connection with the same flow
id, it responds with a RST to ask for retrying with a new flow id. Or,
the server replies with a SYN+ACK packet containing the server-
side flow and host ids, and the client establishes the connection with
an ACK. Besides a regular three-way handshake, the D2TP server
and client need to agree on a per-connection secret key to authenti-
cate each other when the connection is disrupted and resumed later.
Figure 2(b) shows the key exchange process. We employ an asym-
metric key cryptographic algorithm (e.g., RSA) and have the client
send its public key (n, e) in the payload of the SYN packet. The
server then generates a secret key, encrypts it with the client’s pub-
lic key, and sends it in the payload of the SYN+ACK packet. The
client finally decrypts the message with its private key and stores
the extracted secret key into the flow’s state table for future use.
Connection teardown: A D2TP connection is closed in two ways.
First, when both hosts complete the data transfer, they explicitly
close the connection by exchanging a FIN. Second, if an applica-
tion closes the connection during network unavailability, the D2TP
layer waits until the network becomes available again, and does a
normal closure. If the deadline expires before the device meets an
available network, the D2TP connection terminates itself without
notifying the other. This should not be a problem since the other
party would close the connection as well. The deadline can be up-
dated by the application at any time during the connection to reflect
the effective network bandwidth and actual transferred data size.

3.2.2 Data transfer in mobile environments
Once a connection is established, the client and the server ex-

change data as in a normal TCP connection. On network disrup-
tion, connection is resumed with a new IP address after verifying
the ownership of the connection.
Connection resumption: If a client-side IP address changes due
to network switching, the client can resume the connection by au-
thenticating itself to the server to prevent connection hijacking. It
first piggybacks flow and host ids as options to a normal data or
ACK packet. Then, the server detects the client-side IP address
change, and verifies the connection ownership through a challenge-
and-response protocol shown in Figure 3(b). For this protocol,
we define three special bit flags (CHG, RSP, and AUTH) in D2TP
packet header. The server first sends a challenge packet by setting
the CHG bit flag on with an 8-byte random nonce in the payload.
Then, the client calculates HMAC − SHA1key(nonce), using
the shared key at connection setup, and sends it back with the RSP
bit flag on. Once the hash is verified, the server responds with an
authentication packet with the AUTH flag on, which gives an OK

sign that the client can resume the data transfer. On verification
failure, the server sends an RST packet to notify the client to start
a new connection.

3.3 D2TP Flow Management
Cedos achieves efficient mobile network usage by avoiding the

cellular data transfer whenever an app allows a delay. We describe
how a D2TP flow is managed to determine the scheduling action:
wait, transfer data, or switch interface for minimum QoE guarantee.

3.3.1 Deadline-based flow management
The core enabler for managing an efficient D2TP flow data trans-

fer is the deadline, set explicitly by Cedos socket API. Basically,
the deadline is examined to decide whether the D2TP flow should
transfer data through the attached network for efficiency (Wi-Fi of-
floading), or should change the interface for reliability (deadline
guarantee). For this, we collect information of currently attached
interface, bandwidth for both networks (last measured for uncon-
nected network), flow deadline and content size. When the mobile
client moves out of Wi-Fi, the remaining deadline and time duration
to transfer remaining content through a cellular network are calcu-
lated for flow scheduling. Additionally, the remaining deadline is
periodically monitored to determine whether the current network
throughput is large enough to transfer the content in time. Detailed
algorithm on how a D2TP flow is scheduled will be explained in
Section 3.4.

3.3.2 Exploiting buffer for flow management
Unfortunately, it is difficult to directly apply deadline-based flow

management for dynamic content apps (e.g., streaming) as there
is no deterministic way to identify when the data transfer would
end. A straightforward solution would be to periodically adjust the
deadline and content size to match the minimal bitrate required.
However, this can frequently interrupt streaming as the flow will
not begin data transfer until the deadline is close. Reversely, set-
ting too small deadlines would result in frequent CPU wakeups for
deadline calculation, consuming much of mobile device’s limited
battery resources. Therefore, we propose an alternate method to
calculate an appropriate deadline and content size, to be later used
for flow scheduling.

D2BufMgr is a flow manager for dynamic content that exploits a
popular design semantics that many streaming apps follow for ef-
ficient playback: buffer that maintains to-be-played content. The
goal of D2BufMgr is to delay data transfer in a cellular network
by consuming already buffered data only until the point that would
result in interruption. For this, we introduce a low threshold, which
represents the remaining buffer point where D2TP flow should be-
gin transferring data through a cellular network, assuming that ei-
ther Wi-Fi is unavailable or its signal strength is too weak for con-
tinuous streaming. The deadline is thus determined by the esti-
mated time that it takes to actually download the data via cellular
network (= hardware interface switching time + D2TP’s challenge-
and-response message exchange time + first data packet arrival time)
while the content size is minimum data required to be transferred
during that time according to its bitrate.

To minimize cellular traffic usage for efficiency, the device must
return to a Wi-Fi network when it has buffered enough data with a
cellular network. To this end, D2BufMgr introduces a high thresh-
old, that determines when the device stops using a cellular network
by either switching to Wi-Fi if it is available or simply pausing the
data transfer. The high threshold can be calculated similarly, which
should be set large enough to begin downloading the data via Wi-
Fi before reaching the low threshold. During cellular traffic usage,

At each scheduling epoch,
Input: (fi, Ti : i = 1, . . . ,m), rc, and rw

Output: I (the interface to use) and i? (the flow to schedule)

1. For each flow i, let τi =
∑i

j=1dfj/r
ce.

2. if τi ≤ Ti, for all flows i = 1, . . . ,m,
3. if Wi-Fi is unavailable
4. I = none, i? = 0,
5. else I = Wi-Fi, i? = 1.
6. end if
7. else
8. I = argmaxn={c,w} r

n, i? = 1.
9. end if

Figure 4: D2Sched algorithm

D2BufMgr resets the deadline and content size to match the high
threshold. Reversely, when the buffer reaches the high threshold,
D2BufMgr swaps the values back to guarantee the low threshold.

3.4 D2TP Flow Scheduling
When a mobile device opens a D2TP flow, a flow scheduler,

called D2Sched, uses the values set from flow management to sched-
ule the flow such that the flow should be idle or active in transmis-
sion and which interface it should use if it is active. In case of
multiple flows, D2Sched schedules flows by considering the con-
tention between shared mobile resources (e.g., bandwidth).

Scheduling algorithm: The scheduling algorithm of D2Sched is
described in Figure 4. Before explanation, we introduce several
notations for ease of exposition. At each scheduling epoch with
m D2TP flows, each D2TP flow has remaining deadline of Ti, and
content size of fi where i ∈ {1, . . . ,m} respectively. We assume
that Ti is indexed in the increasing order of flow index i, i.e., T1 ≤
T2 ≤ ... ≤ Tm. We also let rc and rw be the estimated throughput
(at this scheduling epoch) of cellular and Wi-Fi, respectively (rw =
0 if the device has no Wi-Fi connection), for which we will explain
how to measure them shortly.

In line 1, we first compute τi for each flow i, which corresponds
to the time to finish flow i’s data delivery, if the flows were served
in the increasing order of their remaining deadlines. We call τi
as flow i’s potential completion time. Then, we check whether all
flows’ potential completion times are smaller than their deadlines
(line 2), which means that the system is not in the “urgent” situa-
tion, i.e., all flows have sufficient time until their deadlines expire.
In this case, if the device has no Wi-Fi connection, it just waits and
no flow is scheduled (line 4), but schedules the flow with the short-
est remaining deadline to use Wi-Fi (line 5) otherwise. However,
if we are in the urgent situation, where there exists a flow whose
remaining deadline is less than its estimated completion time, we
perform the Earliest Deadline First (EDF) scheduling by serving
it via the network interface that would result in a larger expected
throughput (line 8).

Scheduling epochs and throughput estimation: Scheduling in
Figure 4 is periodically carried out every N seconds with no envi-
ronmental change (e.g., Wi-Fi availability, flow configuration). In
each scheduling epoch, rc or rw is updated by the average through-
put over the past N seconds. Clearly, N should be appropriately
chosen, such that it reacts to time-varying network conditions fast
as well as it avoids too frequent switchings between Wi-Fi and cel-
lular networks. In our real-world experiment, we choose it to be 1
second, considering both interface switching time and energy con-
sumption. A smarter alternative is to keep a history of Wi-Fi access
and to adjust N according to the access pattern [34, 35], but we
choose simplicity and fast adaptation at the cost of a slight over-

head. Scheduling is also launched in an asynchronous manner to
the change of flow configuration and Wi-Fi availability. In partic-
ular, in case a mobile device acquires a new Wi-Fi connection, it
first spends N seconds without active transmission to estimate rw.

Design rationales: We design D2Sched by the following ratio-
nales. First, D2Sched naturally enables a single D2TP flow to be
assigned a low priority over other real-time TCP flows. This is be-
cause a sequential scheduling of serving only a single D2TP flow
inside D2Sched leads our estimated data rate rc or rw, which ap-
proximately corresponds to the throughput of a normal TCP flow, to
be divided over m D2TP flows. This design comes from the ratio-
nale that D2TP flows are less interactive large flows (e.g., backup of
data in smartphones or buffering of streaming movie) which should
be served with lower priority than other real-time TCP flows. Sec-
ond, a sequential scheduling of a single flow in an EDF manner is
motivated by the following rationales that (i) an urgent flow has less
opportunities of data transfer than others, and (ii) serving multi-
ple flows concurrently generates frequent switching between flows
with active transmission, causing overheads such as switching de-
lay and small data rates due to the need of TCP’s ramping-up time
(i.e., slow-start). We note that the sequential flow scheduling does
not hurt the performance of offloading efficiency when the schedul-
ing interval is short enough and the achievable sum throughput is
independent of the number of activated flows; D2Sched is an opti-
mal scheduling policy in terms of offloading ratio for a fixed Wi-Fi
and cellular throughputs [36]. In spite of time-varying nature of
wireless connections, D2Sched is expected to work in an highly
efficient way, because Cedos’s efficient Wi-Fi offloading targets
at long flows, and mobile users are typically in indoor Wi-Fi net-
works, where data rate variations are reasonably small [37]. Third,
D2Sched tries to increase the offloading ratio by delaying flows as
much as possible, i.e., data transfer is even paused when Wi-Fi is
unavailable and remaining deadlines are large.

3.5 Power Efficient CPU/Wi-Fi Wakeup
One practical concern when enabling flow scheduling in mobile

devices is detecting environmental changes at idle device states.
Current mobile OS platforms such as Android minimize battery
consumption when a mobile device becomes idle by entering the
CPU sleep or Wi-Fi “no-attach” mode. In this mode, the CPU is
completely switched off until any external input event arrives, and
all D2TP flows in the background would stop even if Wi-Fi net-
works are available for offloading. What is worse is that the device
will not retry scanning Wi-Fi APs during the sleep mode, and it
would miss potential Wi-Fi opportunities. We thus require a mech-
anism to transparently wake up CPU and scan for Wi-Fi without
user intervention.

One naïve workaround is to prevent the CPU and Wi-Fi interface
from turning off by acquiring locks on them in the sleep mode, but
it is impractical since it would quickly drain the battery. Instead, we
decide to implement a D2TP flow aware lock, called D-Lock that
periodically locks CPU and Wi-Fi resources. If a preferred network
is available, and there are D2TP flows that want to use the network,
D-Lock keeps the CPU on even if the device becomes idle. When
the Wi-Fi network becomes unavailable, it allows the device to go
to the sleep mode, but it periodically wakes up the CPU to probe
the availability of Wi-Fi APs. The developers only need to hold a
D-Lock during the D2TP connection, and it automatically handles
periodic scanning of APs at minimal power usage. Through real-
world experiments, we find that locking with a period of 2 min-
utes is enough to detect most environmental changes with minimal
power, shown in Section 5.2.2.

Server

D2Prox

Client

③ Forward
the entire file

D2TP

TCP

Wait until
upload (①)
completes

②

Opportunistic
transfer from client
(via Wi-Fi/LTE)

①

Server

D2Prox

Client

① Download
the entire file

TCP

D2TP

Close when
download (①)
completes

③

Opportunistic
transfer to client
(via Wi-Fi/LTE)

②

(a) D2Prox on download case (b) D2Prox on upload case

Figure 5: Architecture of D2Prox

3.6 D2Prox: Protocol Translation Proxy
Upgrading the existing infrastructure (e.g., servers, middleboxes)

to support D2TP is costly and time-consuming. Instead, we pro-
pose placing a network-embedded Web caching proxy, D2Prox,
which enables D2TP data transfers between a mobile client and
an unmodified server. It basically hides the client-side mobility
from the server by communicating with the client in D2TP, but
connects to the server using TCP. Note that D2Prox operates as a
non-transparent proxy that app developers or users can choose, de-
pending on the characteristics of the apps. Although D2Prox can
sit anywhere in the Internet, we envision that it is located near a
cellular ISP’s core network to curb the latency stretch between an
origin server and a client on a cellular interface.

Figure 5 shows the overall architecture of D2Prox. When a new
D2TP connection is requested, D2Prox creates an entry in the flow
metadata table mapped by the flow id. Each entry consists of client/server
IP addresses, a requested URL, and a connection deadline. Since
TCP does not allow delay or network disruptions, D2Prox only con-
nects to the server when a full data transfer is possible in a single
TCP connection. For downlink, D2Prox simply downloads the en-
tire content from the server, caches it in memory or disk, and for-
wards it to the client if the client is attached to a network. For
uplink transfer (e.g., HTTP POST), D2Prox merges all of client’s
partial data from multiple physical connections, and forwards it to
the server. D2Prox removes the flow entry when the connection is
explicitly closed or when the deadline expires but the client is out
of reach.

Since D2Prox maintains the flow metadata table in memory, a
large number of connections with long deadlines could lead to mem-
ory pressure. We mitigate this problem by periodically flushing
idle flow entries with long deadlines to disk. We believe this ap-
proach is reasonable in normal situations since such idle connec-
tions will be likely to stay paused to minimize the cellular traffic
usage. However, we understand this is not a solution to a Denial-of-
Service (DoS) attack on D2Prox, which would require more careful
thoughts. One mitigation approach would be to limit the number of
concurrent D2Prox flows per mobile device. If a cellular ISP em-
ploys D2Prox, it could further require client authentication before
using D2Prox.

4. IMPLEMENTATION
We describe the implementation of Cedos components. We show

the practicality of Cedos by porting two existing mobile apps (Mo-
bile Firefox, VLC) to run on Cedos, and implement a delay-tolerant
podcast client, ReadyCast, for real-world deployment.

Socket operations (Server/Client)
int d2tp_socket(void);
int d2tp_bind(int fd,

const struct sockaddr *addr,
socklen_t addrlen);

int d2tp_connect(int fd,
const struct sockaddr *addr,
socklen_t addrlen);

int d2tp_listen(int fd, int backlog);
int d2tp_accept(int fd, struct sockaddr *addr,

socklen_t *addrlen);
int d2tp_close(int fd);
Data transfer and event notification
ssize_t d2tp_read(int fd, void *buf, size_t count);
ssize_t d2tp_write(int fd, const void *buf,

size_t count);
int d2tp_select(int nfds, fd_set *readfds,

fd_set *writefds, fd_set *exceptfds,
struct timeval *timeout);

Special socket options
int d2tp_fcntl(int fd, int cmd, ... /*arg*/);
int d2tp_getsockopt(int fd, int level,

int optname, void *optval,
socklen_t *optlen);

int d2tp_setsockopt(int sockfd, int level,
int optname, void *optval,
socklen_t *optlen);

Figure 6: D2TP socket API

4.1 D2TP
We implement D2TP in the user level on top of UDP for easy

portability and programming convenience. We implement all TCP
core features such as slow start, flow and congestion control, fast re-
transmit and recovery, timeout and retransmission, delayed ACKs,
selective ACKs and so on. These are implemented as a separate
thread for each D2TP application.

4.1.1 D2TP Socket API
D2TP supports ease of portability by providing a socket API

where each function maps to a BSD socket function by attaching
the D2TP prefix, d2tp_ (see Figure 6). For example, d2tp_socket()
returns a UDP socket while its associated context information is
maintained in the D2TP thread. Applications use this socket to
bind, connect, listen on a port, and send or receive data with D2Prox
or any D2TP-based applications. For event-driven programming,
we support d2tp_select() and have it handle events for both
D2TP and TCP sockets. Since D2TP socket is implemented as a
UDP socket, d2tp_select() can simply use select() for
event notification. Besides regular socket functions, we have spe-
cial socket option support with d2tp_setsockopt() that al-
lows setting a flow deadline (D2TP_SO_DEADLINE), a flow size
(D2TP_SO_ESIZE), and high and low buffer thresholds for flow
scheduling (D2TP_SO_RCVBUFTH). We show example code snip-
pet of D2TP-based client and D2Prox in Figure 7.

4.1.2 Detecting Network Interface Availability
To pause or resume the data transfer, the D2TP layer must detect

the change in the network availability. At start, the D2TP layer
reads the current status of network interfaces in the routing table
at /proc/net/route. Then, it monitors a netlink socket to be notified
of any status change events of the network interfaces. If D2Sched
detects any D2TP flows whose deadlines are about to expire but
the quality of a Wi-Fi network is suspected too poor to meet their
deadlines, the D2TP layer switches to using the cellular network
interface by modifying the routing table entry.

D2TP-based client
1 fd = d2tp_socket();
2 if (non-interactive app) {
3 // set deadline (10min) and flow size (1MB)
4 int deadline = 10*60;
5 int flowSize = 1000*1024;
6 d2tp_setsockopt(fd, D2TP_SO_DEADLINE,
7 &deadline, sizeof(deadline));
8 d2tp_setsockopt(fd, D2TP_SO_ESIZE,
9 &flowSize, sizeof(flowSize));
10 } else if (streaming app) {
11 // set low/high buffer thresholds (20KB/1MB)
12 struct d2tp_rcvbufth thr;
13 thr.low = 20*1024;
14 thr.high = 1000*1024;
15 d2tp_setsockopt(fd, D2TP_SO_RCVBUFTH, &thr,
16 sizeof(thr));
17 }
18 d2tp_connect(fd, &sAddr, sizeof(sAddr));
19 d2tp_write(fd, buf, BUFSIZE);
20 d2tp_read(fd, buf, BUFSIZE);
21 d2tp_close(fd);
D2Prox as D2TP-TCP protocol translation Web proxy
1 sfd = d2tp_socket();
2 d2tp_bind(sfd, &sAddr, sizeof(sAddr));
3 d2tp_listen(sfd, 10);
4 cfd = d2tp_accept(sfd, &cAddr, &cSize);
5 d2tp_fcntl(cfd, D2TP_F_SETFL, D2TP_O_NONBLOCK);
6 FD_SET(cfd, rSet);
7 while (1) {
8 d2tp_select(fdmax, &rSet, &wSet, NULL, NULL);
9 // event notification from D2TP client
10 if (FD_ISSET(cfd, &rSet) {
11 d2tp_read(cfd, buf, BUFSIZE);
12 // create tcp connection to server
13 tcpfd = d2tp_socket();
14 connect(tcpfd, &addr, sizeof(addr));
15 // forward client message to server
16 d2tp_write(tcpfd, message, BUFSIZE);
17 FD_SET(tcpfd, rSet);
18 }
19 // event notification from TCP server
20 if (FD_ISSET(tcpfd, &rSet) {
21 read(tcpfd, buf, BUFSIZE);
22 // forward server data to client
23 d2tp_write(cfd, buf, BUFSIZE);
24 }
25 }

Figure 7: Sample code with D2TP API (error processing is omitted)

4.1.3 D-Lock
We implement D-Lock by extending Android WakeLock [38]

using AlarmClock [39]. If there is any active flow, D-Lock acquires
WakeLock to prevent CPU from entering sleep mode. If there is
no active flow, D-lock releases WakeLock and sets AlarmClock to
wake up CPU for periodic Wi-Fi scanning. For every scanning
period, D-Lock checks if D2TP has any flow that needs to start
before the next scan. If so, D-Lock sets another AlarmClock to
trigger the D2TP layer to continue the data transfer to meet the
deadline.

4.2 D2Prox
We base our D2Prox implementation on a popular open-source

Web server, nginx (v1.2.6), by porting it to use D2TP socket func-
tions. D2Prox supports memory and disk caching, and transfers
data to/from a server with normal TCP socket functions when it is
able to send/receive a full content in a single connection. Porting is

Implementation Total (LoC) Modified (LoC)
D2TP thread and API 11,166 all
D2Prox (nginx) 129,340 55
Mobile Firefox 8,851,611 123
VLC 3,733,651 61
ReadyCast 9,868 all

Table 2: Total implemented/modified lines of code

mostly straightforward by replacing existing socket functions with
D2TP API, and the total number of modified lines is only 55 out of
129K lines of code as shown in Table 2. We have stress tested it to
confirm correct delay-tolerant operation as well as Web caching.

4.3 Real-world Applications
To show the applicability of Cedos to real-world applications, we

port two existing applications and implement a delay-tolerant pod-
cast downloader. The number of modified lines of code is shown in
Table 2.
Mobile Firefox: Since a Web browser is one of the most popular
applications, we port mobile Firefox (Fennec [30]) to use D2TP
and retrieve web pages via D2Prox. Original Fennec is built on
top of NetScape Portable Runtime (NSPR) [40], which provides a
platform-independent abstraction through a unified library API. We
thus identify all network-related functions in Fennec and NSPR,
and change them to use D2TP API. With only 123 lines of code
modification, Mobile Firefox enjoys seamless web browsing even
after network disruptions. While it works well with large file down-
load, we notice a few seconds of network interface switching delay
at network disruptions when we browse regular Web sites; due to
this reason, we do not evaluate it further in the next section.
VLC: To demonstrate that streaming media players could also ben-
efit from Cedos, we port VLC [29] (v0.2.0), a popular open-source
video player. We modify only 61 lines out of 3.7M lines of code to
download streaming video via D2Prox. VLC exploits D2BufMgr
in D2TP by setting an appropriate deadline, and delays cellular data
transfer if possible to offload to Wi-Fi. We find that by maintain-
ing D2BufMgr’s buffer thresholds large enough to buffer drainage
during network switching, VLC enjoys a constant video streaming
without a single interruption (or buffer underrun) even in a moving
train, further explained in next section.
Podcast client: Since there exists no deadline-based mobile app
in the market, we have built our own delay-tolerant publish-and-
subscribe podcast downloader, ReadyCast [31], and have registered
it with Google Play [32]. ReadyCast supports subscription to any
podcast feed published in the Internet. It allows the user to set the
deadline of a podcast content download, benefiting from the D2TP
layer for transparent delay management. ReadyCast also uses D-
Lock to minimize the power consumption at idle states while max-
imizing the offloading opportunities.

5. EVALUATION
We evaluate Cedos in two ways. First, we evaluate the basic

functionalities of Cedos by measuring the data transfer through-
put and bandwidth fairness, network switching delay, effect of flow
scheduling, power consumption at idle states, and D2Prox scala-
bility. Second, we test if Cedos-based systems effectively offload
cellular traffic to Wi-Fi networks in real-world applications.

5.1 Microbenchmark
We first measure the basic performance of Cedos components.

We use Galaxy S3 (Android 4.1.2 and Linux kernel 3.0.31) with an

Device Galaxy S3 Nexus 5
Protocol Throughput CPU Throughput CPU
D2TP 89.1 Mbps 16% 90.6 Mbps 11%
UDT 89.3 Mbps 25% 90.5 Mbps 14%
TCP 49.2 Mbps 7% 91.3 Mbps 8%

IBR-DTN 45.1 Mbps 15% 87.0 Mbps 18%

Table 3: Throughput/CPU usage during wireless data transfer

Protocol (# Connections) Aggregate Throughput JFI
TCP (100) 95.1 Mbps 0.99

D2TP (100) 96.3 Mbps 0.99
TCP (50) + D2TP (50) 95.0 Mbps 0.98

Table 4: Concurrent connection performance via Wi-Fi

1.4 GHz quadcore CPU and 2 GB RAM or Nexus 5 (Android 4.4.2
with Linux kernel 3.4.0) with a 2.3 GHz quadcore CPU and 2 GB
RAM as a client, and use a machine with an Intel Xeon E5-2650v2
octacore CPU with 32 GB RAM for D2Prox and an origin server.
For LTE access, we use SKT as our cellular ISP.
Throughput and CPU usage: Table 3 compares the performances
of downloading a 250 MB file using D2TP, TCP, UDT (UDP-based
reliable data transfer protocol [41]) and IBR-DTN (one of the delay-
tolerant network group’s disruption-tolerant data transfer imple-
mentations [42]) employing TCP as the underlying transport proto-
col. Both the client and the server run the same transport-layer pro-
tocol and a single connection is made between them via an 802.11n
Wi-Fi AP. Overall, we find that D2TP’s performance is comparable
to those of other protocols except for a slight increase in the CPU
cycles due to user-level protocol implementation atop UDP. Inter-
estingly, we observe much lower TCP performance on Galaxy S3,
which we suspect is due to a kernel implementation bug (after code
review) since we do not see the same problem on Nexus 5.
Fairness: We check if D2TP provides a fair bandwidth share among
competing flows by measuring Jain’s Fairness Index (JFI) [43]. We
compare following three cases: (i) 100 TCP connections, (ii) 100
D2TP connections, (iii) 50 TCP and 50 D2TP connections. We
have each connection download a 1 GB file on a Nexus 5 device,
and show the aggregate throughputs and JFIs in Table 4. We ob-
serve that D2TP provides comparable per-flow bandwidth fairness
to that of TCP both for D2TP-only flows and for D2TP flows mixed
with TCP flows.
Network switching delay: We next measure the network switch-
ing delays to migrate a D2TP flow between Wi-Fi and cellular net-
works. We measure the time between the last data packet from the
previous network and the first data packet in the new network on a
Galaxy S3 device. We measure it for 100 times and show the av-
erages. The switching time includes the CHG-RSP-AUTH process
for source authentication besides hardware interface switching.

We find that it takes 27 to 141 ms to switch from an LTE to a Wi-
Fi network with an average of 45 ms. Switching from LTE to Wi-Fi
is fast since the device can use LTE until the Wi-Fi access is fully
ready. So, the network switching delay is the same as the D2TP
source authentication latency. However, in the reverse direction
from Wi-Fi to LTE, we see 440 to 856 ms of delay with an average
of 581 ms. This is because Android enforces a higher priority level
on the Wi-Fi access, which requires the Wi-Fi interface to be turned
off before the LTE interface is initialized. We note that it takes
88 ms on average for D2TP source authentication in Wi-Fi-to-LTE
switching.

0 10 20 30

1

0 10 20 30

1 Wi-Fi LTE

0 10 20 30

1
2
3
4
5
6
7
8
9

10

(a)

(c)

(b)

(i)

(ii)

(i)

(ii)

(i)
(ii)

0 10 20 30

1
2
3
4
5
6
7
8
9

10

0 10 20 30

1
2
3
4
5
6
7
8
9

10

0 10 20 30

1
2
3
4
5
6
7
8
9

10

Elapsed Time (sec)

O
O
O
O
O
O
O
O
O
O

O

X

X
O
O
O
O
O
O
O
O
O

O
O
O
O
O
O
O
O
O
O

X
X
X
X
X
X
X
X
X
X

Completed
within deadline

Wi-Fi Wi-Fi

Flow 1
Flow 2

Flow 10

…
…

…

Wi-Fi

Wi-Fi

LTE

LTE

Deadline (failed to meet) Deadline (succeeded to meet) Data Transfer

Figure 8: Timecharts for flow scheduling experiments. Deadlines are
shown as vertical bars.

Flow scheduling with D2Sched: We now evaluate whether D2Sched
can guarantee complete data transfer within user’s delay tolerance
when experiencing poor Wi-Fi connections (Figure 8(a)) or resource
contention between multiple flows (Figure 8(b, c)). For these ex-
periments, we use Galaxy S3 and have each flow download a 100 MB
file from our server. For each graph, (i) represents a strawman
scheduling method (e.g., stick with Wi-Fi if available, schedule
each flow independently) while (ii) represents D2Sched’s result.

For poor Wi-Fi connection experiment, we run one flow with a
short deadline (5 min) in a Wi-Fi network whose bandwidth hap-
pens to be lower (0.8 Mbps) than that of a cellular network (4.7 Mbps).
This is a valid scenario as it is often the case that a Wi-Fi bandwidth
is lower than that of cellular access if the APs are congested or the
signal strength is weak [4]. As shown in Figure 8(a)(i), blindly
transferring data through Wi-Fi only fails to meet the deadline. On
the other hand in (ii), we see that D2Sched automatically switches
to LTE to finish the download within flow’s deadline. We note that
D2Sched still tries to maximize the Wi-Fi offloading ratio, receiv-
ing 16% of the data via Wi-Fi, which is close to optimal (17%).

For multiple flow experiment, we first run 10 flows with the same
deadline (30 min) in a cellular network (LTE) without any Wi-Fi
availability. The measured bandwidth of the cellular network is
4.7 Mbps on our client. Figure 8(b) compares the behavior of (i)
scheduling each flow independently vs. (ii) D2Sched. Under (i),
we find that all flows miss their deadlines since they end up waiting
for Wi-Fi too long. When they start using LTE, the bandwidth is
divided into 10 flows, which delays the flow beyond its indepen-
dently estimated finish time. In contrast, in (ii), all flows under
D2Sched finish in time since it schedules some flows earlier, oper-
ating with a minimum required time for meeting the deadlines of
all flows. Next, we run 9 flows with a long deadline (30 min) along

43.0

231.9

67.5 55.1 45.2

0

50

100

150

200

250

Sleep WakeLock
(2min)

D-Lock
(1min)

D-Lock
(2min)

D-Lock
(10min)

Po
w

er
 (m

W
)

Figure 9: Idle power usage for WakeLock and D-Lock at various scan-
ning periods

with one urgent flow with a much shorter deadline (5 min) in a Wi-
Fi network. The measured bandwidth of the network is 6.3 Mbps.
Figure 8(c) shows that the urgent flow misses its deadline under
(i) since the other 9 flows compete for the bandwidth at the same
time even if they have longer deadlines. However, in (ii), D2Sched
schedules the urgent flow first while holding off remaining 9 flows,
eventually meeting the deadlines of all flows.

Power usage at idle states: We show the effectiveness of our D-
Lock in reducing power consumption at idle states. Specifically, we
compare the power usage of a Galaxy S3 device when we use (i)
Android WakeLock (with WifiLock) vs. (ii) D-Lock. We set the de-
vice to use an LTE network during the experiment, and turn on the
Wi-Fi module for periodic scanning. For accurate measurement,
we turn off all the other user apps but the built-in apps, which can-
not be killed by a user. We use Power Monitor by Monsoon [44] for
power usage measurement, and show the results for various scan-
ning periods in Figure 9.

We first see that at least 43 mW is needed to keep the device in a
sleep state. If Android WakeLock is acquired, the CPU stays awake
for the entire duration of the idle states while the device would scan
for a Wi-Fi AP every 2 minute (default scanning policy in Galaxy
S3). As a result, the power usage surges up to 231.9 mW, 5.4 times
that of sleep state. Given that the battery capacity of Galaxy S3 is
7,980 mWh (3.7V with 2,100 mAh [45]), almost 70% of its total
battery would be consumed per day even if no other activity is go-
ing on. In contrast, D-Lock with 2 minutes as the scanning period
would curb the average power consumption at 55.1 mW, which out-
performs WakeLock by a factor of 4.2. This is because the CPU is
mostly turned off with D-Lock except when scanning a Wi-Fi AP.
Even with a 1-minute period, the power usage reduction is signifi-
cant (3.4x better than WakeLock), and increasing it to 10 minutes
produces the power consumption close to that of sleep states.

Power usage at transfer states: We next examine the power us-
age of D2TP during data transfer in comparison to that of TCP. We
measure the power consumption on a Nexus 5 device while down-
loading a 1 GB file through Wi-Fi using (i) TCP vs. (ii) D2TP.
We find that for 825 seconds of the data transfer (bandwidth =
9.7 Mbps), TCP uses 1043 mW while D2TP spends 1096 mW. This
extra 5% of power consumption comes from increased CPU usage
from user-level D2TP implementation as is also shown in Table 3.
However, we believe D2TP will be more power-efficient in the mo-
bility events as it avoids re-downloading the content from the start
at network disruptions, also shown in our previous work [46]. Be-
sides, it strives to use power-efficient Wi-Fi as much as possible
over power-hungry cellular radio.

D2Prox scalability: Finally, we evaluate the performance scala-
bility of D2Prox by having it handle a large number of concur-

Wi-Fi Cellular Power (mW)
1 Mbps 5 Mbps

off transfer 1,282 1,410
idle transfer 1,301 1,420

transfer off 568 686
transfer idle 576 689

Table 5: Power consumption with average bandwidth of 1 & 5 Mbps

rent flows. For this experiment, we employ a client machine of the
same specification as the server since it is difficult to create tens of
thousands of connections from a single smartphone. We have the
client initiate 64K concurrent connections to a D2Prox server, and
have each connection download a 1 GB file via a 10 Gbps interface
(through a NetGear XSM7224S switch). We make 10% of the ac-
tive connections go idle to simulate a network disruption for each
minute, and when all connections become idle, we make 10% of
the idle connections go active again for each minute. We observe
that D2Prox achieves almost 10 Gbps throughout the experiment
while the bandwidth is evenly distributed among the active flows,
producing a JFI above 0.9. Lastly, D2Prox scales linearly as we
introduce more D2Prox nodes to the network.

5.2 Experience with Real-world Applications
We gauge the practicality of Cedos in real-world mobile applica-

tions. First, we evaluate if Cedos ensures automatic switching be-
tween Wi-Fi and cellular networks even for real-time video stream-
ing with VLC. Second, we carry out a user study with ReadyCast
for 8 weeks. We measure Wi-Fi offloading opportunities with de-
lays in real environments, and observe how the users react to de-
layed data transfers.

5.2.1 Opportunistic data offloading with VLC
Experiment setup: We watch a long streaming video of constant
bit rate of 640 Kbps with Cedos-enabled VLC on a Nexus 5 de-
vice while riding a subway train in Daejeon, South Korea. The
subway line consists of 22 stations, and we take a round trip to go
from one end to the other end, and then come back to the starting
station. Each subway station is equipped with publicly-accessible
Wi-Fi APs but the train itself does not provide Wi-Fi access. So,
the Wi-Fi service is available only when the train is staying at a
station. Our goal is to opportunistically use the Wi-Fi access to
buffer the streaming video but to automatically switch to the cellu-
lar network (LTE) if Wi-Fi access is unavailable and the buffered
data is too small to be played back. We place D2Prox and an origin
server in our lab, which is 2 to 10 Km away from the client with
an average RTT of 42.9 ms via LTE and 13.7 ms via Wi-Fi. We
set D2BufMgr’s low and high receive socket buffer thresholds to
200 KB and 3 MB, respectively. We set the low threshold large
enough to cover 0.3 seconds of LTE-to-Wi-Fi interface switching
time during video playback. We set the high threshold conserva-
tively large since we observe that many public Wi-Fi APs that ad-
vertise themselves as accessible actually do not function properly.
Wi-Fi offloading ratio: The experiment result shows that as much
as 48.7% of the video data is being fetched through public Wi-Fi
APs at the stations. For the entire period of video watching, the Wi-
Fi data transfer is possible only for 310 seconds with an average
of 6.29 Mbps while the device uses LTE for much longer, 2,447
seconds. However, D2BufMgr’s buffering mechanism ensures to
limit the LTE usage by curbing the content download rate to the
video bit rate (640 Kbps). Overall, the result is inspiring since it
shows that almost a half of the large streaming data is delivered

0

5

10

15

20

25

30

0 100 200 300 400 500

B
u
ff

er
ed

 D
at

a
(M

B
)

Time (sec)

(i) (iii) (ii) (iii) (i) (iii) (ii)

Figure 10: Buffered data size over time for subway experiment. (i)
Wi-Fi data transfer, (ii) Wi-Fi no data transfer, (iii) no Wi-Fi

through Wi-Fi even if Wi-Fi access is available intermittently at a
fraction of the stations. We confirm that Cedos effectively offloads
the data to Wi-Fi without a single pause in the playback.

Buffer size at network disruptions: We next analyze how a D2TP
connection reacts to network disruptions during device mobility.
Figure 10 shows the trace of the buffered data size during the time
the train passes four subway stations. The shaded portions repre-
sent the availability of APs where (i) denotes that the APs are work-
ing properly while (ii) marks the period of malfunctioning APs that
disallow data transfer. At the 20th second, the client starts buffer-
ing the video content through Wi-Fi as much as 26 MB. The device
moves out of the Wi-Fi network at the 60th second, but it uses the
buffered data for playback until the remaining size hits the high
threshold at the 300th second. Then, it downloads the video con-
tent through LTE, but it keeps the buffer size at the high threshold
(=3 MB) until it meets a Wi-Fi AP at the next station at the 360th
second. The device attempts to buffer the data through the Wi-Fi
AP, but the AP seems to be unstable and transfers the data for only
about 5 seconds. At the 410th second, the device uses LTE again
and when the device meets a malfunctioning AP at the 450th sec-
ond, it tries to use Wi-Fi only to switch back to LTE at 500th second
since the remaining buffer size hits the low threshold.

Optimizing Wi-Fi offloading: We now share our experience in op-
timizing the Wi-Fi offloading process. In our earlier experiments,
we found that only 14.9% of the data was offloaded to Wi-Fi, which
appeared lower than expected given the average Wi-Fi attachment
time per station is 56.4 seconds while the period of Wi-Fi unavail-
ability between two stations is 60.3 seconds on average. We later
found out that once a device is attached to a Wi-Fi AP, it would not
rescan for a better AP even if the available bandwidth of the AP is
very low or even if it is not working. Actually, Wi-Fi data transfer
worked at only 3 out of 44 train stops (round trip of 22-station line)
in our earlier experiments.

We fix this problem by rescanning for a better AP every five
seconds when a streaming application is running in the foreground.
This allows the device to download 3.3 times more data through
Wi-Fi at the cost of 8.5% of extra power consumption. With this
fix, the number of stations that do transfer the data through Wi-Fi
increases to 9 from 3, and the transfer time per station lasts for 34.4
seconds on average. We find that each Wi-Fi transfer at a station
downloads 27.1 MB of the data, which is enough for watching the
video for more than 5 minutes. Unfortunately, while the other 35
train stops report Wi-Fi availability, we could not transfer any data
through their APs. We plan to investigate the reasons in the future.

Another problem we found is that it often takes as much as 3 sec-
onds to turn on the 3G cellular interface when we switch from the

Fr
ac

tio
n

of
 D

at
a

Sa
ve

d
(%

)

0

20

40

60

80

100

1 51 101 151 201 251 301

Flows that experience network disruptions Individual flows experiencing network disruptions

Figure 11: Data portion saved by D2TP connection resumption

Wi-Fi interface. Switching to LTE is not a big problem, but if LTE
is not available, the device can fall back to the 3G interface. This
implies that we need to have a larger low buffer threshold to reli-
ably switch from Wi-Fi to cellular interfaces. But having a large
low buffer threshold could lead to unnecessarily frequent switch-
ings to cellular networks even if Wi-Fi is available (but its available
bandwidth is temporarily fluctuating), which would reduce the Wi-
Fi offloading opportunities.

One workaround is to keep the cellular interface on even if the
device is attached to a Wi-Fi network so that the device could
switch to the cellular interface at any time. One concern with the
approach is that it would consume more power, which is obviously
undesirable. Fortunately, we find that the extra power consumption
is reasonable, ranging from only 0.7 to 1.5% as shown in Table 5
when it is compared with having only the Wi-Fi interface on. So,
we decide to keep the cellular interface on even if the device is
attached to a Wi-Fi AP.

5.2.2 Delayed data offloading with ReadyCast
Experiment setup: We conduct a user study with ReadyCast by
having 50 KAIST students use it for 8 weeks 2. The students sub-
scribe to any of 3,853 Podcast channels populated in ReadyCast
links, and download the contents by setting an allowed delay be-
tween 0 to 6 hours. To simulate ISP-embedded D2Prox, we place
two D2Prox servers in Korea Advanced Research Network (KO-
REN) PoPs in Seoul and in Daejeon, respectively. KOREN is a
government-funded research network testbed in South Korea, of-
fering high-speed linkage to Japan, China, U.S., and Europe as
well [47]. We have ReadyCast choose the nearest D2Prox server
by resolving a D2Prox domain name (e.g., dprox.net) with our
custom DNS server. For each download, the client leaves a per-flow
log, which includes a deadline, play timestamps, network disrup-
tion/switching records, and data volume transferred via Wi-Fi and
cellular connections. Overall, we have collected a total of 2,834
unique connections that complete the downloads, which is 71.2 GB
in volume. While the users are mostly staying on campus during
weekdays, many of them tend to travel outside the campus dur-
ing weekends and holidays. So, the dataset covers remote mobility
events beyond the campus networks to some extent.
Network characteristics: We describe the overall mobile network
characteristics logged by ReadyCast. First, we observe that the
users are well-exposed to Wi-Fi networks. We find that the user
devices are attached to Wi-Fi for 62.9% of the download time. Data
transfers via Wi-Fi show a higher average throughput (2.68 Mbps)
than that of cellular access (0.82 Mbps), which matches the trend
in previous experiments [5].
2We anonymize all usage records for privacy.

79.5%

93.4%
96.2%

99.5%
92.4%

60

70

80

90

100

W
i-F

i O
ffl

oa
di

ng
 R

at
io

 (%
)

On-the-spot Delayed
(Short)

Delayed
(Long)

Delayed
(Long) Total

Allowed
Delay 0 0 – 1 hr 1 – 3 hr 3 – 6 hr -

Downloads 974 362 330 1,168 2,834

Figure 12: Offloading ratios by user-configured delays

User Group with
Monthly Limit (x)

Delayed
Download

Average
Allowed Delay

Offloading
Ratio

0 < x ≤ 1 GB 62.7% 186.1 min 92.6%
1 GB < x ≤ 5 GB 52.2% 101.7 min 90.7%

x ≥ 5 GB 47.6% 100.9 min 88.5%

Table 6: User study statistics based on monthly data cap

336 downloads (11.9%) experience network switchings between
Wi-Fi and cellular networks during the download. The average
number of network switchings is 2.8 times per download. This
means that a network switching is bimodal. The majority of down-
loads finish within a network, and if there is a network switching
(user mobility), the users switch the networks almost 3 times per
download before completion. Figure 11 shows the fraction of the
data that are transferred before network disruptions, which amount
to 38% of the entire downloaded data. This is the savings by D2TP
while it would have been wasted on TCP without application-level
resumption. We find that 80% of the downloads have non-zero
user-allowed delays, which implies that the users are willing to ben-
efit from Wi-Fi access even with delays when they expect network
switchings while downloading the content.

Wi-Fi offloading ratio: We next look at how much data is of-
floaded to Wi-Fi by ReadyCast. Figure 12 shows the breakdown
of Wi-Fi offloading ratios by the delays allowed by the users. In-
terestingly, even the downloads without any delay (“on-the-spot”)
deliver 79.5% of the data through Wi-Fi. We suspect that this is be-
cause the users choose “no delay” when they already know that they
are in the Wi-Fi service area. We find that 70% of the on-the-spot
flows download the data completely without cellular access, and
only 24% of them receive the content solely from 3G/LTE access.
In case a user allows some delays, the offloading ratio increases
rapidly. We observe that almost 93% of the data is offloaded to Wi-
Fi even for a few tens of minutes of delays. This implies that one
does not need to wait very long to meet available Wi-Fi APs, and
delayed offloading is a practical solution that could significantly re-
duce the traffic to cellular networks. If the allowed delay is larger
than three hours, almost all traffic (99.5%) is offloaded to Wi-Fi.
Overall, 92.4% of the total data is delivered through Wi-Fi without
any wasted data transfer with ReadyCast.

User reaction to delays: We analyze how users react to delayed
data transfers by looking at their deadline selection behavior. We
first surveyed users’ cellular data plans, and found the tendency
that the users allow more delays as the monthly data cap is smaller,
as shown in Table 6. The actual offloading ratios are in line with
the deadline selection where more data is offloaded to Wi-Fi with
longer delays.

58% 53% 51%
71%

13%
8% 21%

13%
29% 39%

28%
16%

0%

20%

40%

60%

80%

100%

Total Week 1 Week 2 Week 3 - 8
Delayed (Long) Delayed (Short) On-the-spot

Fr
ac

tio
n

of
 D

at
a

Tr
an

sm
itt

ed
 (%

) 100

80

60

40

20

0

Figure 13: Delay selection by users (short: < 1hr, long: ≥ 1hr)

We next analyze how users’ delay selection changes during the
experiment period. Figure 13 compares the fractions of user-selected
delays for the first two weeks and the remaining six weeks. We see
that almost 40% of the bytes are downloaded with no delay for the
first week. However, once the users get used to delayed downloads,
their delay tolerance grows accordingly, showing as much as 84%
of the downloaded volume is tagged with a positive delay and more
than 70% of the total bytes allow a delay of one hour or more. This
suggests that the users are willing to allow delays as long as the
application supports delayed downloads.

User experience: We conducted a user survey before and after
the field study. Before the experiment, almost half of the users
responded that they usually keep the Wi-Fi interface off to avoid
abrupt connection closures during network disruptions. After the
experiment, 94% of the users responded that ReadyCast was very
useful since it automatically completed the downloads regardless of
network disruptions, and 85% have felt almost no increase in bat-
tery consumption, implying that D-Lock with the 2-minute polling
period works well in practice. Many wanted to extend the service
to movies or TV shows, so delay-tolerant Netflix-like service could
be promising.

6. DISCUSSION
In this section, we discuss other issues in developing and deploy-

ing delay-tolerant mobile applications.

Leveraging delay tolerance: Our work reconfirms that allowing
even a slight delay in download offloads a significant fraction of
cellular data to Wi-Fi. We believe there are many ways to encour-
age delayed downloads different from what we have presented in
this paper. One simple example is automatic synchronization of
periodically-generated contents (e.g., newspapers, TV shows, or
even movies) by a daily deadline. Another way is to develop an
app that automatically learns the user’s acceptable delay and sug-
gests the user a default value per each download. The app can an-
alyze the content types or the download history and can calculate
the time between the download and playback (or usage). Also, if an
app can predict the next content to download (e.g., if it can access
a playlist in on-line music streaming), it can opportunistically fetch
the content through Wi-Fi as we have showed with VLC streaming.

Concurrent multiple network interfaces: In this work, we have
not explored using both Wi-Fi and cellular interfaces at the same
time, but it could be beneficial if the Wi-Fi bandwidth happens to
be too small to finish downloading within a deadline. Allowing to
use both networks is in line with adopting multipath TCP in Apple
iOS 7 [48] and using a download booster [49] for fast download. To
support concurrent multiple network interfaces, we should adjust

D2TP to conform to multipath TCP, and fix our flow scheduling
algorithm to reflect concurrent data transfers.

Operator-scale deployment cost: We discuss the applicability of
D2Prox on a cellular ISP scale. A cellular ISP can decide to de-
ploy D2Prox in a number of vantage points close to the subscribers
and allow mobile apps to use D2Prox after authentication. This
would efficiently distribute delay-tolerant contents to Wi-Fi with
Cedos apps while the remaining interactive, real-time contents are
delivered through cellular networks in case Wi-Fi is unavailable.
We note the cost of the increasing end-to-end latency due to rout-
ing through D2Prox, but we believe most of delay-tolerant flows
that benefit from Cedos will be long-lived, large-data transfers that
are less affected by it. Moreover, D2Prox could reduce the latency
by servicing popular content from its cache without contacting the
origin server. By veering a large volume of cellular data traffic
to cheap, widely-deployed Wi-Fi APs, Cedos would allow cellular
ISPs to reduce the cost of expanding and maintaining the expensive
cellular infrastructure.

Handling hard failures: We have focused mainly on how to trans-
parently handle soft failures such as network disruptions and delay.
However, maintaining delay-tolerant, long-lived flows in the face of
hard failures such as app crash or device power outage is another
challenge that needs to be addressed. For example, our ReadyCast
could resume the data transfer after a hard failure by keeping all
flow metadata such as URL, content length, file path and deadline
persistent in its flash storage. We plan to support reliable crash
recovery in D2TP by using persistently storing flow metadata at
minimum overhead [50].

Security: We discuss a few security issues in the operation of Ce-
dos applications. First, D2TP servers (or proxies) could be more
vulnerable to state explosion attacks. For example, attackers may
issue a large number of D2TP connections with D2Prox, but never
download the content from it. Since D2Prox keeps track of many
concurrent D2TP sessions, too many idle connections could ex-
haust the computing resources of D2Prox. Second, attackers may
intentionally issue repeated connection or connection resumption
requests. Since the connection or connection resumption proce-
dure requires more CPU cycles than regular TCP connection setup,
attackers may attempt to use up CPU cycles to deny other requests.
However, these attacks are not fundamentally different from other
resource exhaustion attacks on regular TCP-based (or TLS-based)
servers. One approach to mitigating these problems is to authenti-
cate each app user, and to limit the number of concurrent requests
or to enforce a rate on bandwidth consumption per client [51].

7. RELATED WORKS
There are many related works that address network disruptions

or exploit the delay in Wi-Fi offloading. Due to the sheer number,
comprehensive treatment is hard here, so we highlight the differ-
ence of our approach from other works.

7.1 Handling network disruptions/delays
There are various ways to handle network disruptions at con-

tent download. A popular approach is to resume the download us-
ing an application layer protocol (e.g., HTTP range queries). One
practical downside, however, is that it requires the modification of
each application, which we find is often neglected in mobile apps.
Mosh [52] and ATOM [53] provide seamless data transfer at net-
work disruption by synchronizing to the latest state or by querying
for the latest download offset. However, their applicability is lim-
ited as they base on UDP, or it requires mobile apps to support
resumption. 3GPP’s I-WLAN [54] specifies a way to integrate the

cellular operator’s LTE and user-owned Wi-Fi APs. More recently,
IFOM [55] was proposed to support seamless flow-level offload-
ing within I-WLAN architecture. However, implementations of I-
WLAN and IFOM require tight integration of the two networks,
and may result in heavy burden on the backhaul network (e.g., an-
choring on P-GW).

Another workaround is to eliminate the network address bind-
ing altogether and to use a unique identifier that persists between
network disruptions. Locator/ID Separation Protocol (LISP) [23],
i3 [26], and HIP [21] bring in a separate id for the location and
use the IP address as an endpoint identifier. However, these proto-
cols require upgrading the existing infrastructure (e.g., routers) or
adding a separate entity (e.g., DNS support), which may be chal-
lenging for immediate deployment. Mobile IP [56] uses a fixed
home address to hide a moving device, which is similar to D2Prox
in relaying the packets. But Cedos supports delayed offloading with
a flexible network API that directly controls the mobility events.

TCP Migrate [27] and MPTCP [57, 58] remove separate entity
requirement by extending TCP to include transport-level flow iden-
tifying token. Serval [28] introduces a new service access layer,
which demultiplexes packets based on flow identifiers and migrates
a flow from one address to another. Auspice [59] is a massively
scalable global name service which resolves network location iden-
tities under high mobility. msocket [60] is a BSD socket-like API
which provides mid-connection mobility for mobile-to-mobile and
multipath cases by relying on Auspice. However, they all assume a
short reconnection and are unable to handle hours of delay as they
are based on default TCP teardown after 15 retransmissions [61].

Bundle protocol (BP) [62] is the standard communication proto-
col for Delay Tolerant Networks (DTN), which enables end-to-end
reliable delivery through intermittent connectivity in the challenged
networks (e.g., interplanetary [63] or rural Internet access [64]).
Notable BP implementations include DTN2 [65], IBR-DTN [66],
and ION [67]. Since these protocols are originally designed as
transport protocols in multi-hop opportunistic networks, we find
that they do not fit well into our system environments. First, BP
requires bundling the data before sending it, which makes it unsuit-
able to deliver dynamically generated data (e.g., media streaming).
Second, their programming API is largely different from the BSD
socket API (e.g., requiring endpoint ID starting with "dtn://"), so
that it would be difficult to port the existing mobile applications.
Cedos adopts D2TP, a transport layer protocol tailored to Wi-Fi of-
floading in mobile apps. D2TP extends our early work, DTP [46],
a disruption-tolerant transport protocol, by completing the API that
allows delay and buffer management with multi-flow scheduling
and by supporting D2Prox for easy deployment with realistic mo-
bile apps.

7.2 Wi-Fi offloading with delay
A large number of works have shown the potential of Wi-Fi of-

floading through mobility studies. A recent study on mobility esti-
mates that over 60% of the cellular traffic can be offloaded to Wi-
Fi [5, 4]. Lee et. al. [5] report that the offloading ratio would further
improve up to 93.7% if the data transfer could be delayed by one
hour. User surveys [68, 69], incentive mechanism [70], and eco-
nomic analysis [71] also support the feasibility of Wi-Fi offloading
with delay. These results may change depending on the experi-
mental conditions, but they show that a slight delay helps a lot in
increasing Wi-Fi contact chances for most mobile data transfers.

Wiffler [4] implements a Wi-Fi offloading system that leverages
user delay tolerance to reduce cellular data traffic. However, Wif-
fler focuses on exploiting delay only in fixed-sized file transfers,
and shifts the burden of handling mobility events to mobile apps.

In contrast, Cedos provides transport-layer handling of the mobil-
ity events, which allows easy development of mobile apps. Also,
since Wiffler does not provide multi-flow scheduling, it could make
some flows miss the deadlines when there is resource contention.
TUBE [69] builds an app that allows a user to set a delay on mo-
bile apps. However, its application-level implementation requires
to jailbreak the device (for autopilot) and to set a deadline per app
(not per each flow), which limits flexibility. Like Wiffler, it does
not provide transport-layer API nor network disruption handling.
In Cedos, we aim to provide flexibility to app developers with
minimal migration effort by providing the BSD socket-like API
that supports a broad spectrum of apps, ranging from interactive,
streaming to non-interactive file transfer apps.

We note that recent smartphones introduce advanced Wi-Fi net-
work switching algorithms (e.g., "Smart Network Switch" from
Samsung Android phones) to improve the QoE by automatically
switching the Wi-Fi interface when the signal drops too low or
the network is too slow. These features would help D2TP to im-
prove the QoE of the users, but blind switchings agnostic to the
need of application workloads (e.g., delay tolerance) could result
in increased cellular data usage. In contrast, our solution derives
network switching decisions based on the deadline or the amount
of data in the buffer to exploit the Wi-Fi network.

8. CONCLUSION
While delay-tolerant Wi-Fi offloading is known to be a great

idea, there has been little systems support for it. In this paper, we
have presented Cedos, which enables easy development of delay-
tolerant mobile apps by hiding the complexity of handling mobility
events in a new transport layer, D2TP. D2TP is designed to trans-
parently handle network disruptions and delays, while it sched-
ules multiple flows to meet deadlines for maximal Wi-Fi usage.
D2TP also allows real-time buffer management for video stream-
ing through opportunistic Wi-Fi connections. Finally, we provide
D2Prox, which enables Cedos apps to coexist with TCP-based servers.
We have demonstrated that it is easy to port existing apps to Cedos,
and confirmed that the benefit is realized in the real-world usage
scenarios. We hope that Cedos further encourages delay-tolerant
app development and practicalizes the concept of delay-tolerant
Wi-Fi offloading.

9. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers and our shep-

herd, Margaret Martonosi, for their insightful comments and sug-
gestions to improve the paper. This work was supported in part by
the ICT R&D program of MSIP/IITP, Republic of Korea [14-911-
05-001, Development of an NFV-inspired networked switch and an
operating system for multi-middlebox services] and [14-000-04-
001, Development of 5G Mobile Communication Technologies for
Hyper-connected smart devices], National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIP) (NRF-
2013R1A2A2A01067633), and KCA-2011-11913-05004.

10. REFERENCES
[1] ITBusinessEdge. Five Reasons Wi-Fi Will Overtake

Traditional Telecoms, 2013.
http://www.itbusinessedge.com/
slideshows/five-reasons-wi-fi-will-
overtake-traditional-telecoms.html.

[2] Wireless Broadband Alliance. Wireless Broadband Alliance
Industry Resport 2013: Global Trends in Public Wi-Fi, 2013.

[3] ABC News. New York City Pay Phone Booths Noew Free
WiFi Hotspots, 2012.
http://abcnews.go.com/Technology/york-
city-pay-phone-booths-now-free-
wifi/story?id=16756016.

[4] A. Balasubramanian, R. Mahajan, and A. Venkataramani.
Augmenting Mobile 3G Using WiFi. In Proceedings of the
International Conference on Mobile Systems, Applications,
and Services (MobiSys), 2010.

[5] K. Lee, I. Rhee, J. Lee, S. Chong, and Y. Yi. Mobile Data
Offloading: How Much Can WiFi Deliver? In Proceedings of
the ACM International Conference on Emerging Networking
EXperiments and Technologies (CoNEXT), 2010.

[6] Twitter (Android application, v5.35.0).
https://play.google.com/store/apps/
details?id=com.twitter.android.

[7] Facebook (Android application, v22.0.0.15.13).
https://play.google.com/store/apps/
details?id=com.facebook.katana.

[8] Podcast Addict (Android application, v2.23.2).
https://play.google.com/store/apps/
details?id=com.bambuna.podcastaddict.

[9] BeyondPod (Android application, v4.0.32).
https://play.google.com/store/apps/
details?id=mobi.beyondpod.

[10] Podcast Republic (Android application, v2.5.7). https:
//play.google.com/store/apps/details?id=
com.itunestoppodcastplayer.app.

[11] YouTube (Android application, v5.17.6).
https://play.google.com/store/apps/
details?id=com.google.android.youtube.

[12] TuneIn Radio (Android application, v12.9).
https://play.google.com/store/apps/
details?id=tunein.player.

[13] MXPlayer (Android application, v1.7.33).
https://play.google.com/store/apps/
details?id=com.mxtech.videoplayer.ad.

[14] Google Play Movie (Android application, v3.5.14).
https://play.google.com/store/apps/
details?id=com.google.android.videos.

[15] VLC (Android application, v0.9.10).
https://play.google.com/store/apps/
details?id=org.videolan.vlc.betav7neon.

[16] Chrome (Android application, v39.0.2171.59).
https://play.google.com/store/apps/
details?id=com.android.chrome.

[17] OperaMini (Android application, v7.6.2).
https://play.google.com/store/apps/
details?id=com.android.chrome.

[18] eBay (Android application, v2.8.2.1).
https://play.google.com/store/apps/
details?id=com.ebay.mobile.

[19] Amazon (Android application, v5.2.0).
https://play.google.com/store/apps/
details?id=com.amazon.mShop.android.

[20] Google Play Book (Android application, v3.2.61).
https://play.google.com/store/apps/
details?id=com.google.android.apps.books.

[21] R. Moskowitz and P. Nikander. Host Identity Protocol
Architecture. RFC 4423, IETF, 2006.

[22] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, and

R. Morris. Middleboxes no longer considered harmful. In
Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2004.

[23] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. The
Locator/ID Separation Protocol (LISP). RFC 6830, IETF,
2013.

[24] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy,
S. Shenker, I. Stoica, and M. Walfish. A layered naming
architecture for the Internet. In Proceedings of the ACM
Special Interest Group on Data Communication
(SIGCOMM), 2004.

[25] A. Feldmann, L. Cittadini, W. Muhlbauer, R. Bush, and
O. Maennel. HAIR: Hierarchical architecture for Internet
routing. In In Proceedings of the ACM workshop on
Re-architecting the internet (ReArch), 2009.

[26] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana.
Internet Indirection Infrastructure. In Proceedings of the
ACM Special Interest Group on Data Communication
(SIGCOMM), 2002.

[27] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode. Migratory
TCP: Connection Migration for Service Continuity in the
Internet. In Proceedings of the IEEE International
Conference on Distributed Computing Systems (ICDCS),
2002.

[28] E. Nordstrom, D. Shue, P. Gopalan, R. Kiefer, M. Arye, S. Y.
Ko, J. Rexford, and M. J. Freedman. Serval: An End-Host
Stack for Service-Centric Networking. In Proceedings of the
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2012.

[29] VideoLAN Organization. VLC media player.
http://www.videolan.org/vlc/index.html.

[30] MozillaWiki. Mobile/Fennec.
https://wiki.mozilla.org/Mobile/Fennec.

[31] ReadyCast. https://play.google.com/store/
apps/details?id=dtn.readycast.

[32] Google play. http://play.google.com/store.
[33] Google Nexus 5.

http://www.google.com/nexus/5/.
[34] A. J. Nicholson and B. D. Noble. BreadCrumbs: Forecasting

Mobile Connectivity. In Proceedings of the Annual
International Conference on Mobile Computing and
Networking (MobiCom), 2008.

[35] O. B. Yetim and M. Martonosi. Adaptive Delay-Tolerant
Scheduling for Efficient Cellular and WiFi Usage. In
Proceedings of the IEEE International Symposium on a
World of Wireless, Mobile and Multimedia Networks
(WowMoM), 2014.

[36] Y. Kim, J. Lee, J. Jeong, and S. Chong. Optimal multi-flow
scheduling in delayed Wi-Fi offloading. In Technical Report,
2014. available at http://netsys.kaist.ac.kr/
publication/multi-flow.pdf.

[37] A. Aguiar and J. Klaue. Bi-directional WLAN channel
measurements in different mobility scenarios. In Proceedings
of the IEEE Vehicular Technology Conference (VTC), 2004.

[38] Android PowerManager.WakeLock.
http://developer.android.com/reference/
android/os/PowerManager.WakeLock.html.

[39] Android Alarm Clock.
http://developer.android.com/reference/
android/provider/AlarmClock.html.

[40] Mozilla Developer Network. NetScape Portable Runtime.

https://developer.mozilla.org/en-
US/docs/Mozilla/Projects/NSPR.

[41] UDP-based Data Transfer.
http://udt.sourceforge.net/.

[42] IBR-DTN. http://trac.ibr.cs.tu-
bs.de/project-cm-2012-ibrdtn.

[43] R. Jain, A. Durresi and G. Babic. Throughput Fairness Index:
An Explanation. http://www.cse.wustl.edu/
~jain/atmf/ftp/af_fair.pdf.

[44] Monsoon Power Monitor. http://www.msoon.com/
LabEquipment/PowerMonitor/.

[45] Samsung Galaxy S3 Specifications.
http://www.samsung.com/global/galaxys3/
specifications.html.

[46] Y. Go, Y. Moon, G. Nam, and K. Park. A Disruption-tolerant
Transmission Protocol for Practical Mobile Data Offloading.
In Proceedings of the ACM International Workshop on
Mobile Opportunistic Networks (MobiOpp), 2012.

[47] KOREN (Korea Advanced Research Network).
http://www.koren.kr/koren/eng/.

[48] iOS: Multipath TCP Support in iOS 7.
http://support.apple.com/kb/HT5977.

[49] Samsung Galaxy S5 Download Booster.
http://galaxys5guide.com/samsung-galaxy-
s5-features-explained/galaxy-s5-
download-booster/.

[50] Y. Go, N. Agrawal, A. Aranya, and C. Ungureanu. Reliable,
Consistent, and Efficient Data Sync for Mobile Apps. In
Proceedings of the USENIX Conference on File and Storage
Technologies (FAST), 2015.

[51] X. Qie, R. Pang, and L. Peterson. Defensive Programming:
Using an Annotation Toolkit to Build DOS-Resistant
Software. In Proceedings of USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
2002.

[52] K. Winstein and H. Balakrishnan. Mosh: An Interactive
Remote Shell for Mobile Clients. In Proceedings of the
USENIX Annual Technical Conference (ATC), 2012.

[53] R. Mahindra, H. Viswanathan, K. Sundaresan, M. Y. Arslan,
and S. Rangarajan. A Practical Traffic Management System
for Integrated LTE-WiFi Networks. In Proceedings of the
Annual International Conference on Mobile Computing and
Networking (MobiCom), 2014.

[54] 3GPP TS 24.327, Mobility between 3GPP Wireless Local
Area Network (WLAN) interworking (I-WLAN) and 3GPP
systems.
http://www.3gpp.org/DynaReport/24327.htm.

[55] 3GPP TS 23.261, IP flow mobility and seamless Wireless
Local Area Network (WLAN) offload.
http://www.3gpp.org/DynaReport/23261.htm.

[56] C. Perkins. IP Mobility Support. RFC 2002, IETF, 1996.
[57] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar.

Architectural Guidelines for Multipath TCP Development.
RFC 6182, IETF, 2011.

[58] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley.
Design, implementation and evaluation of congestion control
for multipath TCP. In Proceedings of the USENIX
Symposium on Networked Systems Design and
Implementation (NSDI), 2011.

[59] A. Sharma, X. Tie, H. Uppal, A. Venkataramani,
D. Westbrook, and A. Yadav. A global name service for a

highly mobile internetwork. In Proceedings of the ACM
Special Interest Group on Data Communication
(SIGCOMM), 2014.

[60] A. Yadav, A. Sharma, A. Venkataramani, and E. Cecchet.
msocket: System support for developing seamlessly mobile,
multipath, and middlebox-agnostic applications. In
Proceedings of the UMass SCS Technical Report, 2014.

[61] J. Postel. Transmission Control Protocol. RFC 793, IETF,
1981.

[62] K. Scott and S. Burleigh. Bundle Protocol Specification.
RFC 5050, IETF, 2007.

[63] S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V. Cerf,
B. Durst, K. Scott, and H. Weiss. Delay-Tolerant
Networking: An Approach to Interplanetary Internet. In
IEEE Communications Magazine, volume 41(6), pp.
128-136, 2003.

[64] S. Guo, M.H. Falaki, E.A. Oliver, S. Ur Rahman, A. Seth,
M.A. Zaharia, and S. Keshav. Very Low-Cost Internet
Access Using KioskNet. In ACM SIGCOMM Computer
Communication Review, volume 37(5), pp. 95-100, 2007.

[65] M. Demmer, E. Brewer, K. Fall, S. Jain, M. Ho, and R. Patra.
Implementing Delay Tolerant Networking. In Technical
Report, IRB-TR-04-020, 2004.

[66] M. Doering, S. Lahde, J. Morgenroth, and L. Wolf.
IBR-DTN: An Efficient Implementation for Embedded
Systems. In Proceedings of the ACM workshop on
Challenged networks (CHANTS), 2008.

[67] S. Burleigh. Interplanetary Overlay Network: An
Implementation of the DTN Bundle Protocol. In IEEE
Consumer Communications and Networking Conference
(CCNC), pages 222–226, 2007.

[68] TUBE Survey, 2011. http://scenic.princeton.
edu/tube/tdpsurvey.html.

[69] S. Ha, S. Sen, J. Carlee, Y. Im, and M. Chiang. Tube:
time-dependent pricing for mobile data. In Proceedings of
the ACM Special Interest Group on Data Communication
(SIGCOMM), 2012.

[70] X. Zhuo, W. Gao, G. Cao, and Y. Dai. Win-Coupon: An
Incentive Framework for 3G Traffic Offloading. In
Proceedings of the IEEE International Conference on
Network Protocols (ICNP), 2011.

[71] J. Lee, Y. Yi, S. Chong, and Y. Jin. Economics of WiFi
Offloading: Trading Delay for Cellular Capacity. In
Proceedings of the IEEE International Workshop on Smart
Data Pricing (INFOCOM SDP), 2013.

